India's Number 1 Education App

### **MATHS**

## **BOOKS - SAI MATHS (TELUGU ENGLISH)**

## **QUADRATIC EXPRESSIONS AND THEORY OF EQUATIONS**

### **Problems**

**1.** Let  $\alpha \neq \beta$  satisfy  $\alpha^2+1=6\alpha, \beta^2+=6\beta.$  Then, the quadratic equation whose roots are  $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$  is

A. 
$$8x^2 + 8x + 1 = 0$$

B. 
$$8x^2 - 8x - 1 = 0$$

$$\mathsf{C.}\, 8x^2 + 8x + 1 = 0$$

D. 
$$8x^2 + 8x - 1 = 0$$

### **Answer: C**



## View Text Solution

- **2.** The set of solutions of  $\left|x\right|^2-5|x|+4<0$  is
  - A. (-4, -1)
  - B.(1,4)
  - $C.(-4, -1) \cup (1, 4)$
  - D. (-4, 4)

### Answer: C



## Watch Video Solution

**3.** Let  $\alpha, \beta, \gamma$  be the roots of  $x^3 + x + 10 = 0$ . Write  $lpha_1=rac{lpha+eta}{lpha^2}, eta_1=rac{eta+\gamma}{lpha^2}, \gamma_1=rac{\gamma+lpha}{eta^2}.$  Then the value  $\left(lpha_1^3+eta_1^3+\gamma_1^3
ight)-rac{1}{10}\left(lpha_1^2+eta_1^2+\gamma_1^2
ight)$  is

A. 
$$\frac{1}{10}$$

B. 
$$\frac{1}{5}$$

C. 
$$\frac{3}{10}$$
D.  $\frac{1}{2}$ 

## **Answer: C**



## View Text Solution

**4.** Suppose  $lpha,\,eta,\,\gamma$  are the roots of  $x^3+x^2+x+2=0$ . Then the value

of 
$$\left(\frac{\alpha+\beta-2\gamma}{\gamma}\right)\left(\frac{\beta+\gamma-2\alpha}{\alpha}\right)\left(\frac{\gamma+\alpha-2\beta}{\beta}\right)$$
 is

A. 
$$-\frac{47}{2}$$

B. 
$$\frac{47}{2}$$

$$\mathsf{C.}-47$$

## Answer: A

**5.** In the  $\Delta ABC$ , the value of  $\angle A$  is obtained from the equation  $3\cos A+2=0.$  The quadratic equation, whose roots are  $\sin A$  and  $\tan A$ , is

A. 
$$3x^2+\sqrt{5}x-5=0$$

B. 
$$6x^2 - \sqrt{5}x - 5 = 0$$

C. 
$$6x^2+\sqrt{5}x-5=0$$

D. 
$$6x^2+\sqrt{5}x+5=0$$

### Answer: C



## View Text Solution

**6.** If a, b, c are distinct and the roots of  $(b-c)x^2+(c-a)x+(a-b)=0$  are equal, then a,b,c are in

- A. Arithmetic progression
- B. Geometric progression
- C. Harmonic progression
- D. Arithmetico-gemetric progression

**7.** If the roots of  $x^3 - kx^2 + 14x - 8 = 0$  are in geometric progression,

### Answer: A



## **View Text Solution**

then k =

A. -3

B. 7

C. 4

D. 0

**Answer: B** 

**8.** If the harmonic mean of the roots of 
$$\sqrt{2}x^2-bx+\left(8-2\sqrt{5}\right)=0$$
 is

4, then the value of b =

B. 3

C. 
$$4-\sqrt{5}$$

D.  $4 + \sqrt{5}$ 

## **Answer: C**



- **9.** The range of  $\frac{x^2 + 2x + 1}{x^2 + 2x 1}$  is
  - A.  $(-\infty,0)\cup(1,\infty)$
  - B.  $\left[\frac{1}{2}, 2\right]$

$$\mathsf{C.}\left[\,-\infty,\frac{-2}{9}\right]\cup(1,\infty)$$

D. ( 
$$-\infty,6)\cup(-2,\infty)$$

### Answer: A



Watch Video Solution

# **10.** If $x_1$ and $x_2$ are the real roots of the equation $x^2-kx+c=0$ , then the distance between the points $A(x_1, 0)$ and $B(x_2, 0)$ is

A. 
$$\sqrt{k^2+4c}$$

B. 
$$\sqrt{k^2-c}$$

C. 
$$\sqrt{c-k^2}$$

D. 
$$\sqrt{k^2-4c}$$

### Answer: D



**11.** If x is real, then the minimum value of  $y=rac{x^2-x+1}{x^2+x+1}$  is

- **A.** 3
- B.  $\frac{1}{3}$
- c.  $\frac{1}{2}$
- D. 2

### **Answer: B**



**Watch Video Solution** 

- **12.** p and q are distinct prime numbers and if the equation  $x^2-px+q=0$  has positive integer as its roots then the roots the
  - A. 1, -1

roots of the equation are

- B. 2, 3
- C. 1, 2

**Answer: C** 



Watch Video Solution

**13.** The cubic equation whose roots are the squares of the roots of  $x^3-2x^2+10x-8=0$  is

A. 
$$x^3 + 16x^2 + 68x - 64 = 0$$

$$B. x^3 + 8x^2 + 68x - 64 = 0$$

$$\mathsf{C.}\,x^3 + 16x^2 - 68x - 64 = 0$$

D. 
$$x^3 - 16x^3 + 68x - 64 = 0$$

### **Answer: A**



Watch Video Solution

**14.** IF the harmonic mean between the 
$$\left(5+\sqrt{2}\right)x^2-bx+\left(8+2\sqrt{5}\right)=0$$
 is 4 then value of b is

the

roots

of

- A. 2
- B. 3
- C.  $4 \sqrt{5}$
- D.  $4 + \sqrt{5}$

### **Answer: D**



- **15.** The set of solutions satisfying both  $x^2+5x+6\geq 0$  and  $x^2 + 3x - 4 < 0$  is
  - A. (-4, 1)
  - B.  $(-4, -3] \cup [-2, 1)$
  - $\mathsf{C.} (-4, -3) \cup (-2, 1)$

D. 
$$[-4, -3] \cup [-2, 1]$$

**Answer: B** 



Watch Video Solution

- **16.** If the roots of  $x^3 42x^2 + 336x 512 = 0$ , are in increasing geometric progression, its common ratio is
  - A. 2:1
  - B. 3:1
  - C. 4:1
  - D. 6:1

**Answer: C** 



Watch Video Solution

**17.** If lpha and eta are the roots of the equation  $x^2-2x+4=0$ , then

 $\alpha^9 + \beta^9 =$ 

$$\mathsf{A.}-2^8$$

$$\mathsf{B.}\ 2^9$$

$$\mathsf{C.}-2^{10}$$

$$\mathsf{D.}\ 2^{10}$$

### **Answer: C**



## Watch Video Solution

**18.** In a triangle  $PQR\angle R=rac{\pi}{4}, \ ext{if } an\Bigl(rac{p}{3}\Bigr) \ ext{and} \ an\Bigl(rac{Q}{3}\Bigr)$  are the roots of the equation  $ax^2 + bx + c = 0$  then

$$\mathrm{A.}\,a+b=c$$

$$\operatorname{B.}b+c=0$$

C. 
$$a + c = 0$$

$$D.b = c$$

**Answer: A** 



Watch Video Solution

- **19.** The product of real roots of the equation  $\left|x\right|^{6/5}-26|x|^{3/5}-27=0$ is
  - $A. 3^{10}$ 
    - $B. 3^{12}$
    - C.  $-3^{12/5}$
    - D.  $-3^{21/5}$

**Answer: A** 



Watch Video Solution

**20.** If  $\alpha$ ,  $\beta$  and  $\gamma$  are the roots of the equation  $x^3+px^2+qx+r=0$ , then the coefficient of x in the cubic equation whose roots are  $\alpha(\beta+\gamma)$ ,  $\beta(\gamma+\alpha)$  and  $\gamma(\alpha+\beta)$  is

B. 
$$q^2+pr$$

C. 
$$p^2-qr$$

D. 
$$r(pq-r)$$

### Answer: B



## View Text Solution

21. Let  $A=\left|\begin{array}{cc}2&e^{i\pi}\\-1&i^{2012}\end{array}\right|,$   $C=\frac{d}{dx}\left(\frac{1}{x}\right)_{x=1},$   $D=\int\limits_{e^2}^1\frac{dx}{x}.$  . If the sum of two roots of the equation  $Ax^3+Bx^2+Cx-D=0$  is equal to zero, then B is equal to

A. -1

- В. О
- C. 1
- D. 2

### **Answer: D**



**View Text Solution** 

## **22.** if a>0 and $b^2-4ac=0$ , then the curve $y=ax^2+bx+c$

- A. cuts of x-axis
- B. touches the x-axis and lies below it
- C. lies entirely above the x-axis
- D. touches the x-axis and lies above it

### Answer: D



**Watch Video Solution** 

**23.** If an A and an B are the roots of the quadratic equation

$$x^2-px+q=0$$
, then  $\sin^2(A+B)$  is equal to

A. 
$$rac{p^2}{p^2+q^2}$$

B. 
$$\frac{p^2}{(p+q)^2}$$

$$\mathsf{C.}\,1 - \frac{p}{\left(1 - q\right)^2}$$

D. 
$$\frac{p^2}{p^2 + (1-q)^2}$$

### **Answer: D**



View Text Solution

**24.** The value of a for which the equations  $x^3+ax+1=0$  and

 $x^4+ax^2+1=0$  have a common root is

### **Answer: A**



View Text Solution

- **25.** If x is real, then the value of  $\frac{x^2-3x+4}{x^2+3x+4}$  lies in the interval
  - A.  $\left[\frac{1}{3}, 3\right]$
  - B.  $\left[\frac{1}{5}, 5\right]$
  - $\mathsf{C.}\left[\frac{1}{6},6\right]$
  - D.  $\left[\frac{1}{7}, 7\right]$

### **Answer: D**



**View Text Solution** 

**26.** For  $x \in R$ , the least value of  $\dfrac{x^2-6x+5}{x^2+2x+1}$  is

A. -1

 $B.-rac{1}{2}$ 

 $C. - \frac{1}{4}$ 

D.  $-\frac{1}{3}$ 

## Watch Video Solution

**27.** 
$$\left\{x\in R\colon rac{14x}{x+1}-rac{9x-30}{x-4}<0
ight\}$$
 is equal to

A. (-1, 4)

B.  $(1, 4) \cup (5, 7)$ 

C.(1,7)

D.  $(-1,1) \cup (4,6)$ 

## **Answer: D**



Watch Video Solution

**28.** The condition that the roots of  $x^3-bx^2+cx-d=0$  are in geometric progression is

A. 
$$c^3=b^3d$$

$$\mathrm{B.}\,c^2=b^2d$$

$$\mathrm{C.}\,c=bd^3$$

D. 
$$c = bd^2$$

### **Answer: A**



View Text Solution

**29.** Let lpha 
eq 1 be a real root of the equation  $x^3-ax^2+ax-1=0$ , where a 
eq -1 is a real number. Then, a root of this equation, among the following, is

A. 
$$\alpha^2$$

$$(x-a)(x-a-1)+(x-a-1)(x-a-2)+(x-a)(x-a-2)=0,$$

30.

 $B.-\frac{1}{\alpha}$ 

 $c. \frac{1}{\alpha}$ 

D.  $-\frac{1}{\alpha^2}$ 

# View Text Solution

The

of

root

C. real and distinct

B. imaginary

D. rational and equal

# Answer: C

**31.** Let 
$$f(x)=x^2+ax+b$$
, where  $a,b\in R$ . If  $f(x)=0$  has all its roots

imaginary, then the roots of  $f(x)+f^{\prime\prime}(x)+f^{\prime\prime}(x)=0$  are

A. real and distinct

B. imaginary

C. equal

D. rational and equal

### **Answer: B**



## **Watch Video Solution**

**32.** If  $\alpha,\beta,\gamma$  are the roots of  $x^3+4x+1=0$ , then the equation whose roots are  $\frac{\alpha^2}{\beta+\gamma},\frac{\beta^2}{\gamma+\alpha},\frac{\gamma^2}{\alpha+\beta}$  is

A. 
$$x^3 - 4x - 1 = 0$$

B.  $x^3 - 4x + 1 = 0$ 

C.  $x^3 + 4x - 1 = 0$ 

D.  $x^3 + 4x + 1 = 0$ 

## **Answer: C**



## View Text Solution

A. (-9, -2)

is equal to

**33.** If  $f(x)=2x^4-13x^2+ax+b$  is divisible by  $x^2-3x+2$ , then (a, b)

B.(6,4)

C.(9, 2)

D. (2, 9)

# **Answer: C**



**34.** If lpha and eta are the roots of  $x^2-2x+4=0$ , then the value of

 $lpha^6+eta^6$  is

A. 32

B. 64

C. 128

D. 356

### **Answer: C**



**View Text Solution** 

**35.** Let lpha and eta be the roots of quadratic equation  $ax^2+bx+c=0$ .

Match the following columns and choose the correct answer.

$$egin{aligned} ext{Column II} & ext{Column II} \ ( ext{A})lpha+eta & (1) & \left(ac^2
ight)^{1/3}+\left(a^2c
ight)^{1/3}+b=0 \end{aligned}$$

$$(B)\alpha = 2\beta$$
  $(2)$   $2b^2 = 9ac$ 

$$b^2 = 9ac$$

$$egin{array}{lll} {
m (C)} lpha &= 3eta & {
m (3)} & b^2 = 6ac \ {
m (C)} lpha &= eta^2 & {
m (4)} & 3b^2 = 16ac \end{array}$$

$$(4) \quad 3b^2 = 16c$$

$$(5) \quad b^2 = 4ac$$

$$(5) \quad b^2 = 4ac \ (6) \quad \left(ac^2\right)^{1/3} + \left(a^2c\right)^{1/3} = b$$

A. 
$$(A)$$
  $(B)$   $(C)$   $(D)$ 
B.  $(A)$   $(B)$   $(C)$   $(D)$ 
5 2 1 4

c. (A) (B) (C) (D) 5 4 2 6

D. (A) (B) (C) (D) 5 2 4 1

View Text Solution

A.  $x^2 + 2x - 16 = 0$ 

**36.** IF  $\alpha + \beta$  =- 2 and alpha ^3 +

 $,\,then the\ \ ratic equation whose \sqrt[s]{a}re$  alpha and beta  $\dot{}$  is

beta

56

**Answer: D** 

B.  $x^2 + 2x + 15 = 0$ 

C.  $x^2 + 2x - 12 = 0$ 

D.  $x^2 + 2x - 8 = 0$ 

### Answer: D



Watch Video Solution

37. The cubic equation, whose roots are thrice to each of the roots of  $x^3 + 2x^2 - 4x + 1 = 0$  is

A.  $x^3 - 6x^2 + 36x + 27 = 0$ 

 $B. x^3 + 6x^2 + 36x + 27 = 0$ 

 $C. x^3 - 6x^2 - 36x + 27 = 0$ 

D.  $x^3 + 6x^2 - 36x + 27 = 0$ 

### Answer: D



38. The sum of the fourth powers of the roots of the equation

$$x^3 + x + 1 = 0$$
 is

- A. -2
- B. -1
- C. 1
- D. 2

### **Answer: D**



View Text Solution

**39.** If lpha and eta are roots of the equation  $ax^2+bx+c=0$  and if  $px^2+qx+r=0$  has roots  $\dfrac{1-lpha}{lpha}$  and  $\dfrac{1-eta}{eta}$ , then r is equal to

A. a+2b

B.a+b+c

 $\mathsf{C}.\,ab+bc+ca$ 

D. abc

### **Answer: B**



View Text Solution

- **40.** The set of values of x for which the inequalities  $x^2 - 3x - 10 < 0, 10x - x^2 - 16 > 0$  hold simultaneously, is
  - A. (-2, 5)
  - B.(2,8)
  - C.(-2, 8)
  - D. (2, 5)

### **Answer: D**



41. If 1, 2, 3 and 4 are the roots of the equation

$$x^4+ax^3+bx^2+cx+d=0$$
 , then  $a+2b+c$  is equal to

- A. -25
- B. 0
- C. 10
- D. 24

### **Answer: C**



- **42.** If  $\alpha, \beta, \gamma$  are roots of  $x^3 2x^2 + 3x 4 = 0$ , then the value of  $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$  is

  - A. -7
  - B. -5
  - C. -3

**Answer: A** 



Watch Video Solution

**43.** A quadratic equation whose roots are  $\sin^2 18^\circ, \cos^2 36^\circ$  are

A. 
$$16x^2 - 12x + 1 = 0$$

$$B. 16x^2 + 12x + 1 = 0$$

$$\mathsf{C.}\, 16x^2 - 12x - 1 = 0$$

D. None of the above

**Answer: A** 



Watch Video Solution

**44.** If  $\sqrt{9x^2+6x+1} < 2-x$ , then

$$\mathsf{C.}\,2,\;-5,\,7$$

A.  $x \in \left(\frac{-3}{2}, \frac{1}{4}\right)$ 

 $\mathtt{B.}\,x\in\left(\frac{-3}{2},\frac{1}{4}\right]$ 

 $\mathsf{C.}\,x \in \left\lceil \frac{-3}{2}, \frac{1}{4} \right)$ 

View Text Solution

difference

between

 $x^3-13x^2+15x+189=0$  is 2. then the roots of the equation are

two

roots

the

of

equation

D.  $x < \frac{1}{4}$ 

**Answer: A** 

45.

The

A. -3, 7, 9

B. -3, -7, -9

D. 
$$-3, -7, 9$$

**46.** If  $lpha,eta,\gamma$  are the roots of the equation  $x^3-6x^2+11x+6=0$ , then

$$\Sigma lpha^2 eta + \Sigma lpha eta^2$$
 is equal to,

- A. 80
- B. 84
- C. 90
- D. -84

**Answer: B** 



is

View Text Solution

**47.** The condition that  $\sin \theta \cos \theta$  may be the roots of  $ax^2 + bx + c = 0$ 

A. Both I and II are true

B. I is true, II is false

C. I is false, II is true

D. Both I and II are false

### **Answer: A**



Watch Video Solution

**48.** The roots of the equation  $x^3 - 3x - 2 = 0$  are

A. -1, -1, 2

B. -1, 1, -2

 $\mathsf{C.}-1,\,2,\,\,-3$ 

D. -1, -1, -2

### Answer: A



**49.** If 
$$lpha,eta,\gamma$$
 are the roots of  $x^3+2x^2-3x-1=0$  then  $lpha^{-2}+eta^{-2}+\gamma^{-2}$  is equal to

- A. 12
- B. 13
- C. 14
- D. 15

### Answer: B



- **50.** If lpha is non real root of  $x^6=1$ , then  $\dfrac{lpha^5+lpha^3+lpha+1}{lpha^2+1}$  is equal to
  - A.  $lpha^2$
  - В. О
  - C.  $-lpha^2$
  - D.  $\alpha$

### **Answer: C**



View Text Solution

 $x^2+cx+d$ , then  $\frac{b-d}{c-a}$  is equal to

- **51.** If (x-2) is a common factor of the expressions  $x^2+ax+b$  and
  - A. -2
  - B. -1
  - C. 1
  - D. 2

### Answer: D



Watch Video Solution

**52.** If the roots of the equation  $4x^3-12x^2+11x+k=0$  are in arithmetic progression, then k is equal to

B.  $R-(5,\infty)$ C.  $\phi$ D.  $R-(-\infty,-4)$ 

A.  $R - (-\infty, -5)$ 

**53.** the set of all solutions of the inequation  $x^2-2x+5\leq 0$  in R is

Watch Video Solution

A. -3

B. 1

C. 2

D. 3

**Answer: A** 

**54.**  $lpha,\,eta,\,\gamma$  are the roots of the equation  $x^3-10x^2+7x+8=0$ , Match

the following columns and choose the correct answer.

Column I Column II

A)
$$\alpha + \beta + \gamma$$
 1) $\frac{-43}{4}$ 

1) 
$$\frac{-43}{4}$$

B)
$$\alpha^2 + \beta^2 + \gamma^2$$
 2) $\frac{-7}{8}$ 

$$(2)^{\frac{-7}{8}}$$

$$C)\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \qquad \qquad 3)86$$

$$\mathrm{D})rac{lpha}{eta\gamma}+rac{eta}{\gammalpha}+rac{\gamma}{lpha+eta}$$
 4)0

A. 
$$\frac{(A)}{5}$$
  $\frac{(B)}{3}$   $\frac{(C)}{1}$   $\frac{(D)}{2}$ 

B. 
$$\frac{(A)}{4}$$
  $\frac{(B)}{3}$   $\frac{(C)}{1}$   $\frac{(D)}{2}$ 

Answer: A



**55.** If f(x) is a polynomial of degree 'n' with rational co-efficients and

 $1+2i, 2-\sqrt{3}$  and 5 are three roots of f(x)=0, then the least value of 'n' is

A. 5

B. 4

C. 3

D. 6

### **Answer: A**



## **View Text Solution**

**56.** The solution set contained in R of the inequation  $3^x + 3^{1-x} - 4 < 0$ , is

A. (1, 3)

B.(0,1)

C. (1, 2)

D. (0, 2)

### **Answer: B**



View Text Solution

# **57.** If $lpha,eta,\gamma$ are the roots of the equation $x^3+4x+1=0$ , then

$$(lpha+eta)^{-1}+(eta+\gamma)^{-1}+(\gamma+lpha)^{-1}$$
 is equal to

A. 2

B. 3

C. 4

D. 5

### **Answer: C**



Watch Video Solution

**58.** If the sum of the roots of  $x^3+px^2-qx+r=0$  is zero, then pq is equal to

A.-r

B. r

C. 2r

D.-2

### Answer: A



**View Text Solution** 

**59.** Let  $a \neq 0$ , and p(x) be a polynomial of degree greater than 2. If p(x) leaves remainders a and -a when divided respectively by x+a and x-a, then the remainder when p(x) is divided by  $x^2-a^2$  is

 $\mathsf{A}.\ x$ 

B.-x

| _ | 2x |
|---|----|
|   |    |
|   | _  |

D.2x

### **Answer: B**



View Text Solution

# **60.** If the equations $x^2+ax+b=0$ and $x^2+bx+a=0 (a eq b)$ have a common root, then a+b is equal to

A. -1

B. 1

C. 3

D. 4

### **Answer: A**



**61.** If 3 is a root of  $x^2 + kx - 24 = 0$ , it is also a root of

A. 
$$x^2 + 5x + k = 0$$

B. 
$$x^2 + kx + 24 = 0$$

$$\mathsf{C.}\,x^2-kx+6=0$$

D. 
$$x^2 - 5x + k = 0$$

### **Answer: C**



- **62.** To remove the second term of the equation
- $x^4-8x^3+x^2-x+3=0$ , diminish the roots of the equation by
  - A. 1
  - B. 2
  - C. 3
  - D. 4

### Answer: B



Watch Video Solution

- 63. The maximum possible number of real roots of the equation  $x^5 - 6x^2 - 4x + 5 = 0$ , is
  - A. 0
  - B. 3
  - C. 4
  - D. 5

### **Answer: B**



View Text Solution

**64.** If  $lpha, eta, \gamma$  are the roots of the equation  $x^3 + ax^2 + bx + c = 0$ , then  $lpha^{-1}+eta^{-1}+\gamma^{-1}$  is equal to

B. 
$$\frac{c}{a}$$
C.  $-\frac{b}{c}$ 

A.  $\frac{a}{c}$ 

D. 
$$\frac{b}{a}$$

**Answer: C** 

## Watch Video Solution

- **65.** If  $\dfrac{1+\sqrt{3}i}{2}$  is a root of the equation  $x^4-x^3+x-1=0$  then its
- real roots are,
  - A. 1, 1

C. 1, 2

- B. -1, -1
  - D. 1, -1

## Answer: D

**66.** If 
$$lpha,\,eta,\,\gamma$$
 are the roots of  $2x^3-2x-1=0,\,(\Sigmalphaeta)^2$  is equal to

$$\mathsf{A.}\,b+q$$

$$B.b-q$$

$$\mathsf{C.}\ \frac{1}{2}(b+q$$

D. 
$$\frac{1}{2}(b-q)$$

### **Answer: B**



## **View Text Solution**

are the roots of the equation  $x^2+qx+r=0$  then h is equal to

**67.** If  $lpha,\,eta$  are roots of the equation  $x^2+bx+c=0$  and  $lpha+h,\,eta+h$ 

- A. -1
- B. 1

C. 2

D. 3

### **Answer: D**



**View Text Solution** 

**68.** Each of the roots of the equation  $x^3-6x^2+6x-5=0$  are the increased by h so that the new transformed equation does not contain  $x^2$  term, then 'h' is equal to

A. 1

B. 2

 $\mathsf{C.}\,\frac{1}{2}$ 

D.  $\frac{1}{3}$ 

### **Answer:**



**69.** The roots of the equation  $x^3 - 14x^2 + 56x - 64 = 0$  are in

A. A.G.P

B. H.P

C. A.P

D. G.P

### **Answer: D**



View Text Solution

**70.** If 1 is multiple root of order 3 for the equation  $x^4 - 2x^3 + 2x - 1 = 0$ , then the other root is

A. 0

B. -1

C. 1

**Answer: B** 



View Text Solution

**71.** The biquadratic equation, two of whose roots are  $1+i, 1-\sqrt{2}$  is

A. 
$$x^4 - 4x^3 + 5x^2 - 2x - 2 = 0$$

B. 
$$x^4 + 4x^3 - 5x^2 + 2x + 2 = 0$$

C. 
$$x^4 + 4x^3 - 5x^2 + 2x - 2 = 0$$

D. 
$$x^4 + 4x^3 + 5x^2 - 2x + 2 = 0$$

**Answer: A** 

