

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

PROPERTIES OF TRIANGLES, HEIGHTS AND DISTANCES

Problems

1. If in a
$$\triangle ABC$$
, $r_1=2r_2=3r_3$, then b : c =

A. 4:3

B. 5:4

C.2:1

D. 3:2

Answer: A

View Text Solution

2. Show that
$$\dfrac{1}{r^2}+\dfrac{1}{r_1^2}+\dfrac{1}{r_2^2}+\dfrac{1}{r_2^2}=\dfrac{a^2+b^2+c^2}{\Delta^2}$$

A.
$$\frac{a^2+b^2+c^2}{\triangle}$$

B.
$$\frac{a^2+b^2+c^2}{\wedge^2}$$

$$\mathsf{C.} \ \ \frac{\triangle^2}{a^2+b^2+c^2}$$

D.
$$\frac{\triangle}{a^2+b^2+c^2}$$

Answer: B

Watch Video Solution

3. The angles of a triangle ABC are in an arithmetic progression. The larger sides a,b satisfy the relation $\frac{\sqrt{3}}{2}<\frac{b}{a}<1, \text{ then the possible values of the smallest side are}$

A.
$$\dfrac{a\pm\sqrt{4b^2-3a^2}}{2a}$$

B.
$$\dfrac{a\pm\sqrt{4b^2-3a^2}}{2b}$$

C.
$$\dfrac{a\pm\sqrt{4b^2-3b^2}}{2c}$$

D.
$$\dfrac{a\pm\sqrt{4b^2-3a^2}}{2}$$

Answer: D

View Text Solution

4. If $\triangle ABC$, if $\angle C=\frac{\pi}{3}$, $\mathrm{then}\frac{3}{a+b+c}-\frac{1}{a+c}$ equals

A.
$$\frac{1}{a+b}$$

B.
$$\frac{1}{b+c}$$

C.
$$\frac{1}{2a+b}$$

D.
$$\dfrac{1}{b+2c}$$

Answer: B

5. If in a $\Delta ABC, r_1=2r_2=3r_3$, then the perimeter of the triangle is equal to

- A. 3a
- B. 3b
- C. 3c
- D. 3(a + b + c)

Answer: B

A. 2r

B.r + 2R

 $\mathsf{C.}\,2r+R$

D. 2(r+R)

Answer: D

View Text Solution

7. In a ΔABC , $(a+b+c)(b+c-a)=\lambda bc$, then

A. $\lambda < -6$

B. $\lambda > 6$

 $\mathsf{C}.\,0<\lambda<4$

D.
$$\lambda > 4$$

Answer: C

Watch Video Solution

8. In any

$$\Delta ABC, rac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$$

=

A. $\sin^2 B$

 $B.\cos^2 A$

 $\mathsf{C}.\cos^2 B$

 $\operatorname{D.}\sin^2A$

Answer: D

Watch Video Solution

- **9.** IF in a triangle ABC, $r_1=2,\,r_2=3\,\,\mathrm{and}\,\,r_3=6$ then a=
 - A. 4
 - B. 1
 - C. 2
 - D. 3

Answer: D

10. IF the angles of triangle are in the ratio 1:1:4 then the ratio of the perimeter of the triangle to its largest side is

A.
$$\sqrt{2}+2$$
 : $\sqrt{3}$

B.3:2

C.
$$\sqrt{3} + 2: \sqrt{2}$$

D.
$$\sqrt{3}+2$$
: $\sqrt{3}$

Answer: D

11. In any triangle ABC, $r_1r_2 + r_2r_3 + r_3r_1 =$

A.
$$\frac{\triangle^2}{r^2}$$

B.
$$\frac{\triangle}{r}$$

C.
$$\frac{2 riangle}{r}$$

D.
$$\triangle^2$$

Answer: A

12. In
$$\triangle ABC$$
 if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$ then

- A. 30°
- B. 45°
- C. 60°
- D. 90°

Answer: C

Watch Video Solution

13. A person observes the top of a tower from a point A on the ground. The elevation of the tower from this point is 60° . He moves 60 m in the direction perpendicular to the line joining A and base of the

tower. The angle of elevation of the tower from this point is 45° . Then, the height of the tower (in meters) is

$$A. 60\sqrt{\frac{3}{2}}$$

B. $60\sqrt{2}$

C. $60\sqrt{3}$

D. $60\sqrt{\frac{2}{3}}$

Answer: A

View Text Solution

14. If α, β, γ , are lengths of the altitudes of a triangle

ABC with area
$$\Delta$$
, then $\dfrac{\Delta^2}{R^2}igg(\dfrac{1}{lpha^2}+\dfrac{1}{eta^2}+\dfrac{1}{\gamma^2}igg)=$

$$A.\sin^2 A + \sin^2 B + \sin^2 C$$

$$B.\cos^2 A + \cos^2 B + \cos^2 C$$

$$\mathsf{C}.\tan^2 A + \tan^2 B + \tan^2 C$$

$$\mathsf{D}.\cot^2 A + \cot^2 B + \cot^2 C$$

Answer: A

Watch Video Solution

15. A vertical pole subtends an angle $\tan^{-1}\left(\frac{1}{2}\right)$ at a point P on the ground. IF the angles subtended by the upper half and the lower half of the pole at P are respectively α and β , then $(\tan \alpha, \tan \beta)$ =

$$A.\left(\frac{1}{4},\frac{1}{5}\right)$$

B.
$$\left(\frac{1}{5}, \frac{2}{9}\right)$$
C. $\left(\frac{2}{9}, \frac{1}{4}\right)$

D.
$$\left(\frac{1}{4}, \frac{2}{9}\right)$$

Answer: C

Watch Video Solution

c are in A.P

A. An arithmetic progression

16. If $a\cos^2$. $\frac{C}{2}+c\cos^2\frac{A}{2}=\frac{3b}{2}$, then show that a, b,

B. A geometric progression

- C. A harmonic progression
- D. An arithmetic-geometric progression

Answer: A

Watch Video Solution

17. In a
$$\triangle ABC$$
, if $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ then

 \triangle ABC is

- A. Right angled
- B. Isosceles right angled
- C. Equilateral
- D. Scalene

Answer: C

18. The angle of elevation of a stationary cloud from a point 2500m above a lake is 15° and from the same point the angle of depression of its reflection in the lake is 45° . The height (in meters) of the cloud above the lake, given that $\cot 15^\circ = 2 + \sqrt{3}$, is

- A.2500
- B. $2500\sqrt{2}$
- C. $2500\sqrt{3}$
- D. 5000

Answer: C

View Text Solution

19. If $\Delta=a^2-(b-c)^2$, is the area of the triangle ABC, then tan A=

A.
$$\frac{1}{16}$$

$$\mathsf{B.}\;\frac{8}{15}$$

$$\mathsf{C.}\ \frac{3}{4}$$

D.
$$\frac{4}{3}$$

Answer: B

20. In a triangle ABC,
$$C=90^{\circ}$$
 . Then $\dfrac{a^2-b^2}{a^2+b^2}$ =

A.
$$\sin(A+B)$$

$$B.\sin(A-B)$$

$$\mathsf{C.}\cos(A+B)$$

$$D.\cos(A-B)$$

Answer: B

Watch Video Solution

21. The sum of angles of elevation of the top of a tower from two points distance a and b from the base and in

the same straight line with it is $90\,^\circ$. Then the height of the tower is:

A.
$$a^2b$$

 $B. ab^2$

C.
$$\sqrt{ab}$$

D. ab

Answer: C

Watch Video Solution

22. In any $\triangle ABC$, $a(b\cos C - c\cos B)$ equals

A. $b^2 + c^2$

B.
$$b^2 - c^2$$

$$\mathsf{C.}\,\frac{1}{b}+\frac{1}{c}$$

D.
$$\displaystyle rac{1}{b^2} - rac{1}{c^2}$$

Answer: B

View Text Solution

 $\Delta ABC, \, rac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$

any

In

A. $\cos^2 A$

 $B.\cos^2 B$

 $\mathsf{C}.\sin^2 A$

 $D. \sin^2 B$

Answer: C

Watch Video Solution

24. P is a point on the segment joining the feet to vertical poles of heights a and b, The angles of elevation of the tops of the poles from P are 45° each. Then the square of the distance between the tops of the poles is:

A.
$$\frac{a^2+b^2}{2}$$

B.
$$2(a^2 + b^2)$$

C.
$$2ig(a^2-b^2ig)$$

D.
$$4ig(a^2+b^2ig)$$

Answer: C

Watch Video Solution

25. In
$$\Delta ABC$$
 if $\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{3}{a+b+c}$ then C=

A.
$$90^{\circ}$$

B. 60°

C. 45°

D. 30°

Answer: B

Watch Video Solution

26. Statement

:

In

$$riangle ABC, brac{\cos^2(C)}{2}+crac{\cos^2(B)}{2}=5$$
,

Statement II : In $\ \bigtriangleup \ ABC, \, rac{\cot(A)}{2} = rac{b+c}{2} \Rightarrow \angle 90^{\circ}$

which of the following is correct?

- A. Both I and II are true
- B. I is true, II is false
- C. I is false, II is true
- D. Both I and II are false

Answer: B

View Text Solution

27. In a triangle , if $r_1=2r_2=3r_3$, then

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} =$$

$$\mathsf{A.}\ \frac{75}{60}$$

B.
$$\frac{155}{60}$$

c.
$$\frac{176}{60}$$

D.
$$\frac{191}{60}$$

Answer: D

28. From the top of a hill h meters high the angle of depressions of the top and the bottem of a piller are α and β respectively. The height (in meters) of the piller is

A.
$$\frac{h(\tan \beta - \tan \alpha)}{\tan \beta}$$

$$\mathsf{B.}\,\frac{h(\tan\alpha-\tan\beta)}{\tan\alpha}$$

C.
$$\frac{h(aneta+ anlpha)}{ aneta}$$

D.
$$rac{h(aneta+ anlpha)}{ anlpha}$$

Answer: A

View Text Solution

29. If two angles of a $\Delta ABCare45^{\circ}~$ and 60° , then the ratio of the smallest and the greatest sides are

A.
$$(\sqrt{3}-1):1$$

$$\mathsf{B.}\,\sqrt{3}\!:\!\sqrt{2}$$

C. 1:
$$\sqrt{3}$$

D.
$$\sqrt{3}:1$$

Answer: A

30. In a
$$\Delta ABC,$$
 $(a+b+c)igg(anrac{A}{2}+ anrac{B}{2}igg)=$

A.
$$2c\frac{\cot(C)}{2}$$

 $\operatorname{B.}2a\frac{\cot(A)}{2}$ $\mathsf{C.}\ 2b\frac{\cot(B)}{2}$

D.
$$\frac{\tan(C)}{2}$$

Answer: A

Watch Video Solution

31. In $\triangle ABC$, with usual notation, ovserve the two statement given below,

Statement I : $rr_1r_2r_3 = \triangle^2$

Statement II $r_1r_2+r_2r_3+r_3r_1=S^2$ which of the following is correct?

- A. Both I and II are true
- B. I is true, II is false
- C. I is false, II is true
- D. Both I and II are false

Answer: A

View Text Solution

32. The angle of elevation of an object from a point P on the level ground is a. Moving d metres on the ground towards the object, the angle of elevation is found to be β . Then the height (in metres) of the object is

A.
$$d \tan \alpha$$

B. $d \cot \beta$

C.
$$\frac{d}{\cot \alpha + \cot \beta}$$

D.
$$\frac{d}{\cot \alpha - \cot \beta}$$

Answer: D

33. In a
$$\Delta ABC$$
, If $\tan \frac{A}{2}=\frac{5}{6}$ and $\tan \frac{B}{2}=\frac{20}{37}$, then show that $\tan \left(\frac{C}{2}\right)=\frac{2}{5}$

$$A. b^2 = ac$$

$$B. \, 2b = a + c$$

$$\mathsf{C.}\, 2ac = b(a+c)$$

$$D. a + b = c$$

Answer: B

Watch Video Solution

34. The angles of a triangle are in the ratio 3:5:10. Then the ratio of the smallest side to the greatest side

is

A. $1:\sin 10^{\circ}$

B. 1: $2\sin 10^{\circ}$

C. $1:\cos 10^{\circ}$

D. 1: $2\cos 10^{\circ}$

Answer: D

Watch Video Solution

35. If b +c =3a , then find the value of \cot . $\frac{B}{2}\cot$. $\frac{C}{2}$

A. 3

B. 1

C. 4

D. 2

Answer: D

36. The elevation of an object on a hill is observed from a certain point in the horizontal plane through its base, to be 30° . After walking 120 metres towards it on level ground the elevation is found to be 60° . Then the height of the object (in metres) is

$$\mathsf{B.}\ 60\sqrt{3}$$

C.
$$120\sqrt{3}$$

Answer: B

37. In a
$$\Delta ABC,\,\sum{(b+c) anrac{A}{2} an\!\left(rac{B-C}{2}
ight)}=$$

A. a

 $\mathsf{B}.\,b$

 $\mathsf{C}.\,c$

D. 0

Answer: D

38. Two sides of a triangle are given by the roots of the equation $x^2-5x+6=0$ and the angle between the sides is $\pi/2$. Then the perimeter of the triangle is

A.
$$5+\sqrt{2}$$

$$\mathrm{B.}\,5+\sqrt{3}$$

$$\mathsf{C.}\,5+\sqrt{5}$$

D.
$$5 + \sqrt{7}$$

Answer: D

39.

In

 $\Delta ABC, aig(\cos^2 B + \cos^2 Cig) + \cos A(c\cos C + b\cos B) =$

a

A.a

B. *b*

C. *c*

 $\mathsf{D}.\,a+b+c$

Answer: A

Watch Video Solution

40. A tower, of x metres high, has a flagstaff at its top.

The tower and the flagstaff subtend equal angles at a

point distant y metres from the foot of the tower. Then

the length of the flagstaff in metres in

A.
$$\frac{y(x^2-y^2)}{(x^2+y^2)}$$

$$\mathsf{B.}\,\frac{x\big(y^2+x^2\big)}{(y^2-x^2)}$$

$$\mathsf{C.}\,\frac{x\big(x^2+y^2\big)}{(x^2-y^2)}$$

D.
$$\frac{x(x^2-y^2)}{(x^2+y^2)}$$

Answer: B

Watch Video Solution

41. IF in a $\Delta ABC, r_3 = r_1 + r_2 + r$, then

$$\angle A + \angle B =$$

A. 120°

B. 100°

C. 90°

D. 80°

Answer: C

Watch Video Solution

42. In a

 $riangle ABC, (a-b)^2 rac{\cos^2(C)}{2} + (a+b)^2 rac{\sin^2(C)}{2}$ is

equal to

A. a^2

$$B. c^2$$

$$\mathsf{C}.\,b^2$$

D.
$$a^2 + b^2$$

View Text Solution

43. In a $\triangle ABC$, the correct formulae, among the

following are

I
$$r=4Rrac{\sin(A)}{2}rac{\sin(B)}{2}rac{\sin(C)}{2}$$

II
$$r_1=(s-a)rac{ an(A)}{2}$$

III
$$r_3=rac{ riangle}{(s-c)}$$

- A. only I, II
- B. only II, III
- C. only I, III
- D. I, II, III

Answer: C

View Text Solution

44. An aeroplane flying with uniform speed horizontally one kilometer above the ground id observed at an elevation of 60° . Aftar 10s if the elevation is observed to be 30° , then the speed of the aeroplane (in km/h) is

$$\frac{240}{\sqrt{3}}$$

B. $200\sqrt{3}$

C. $240\sqrt{3}$

 $\text{D.}\ \frac{120}{\sqrt{3}}$

Answer: C

Watch Video Solution

45. In
$$\Delta ABC$$
, if $r_1 < r_2 < r_3$ then

A. a < b < c

B.a > b > c

 $\mathsf{C}.\,b < a < c$

D. a < c < b

Answer: A

Watch Video Solution

46. In ΔABC if b=20, c=21 and $\sin A=3/5$, then a=

A. 12

B. 13

C. 14

D. 15

Watch Video Solution

47. A tower subtends angles $\alpha, 2\alpha, 3\alpha$ respectively at points A,B and C all lying on a horizontal line through the foot of the tower, Then $\frac{AB}{BC}=$

A.
$$\frac{\sin 3\alpha}{\sin 2\alpha}$$

B.
$$1+2\cos2\alpha$$

C.
$$2\cos2\alpha$$

D.
$$\frac{\sin 2\alpha}{\sin \alpha}$$

Answer: B

48. If the altitudes of a triangle are in arithmetic progression, then the sides of the triangle are in

- A. A.P
- B. H.P
- C. G.P
- D. A.G.P

Answer: B

Watch Video Solution

49. In
$$\Delta ABC$$
, $\dfrac{\cos C + \cos A}{c+a} + \dfrac{\cos B}{b} =$

- A. $\frac{1}{a}$
- B. $\frac{1}{b}$
- C. $\frac{c+a}{b}$
- D. 1

to

Watch Video Solution

50. If riangle ABC is right angle at A, then r_2+r_3 is equal

A.
$$r_1 - r$$

B.
$$r_1 + r$$

$$\mathsf{C.}\,r-r_1$$

D. R

Answer: A

View Text Solution

51. From a point on the level ground, the angle of elevation of the top of a pole is 30° . On moving 20 metres nearer, the angle of elevation is 45° . Then the height of the pole, in metres , is

A.
$$10(\sqrt{3}-1)$$

B.
$$10(\sqrt{3}+1)$$

Watch Video Solution

52. In ΔABC , if $\dfrac{a}{b^2-c^2}+\dfrac{c}{b^2-a^2}=0$ then B=

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{2\pi}{3}$$

D.
$$\frac{\pi}{3}$$

Answer: D

Watch Video Solution

53. In ΔABC , $a^2\sin 2C+c^2\sin 2A=$

A. \triangle

B. $2 \triangle$

C. $3 \triangle$

D. $4 \triangle$

Answer: D

54. The shadow of the tower standing on a level ground is found to be 60 metres longer when the sun's altitude

is 30° then when it is 45° . The height of the tower is

- A. 30m
- B.90m
- $\mathsf{C.}\,60\sqrt{3}m$
- D. $30(\sqrt{3}+1)m$

Answer: D

Watch Video Solution