

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

PARABOLA, ELLIPSE AND HYPERBOLA

Problems

1. If P is a point on the parabola $y^2=8x$ and A is the point (1,0) then the locus of the mid point of the line segment AP is

A.
$$y^2=4igg(x-rac{1}{2}igg)$$

$$\mathtt{B.}\,y^2=2(2x+1)$$

$$\mathsf{C.}\,y^2=x-\frac{1}{2}$$

$$\mathsf{D}.\,y^2=2x+1$$

Answer: A

Watch Video Solution

2. The equation of the parabola with focus (1,-1) and directrix x+y+3=0 is

A.
$$x^2 + y^2 - 10x - 2y - 2xy - 5 = 0$$

B.
$$x^2 + y^2 + 10x - 2y - 2xy - 5 = 0$$

C.
$$x^2 + y^2 + 10x + 2y - 2xy - 5 = 0$$

D.
$$x^2 + y^2 + 10x + 2y + 2xy - 5 = 0$$

Answer: A

View Text Solution

3. The centre of the ellipse
$$rac{\left(x+y-3
ight)^2}{9}+rac{\left(x-y+1
ight)^2}{16}=1$$
 is

B. (1,-2)

C. (-1,-2)

D. (1,2)

Answer: D

Watch Video Solution

4. For the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ a list of lines given in List I are to be matched with their equations given in Lisht II.

The correct match is:

Answer: B

- **5.** The product of lenghts of perpendicular from any point on the hyperbola $x^2-y^2=16$ to its asymptotes, is
 - A. 2
 - B. 4
 - C. 8
 - D. 16

Answer: C

6. An equilateral triangle is inscribed in the parabola $y^2=8x$, with one of its vertices is the vertex of the parabola, Then, the length of the side of that triangle is

A.
$$24\sqrt{3}$$

$$\mathsf{B.}\ 16\sqrt{3}$$

$$\mathsf{C.}\,8\sqrt{3}$$

D.
$$4\sqrt{3}$$

Answer: B

7. The point (3,4) is the focus and 2x-3y+5=0 is the directrix of a parabola. Its latusrectum is

A.
$$\frac{2}{\sqrt{13}}$$

$$\mathsf{B.} \; \frac{4}{\sqrt{13}}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{13}}$$

D.
$$3\sqrt{13}$$

Answer: A

Watch Video Solution

8. The radius of the circle passing throught the foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$ and having its center at (0,3) is

A. 6

B. 4

C. 3

D. 2

Answer: B

9. The values that can take so that straight line y=4x+n touches the curve $x^2+4y^2=4$ is

A.
$$\pm 45$$

$${\rm B.}\pm\sqrt{60}$$

$$\mathrm{C.}\pm\sqrt{65}$$

D.
$$\pm\sqrt{72}$$

Answer: C

10. The foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbla $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide. Then, the value of b^2 is

- **A.** 5
- B. 7
- C. 9
- D. 1

Answer: B

Watch Video Solution

11. If a normal chord at a point t on the parabola $y^2=4ax$ subtends a right angle at the vertex, then t equals to

- **A.** 1
- B. $\sqrt{2}$
- C. 2
- D. $\sqrt{3}$

Answer: B

12. The slopes of the focal chords of the parabola $y^2=32x$, which are tangents to the circle $x^2+y^2=4$ are

A.
$$\frac{1}{2}$$
, $\frac{-1}{2}$
B. $\frac{1}{\sqrt{3}}$, $\frac{-1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{15}}$, $\frac{-1}{\sqrt{15}}$

D. $\frac{2}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$

Answer: C

13. If tangent are drawn from any point on the circle

$$x^2+y^2=25$$
 to the ellipse $rac{x^2}{16}+rac{y^2}{9}=1$, then the angle between the tangents is,

- A. $\frac{2\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{2}$

Answer: D

14. An ellipse passing through $\left(4\sqrt{2},\,2\sqrt{6}\right)$ has foci at (-4,0) and (4,0). Then, its eccentricity is

- A. $\sqrt{2}$
- $\mathsf{B.}\;\frac{1}{2}$
- C. $\frac{1}{\sqrt{2}}$ D. $\frac{1}{\sqrt{3}}$

Answer: B

15. A hyperbola passing through a focus of the ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1.$ Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1. Then, the

A.
$$\frac{x^2}{144} - \frac{y^2}{9} = 1$$

equation of the hyperbola is,

$$\text{B.} \ \frac{x^2}{169} - \frac{y^2}{25} = 1$$

$$\text{C.} \ \frac{x^2}{144} - \frac{y^2}{25} = 1$$

D.
$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

Answer: C

16. A circle of radiu 4, drawn on a chord of the parabola $y^2=8x$ as dimater, touches the axis of the parabola. Then, the slope of the chord is

- A. $\frac{1}{1}$ B. $\frac{3}{4}$
- C. 1
- D. 2

Answer: C

17. The mid point of a chord of the ellipse $x^2+4y^2-2x+20y=0$ is (2,-4). The equation of the chord is

- A. x-6y=26
- B. x+6y=26
- C. 6x-y=26
- D. 6x+y=26

Answer: A

18. If the focii of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ and the hyperbola $\frac{x^2}{4}-\frac{y^2}{b^2}=1$ coincide, then b^2 is equal to

- A. 4
- B. 5
- C. 8
- D. 9

Answer: B

19. If x=9 is a chord of contact of the hyperbola $x^2-y^2=9$, then the equation of the tangent at one of the points of contact is

A.
$$x + \sqrt{3}y + 2 = 0$$

B.
$$3x - 2\sqrt{2}y - 3 = 0$$

C.
$$3x - \sqrt{2}y + 6 = 0$$

D.
$$x-\sqrt{3}y+2=0$$

Answer: B

20. Let x+y=k be a normal to the parabola $y^2=12x$. If p is length of the perpendicular from the focus of the parabola onto this normal, then $4k-2p^2$ is equal to

- A. 1
- B. 0
- C. 1
- D. 2

Answer: B

21. If the line 2x+5y=12 intersect the ellipse $4x^2+5y^2=20$ in two distinct point A and B, then mid-point of AB is,

- A. (0,1)
- B. (1,2)
- C. (1,0)
- D. (2,1)

Answer: B

22. Equation of one of the tangent passing through

(2,8) to the hyperbola $5x^2-y^2=5$ is

- A. 3x+y-14=0
- B. 3x-y+2=0
- C. x+y+3=0
- D. x-y+6=0

Answer: B

23. The area (in sq. units) of the equilateral triangle formed by the tangnet at $\left(\sqrt{3},0\right)$ to the hyperbola $x^2-3y^2=3$ with the pair of asymptotes of the hyperbola is

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{3}}$$

D.
$$2\sqrt{3}$$

Answer: B

24. If a chord of the parabola $y^2=4x$ passes through its focus and makes an angle θ with the X-axis, then its length is

A.
$$4\cos^2\theta$$

B.
$$4\sin^2\theta$$

C. 4
$$\csc^2 \theta$$

D.
$$4\sec^2\theta$$

Answer: C

25. If the straight line y=mx+c is parallel of the axis of the parabola $y^2=lx$ and intersects the parabola at $(c^{(2)/8,c)}$, then the length of the latusrectum is

- **A.** 2
- B. 3
- C. 4
- D. 8

Answer: D

$$x^2 + 4y^2 + 2x + 16y + 13 = 0$$
 is

A.
$$\frac{\sqrt{3}}{2}$$

$$\mathsf{B.}\;\frac{1}{2}$$

C.
$$\frac{1}{\sqrt{3}}$$
D. $\frac{1}{\sqrt{2}}$

D.
$$\frac{1}{\sqrt{2}}$$

Answer: A

27. The angle between the asymptotes of the hyperbola $x^2-3y^2=3$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: C

28. Let M be the foot of the perpendicular from a point P on the parabola $y^2=8(x-3)$ onto its directrix and let S be the foucs of the parabola. If $\triangle SPM$ is an equilateral triangle, then P is equal to

- A. $(4\sqrt{3}, 8)$
- B. $(8, 4\sqrt{3})$
- C. $(9, 4\sqrt{3})$
- D. $(4\sqrt{3}, 9)$

Answer: C

29. If the lines 2x+3y+12=0, x-y+k=0 are conjugate with respect to the parabola $y^2=8$ then k is equal to

- A. 10
- $\mathsf{B.}\;\frac{7}{2}$
- C. 12
- D.-2

Answer: C

View Text Solution

30. Find the equation to the parabola, whose axis is parallel to the y-axis and which passes through the

points (0,4), (1,9) and (4,5) is

A.
$$y = -x^2 + x + 4$$

B.
$$y = -x^2 + x + 1$$

C.
$$y = \frac{-19}{2}x^2 + \frac{79}{12}x + 4$$

D.
$$y = \frac{-19}{12}x^2 + \frac{89}{12} + 1$$

Answer: C

31. The equation of the hyperbola which passes through the point (2,3) and has the asymptotes 4x+3y-7=0 and x-2y-1=0 is

A.
$$4x^2 + 5xy - 6y^2 - 11x + 11y + 50 = 0$$

B.
$$4x^2 + 5xy - 6y^2 - 11x + 11y - 43 = 0$$

$$\mathsf{C.}\,4x^2-5xy-6y^2-11x+11y+57=0$$

D.
$$x^2 - 5xy - y^2 - 11x + 11y - 43 = 0$$

Answer: C

32. The product of the perpendicular distances from any point of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ to its asymptotes is

A.
$$\dfrac{a^2b^2}{a^2-b^2}$$

B.
$$\dfrac{a^2b^2}{a^2+b^2}$$
C. $\dfrac{a^2+b^2}{a^2b^2}$

D.
$$\dfrac{a^2-b^2}{a^2b^2}$$

Answer: B

 $y^2=4x$ from the point (1,0) is

33. The number of normals drawn to the parabola

A. 0

B. 1

C. 2

Answer: B

View Text Solution

34. If the distance between the foci of an ellipse is 6 and the length of the minor axis is 8, then the ecentricity is

A.
$$\frac{1}{\sqrt{5}}$$
B. $\frac{1}{2}$

$$B. \frac{1}{2}$$

C.
$$\frac{3}{5}$$
D. $\frac{4}{5}$

D.
$$\frac{4}{5}$$

Answer: C

View Text Solution

35. The eccentricity of the conic

$$rac{5}{r}=2+3\cos heta+4\sin heta$$
 is

- A. $\frac{1}{2}$
- B. 1
- $\mathsf{C.}\ \frac{3}{2}$
- D. $\frac{5}{2}$

Answer: D

36. If the circle $x^2+y^2=a^2$ intersects the hyperbola

$$xy=c^2$$
 in four points (x_1,y_1) for $i=1,2,3$ and $4 hen y_1+y_2+y_3+y_4$

equals

В. с

A. 0

C. a

D. c^4

Answer: A

37. The mid point of the chord 4x-3y=5 of the hyperbola $2x^2-3y^2=12$ is

A.
$$\left(0, -\frac{5}{3}\right)$$

B. (2,1)

$$\mathsf{C.}\left(\frac{5}{4},0\right)$$

D.
$$\left(\frac{11}{4}, 2\right)$$

Answer: B

38. If 2x+3y+12=0 and $x-y+4\lambda=0$ are conjugate lines with respect to the parabola $y^2=8x$, then λ is equal to

- A. 2
- B.-2
- C. 3
- $\mathsf{D.}-3$

Answer: D

39. For an ellipse with eccentricity $\frac{1}{2}$ the centre is at the origin, if one directrix is x=4, then the equation of the ellipse is

A.
$$3x^2 + 4y^2 = 1$$

B.
$$3x^2 + 4y^2 = 12$$

C.
$$4x^2 + 34y^2 = 1$$

D.
$$4x^2 + 3y^2 = 12$$

Answer: B

40. The distance between the foci of the hyperbola

 $x^2 - 3y^2 - 4x - 6y - 11 = 0$ is

- A. 4
- B. 6
- C. 8
- D. 10

Answer: C

41. For the parabola $y^2 + 6y - 2x + 5 = 0$

Statement I The vertex is (-2,-3)

Statement II The directrix is y+3=0

Which of the following is correct?

A. Both I and II are true

B. I is true, II is false

C. I is false, II is true

D. Both I and II are false

Answer: B

42. The value of k, if (1,2) (k,-1) are conjugate point with respect to the ellipse $2x^2 + 3y^2 = 6$ is

B. 4

C. 6

D. 8

Answer: C

View Text Solution

43. If the line lx+my=1 is a normal to the hyperbola

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 then $rac{a^2}{l^2}-rac{b^2}{m^2}$ is equal to

A.
$$a^2-b^2$$

$$\mathtt{B.}\,a^2+b^2$$

C.
$$(a^2 + b^2)^2$$

D.
$$\left(a^2-b^2\right)^2$$

Answer: C

View Text Solution

 $y^2=4x.$ Then th locus of the mid point of OA is

44. Let O be the origin and A be a point on the curve

A.
$$x^2=4y$$

$$\mathrm{B.}\,x^2=2y$$

$$C. y^2 = 16x$$

D.
$$y^2 = 2x$$

Answer: D

View Text Solution

45. If b and c are the lengths of the segments of any focal chord of a parabola $y^2=4ax$, then the length of the semilatusrectum is

A.
$$\frac{bc}{b+c}$$

B.
$$\sqrt{b}c$$

C.
$$\frac{b+c}{2}$$

D.
$$\frac{2bc}{b+c}$$

Answer: D

View Text Solution

46. Equation of the latusrectum of the ellipse

$$9x^2 + 4y^2 - 18x - 8y - 23 = 0$$
 are

A.
$$y=~\pm\sqrt{5}$$

B.
$$x = \pm \sqrt{5}$$

C.
$$y=1\pm\sqrt{5}$$

D.
$$x=-1\pm\sqrt{5}$$

Answer: C

View Text Solution

47. If the ecentricity of a hyperbola is srqt3 then the eccentricity of its conjugate hyperbola is

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

c.
$$\sqrt{\frac{3}{2}}$$

D.
$$2\sqrt{3}$$

Answer: C

48. If a point P moves such that its distances from the point A(1,1) and the line x+y+2=0 are equal, then the locus of P is

A. a straight line

B. a pair of straight line

C. a parabola

D. an ellipse

Answer: C

49. The parabola with drectrix x+2y-1=0 and focus (1,0) is

A.
$$4x^2 - 4xy + y^2 - 8x + 4y + 4 = 0$$

B.
$$4x^2 + 4xy + y^2 - 8x + 4y + 4 = 0$$

C.
$$4x^2 + 5xy + y^2 - 8x + 4y + 4 = 0$$

D.
$$4x^2 - 4xy + y^2 - 8x - 4y + 4 = 0$$

Answer: A

View Text Solution

50. The lines among the following which touches the parabola $y^2=4ax$, is

$$m^3 =$$

 $A. x + my + am^3 = 0$

$$\mathsf{B.}\,x-my+am^2=0$$

 $\mathsf{C.}\,x+my-am^2=0$

D.
$$x + my + am^2 = 0$$

Answer: B

View Text Solution

51. The eccentricity of the conic

 $36x^2 + 144y^2 - 36x - 96y - 119 = 0$ is

A. $\frac{\sqrt{3}}{2}$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: A

View Text Solution

A. $\frac{1}{2}$

 $\mathsf{B.}\,\frac{2}{3}$

 $\mathsf{C.}\;\frac{3}{2}$

D. 2

52.

 $9x^2 + 5y^2 - 18x - 20y - 16 = 0$ is

The ecentricty of the ellipse

Answer: B

View Text Solution

53. The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^2-2y^2-2=0$ to its asymptotes is

- A. $\frac{1}{2}$
- $\mathsf{B.}\;\frac{2}{3}$
- c. $\frac{3}{2}$
- D. 2

Answer: B

54. The equations of the parabola with focus (0,0) and directrix x+y=4, is

A.
$$x^2 + y^2 - 2xy + 8x + 8y - 16 = 0$$

$$B. x^2 + y^2 - 2xy + 8x + 8y = 0$$

C.
$$x^2 + y^2 + 8x + 8y - 16 = 0$$

D.
$$x^2 - y^2 + 8x + 8y - 16 = 0$$

Answer: A

55. The equation of the parabola with the focus (3,0) and the directrix x+3=0 si

$$A. y^2 = 3x$$

$$\mathsf{B.}\,y^2=6x$$

C.
$$y^2 = 12x$$

$$\mathsf{D}.\,y^2=2x$$

Answer: C

View Text Solution

56. If e and e' are the ecentricities of the ellipse

 $5x^2+9y^2=45$ and the hyperboala $5x^2-4y^2=45$

respectively, then ee' is equal to

A. 1

B. 4

C. 5

D. 9

Answer: A

View Text Solution

57. The pole of the straight line x+4y=4 with respect to the ellipse $x^2+4y^2=4$ is

A. (1,1)

B. (1,4)

C. (4,1)

D. (4,4)

Answer: A

View Text Solution

58. Locus of the poles of focal chord of a parabola is

A. the axis

B. a focal chord

- C. the directrix
- D. the tangent at the vertex

Answer: C

View Text Solution

59. The equation $rac{1}{r}=rac{1}{8}+rac{3}{8}\cos heta$ represents

- A. a parabola
- B. an ellipse
- C. a hyperbola
- D. a rectangular hyperbola

Answer: C

View Text Solution

- **60.** The lengths of latusrectum of parabola $y^2 + 8x 2y + 17 = 0$ is
 - A. 2
 - B. 4
 - C. 8
 - D. 16

Answer: C

61. If the normal to the parabola $y^2=4x$ at P(1,2) meets the parabola again at Q, then coordinates of Q are

- A. (-6,9)
- B. (9,-6)
- C. (-9,-6)
- D. (-6,-9)

Answer: B

62. The eccentricity of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is

A.
$$\frac{7}{16}$$

B.
$$\frac{5}{4}$$

$$\mathsf{C.}\ \frac{\sqrt{7}}{4}$$

D.
$$\frac{\sqrt{7}}{2}$$

Answer: C

View Text Solution

63. The products of lengths of perpendicuylars from anypoint of hyperbola $x^2-y^2=8$ to its asymptotes,

A. 2

B. 3

C. 4

D. 8

Answer: C

View Text Solution

64. The equation

 $16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents

- A. a circle
- B. a parabola
- C. an ellipse
- D. a hyperbola

Answer: B

- **65.** Equation of curve in polar coordinates is
- $rac{I}{r}=2\sin^2rac{ heta}{2}$ then it represents
 - A. a straight line
 - B. a parabola

C. a circle

D. an ellipse

Answer: B

