

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

STRAIGHT LINE

Exercise Problems

1. An equation of a line whose segment between the coordinates axes is divided by the point $\left(\frac{1}{2},\frac{1}{3}\right)$ in the ratio 2:3 is

A.
$$6x + 9y = 5$$

B.
$$9x + 6y = 5$$

$$6.4x + 9y = 5$$

D.
$$9x + 4y = 5$$

Answer: C

Watch Video Solution

2. The value of K>0 such that the angle between the lines 4x-y+7=0 and kx-5y-9=0 is $45\,^\circ$, is

A.
$$\frac{25}{3}$$

$$\operatorname{B.} \frac{5}{3}$$

C. 3

D. 5

Answer: C

Watch Video Solution

3. The locus of the point P which is equidistant from

$$3x + 4y + 5 = 0$$
 and $9x + 12y + 7 = 0$

A. a hyperbola

B. an ellipse

C. a parabola

D. a straight line

Answer: D

4. If the equation to the locus of points equidistant from the points (-2,3), (6,-5) is ax+by+c=0 where a<0 then, the ascending order of a,b,c is

- A. a, b, c
- B. c, b, a
- C. b, c, a
- D. a, c, b

Answer: B

2x + 3y - 1 = 0, x + 2y - 1 = 0, and ax + by - 1 = 0

form a triangle with the origin as orthocentre, then (a,b)

is given by (6,4) (b) $(\,-3,3)$ $(\,-8,8)$ (d) (0,7)

- A. (6, 4)
- B. (-3, 3)
- C. (-8, 8)
- D.(0,7)

Answer: C

6. The point on the line 4x-y-2=0 which is equidistant from the points $(\,-5,6)$ and (3,2) is

- A. (2, 6)
- B.(4,14)
- C.(1,2)
- D. (3, 10)

Answer: B

Watch Video Solution

7. If the lines x+2ay+a=0, x+3by+b=0 and x+4cy+c=0 are concurrent then a,b,c are in

- A. Arithmetic progression
- B. Geometric progression
- C. Harmonic progression
- D. Arithmetic-geometric progression

Answer: C

Watch Video Solution

8. The equation of a straight line, perpendicular to 3x-4y=6 and forming a triangle of area 6 sq. units with coordinates axes, is

A.
$$x - 2y = 6$$

B.
$$4x + 3y = 12$$

C.
$$4x + 3y + 24 = 0$$

D.
$$3x + 4y = 12$$

Answer: B

Watch Video Solution

9. If the image of (-7/5, -6/5) in a line is (1, 2), then the equation of the line is

A.
$$4x + 3y = 1$$

$$B. 3x - y = 0$$

$$\mathsf{C.}\,4x-y=0$$

D.
$$3x + 4y = 1$$

Answer: D

Watch Video Solution

10. If line I passes through a (k,2k),(3k,3k) and (3,1),k
eq 0, then the distance from the origin to the line I is

A.
$$\frac{1}{\sqrt{5}}$$

3.
$$\frac{4}{\sqrt{5}}$$

A.
$$\frac{1}{\sqrt{5}}$$
B.
$$\frac{4}{\sqrt{5}}$$
C.
$$\frac{3}{\sqrt{5}}$$
D.
$$\frac{2}{\sqrt{5}}$$

D.
$$\frac{2}{\sqrt{5}}$$

Answer: A

vateri video Solution

11. If p and q are the perpendicular distances from the origin to the straight lines $x \sec \theta - y \cos ec\theta = a$ and $x \cos \theta + y \sin \theta = a \cos 2\theta$, then

A.
$$4p^2 + q^2 = a^2$$

B.
$$p^2 + q^2 = a^2$$

C.
$$p^2 + 2q^2 = a^2$$

D.
$$4p^2 + q^2 = 2a^2$$

Answer: A

12. If 2x+3y=5 is the perpendicular bisector of the line segment joining the points A $\left(1,\frac{1}{3}\right)$ and B, then B is equal to

A.
$$\left(\frac{21}{13}, \frac{49}{39}\right)$$

$$\mathsf{B.}\left(\frac{17}{13},\frac{31}{39}\right)$$

$$\mathsf{C.}\left(\frac{7}{13},\frac{49}{39}\right)$$

D.
$$\left(\frac{21}{13}, \frac{31}{39}\right)$$

Answer: A

13. Find the set of values of a if the points (1,2) and (3,4)

lie to the same side of the straight line 3x-5y+a=0

A. [7, 11]

B. R - [7, 11]

 $\mathsf{C}.\left[7,\infty\right]$

D. $[-\infty, 11]$

Answer: B

Watch Video Solution

14. The perpendicular distance from the point $(1,\pi)$ to the line joining $(1,0^\circ)$ and $\left(1,\frac{\pi}{2}\right)$, (in polar

coordinates) is

A. 2

B. $\sqrt{3}$

C. 1

D. $\sqrt{2}$

Answer: D

Watch Video Solution

15. The equation of a straight line passing through the point (1, 2) and inclined at 45° to the line y=2x+1 is

A. 5x + y = 7

B.
$$3x + y = 5$$

$$\mathsf{C.}\,\pi+y=3$$

D.
$$x - y + 1 = 0$$

Answer: B

Watch Video Solution

16. A point moves in the xy-plane such that the sum of its distances from two mutually perpendicular lines is always equal to 5 units. The are (in square units) enclosed by the locus of the point, is

A.
$$\frac{25}{4}$$

B. 25

C. 50

D. 100

Answer: C

Watch Video Solution

17. The number of points P(x, y) with natural numbers as coordinates that lie inside the quadrilateral formed by the lines $2x+y=2,\,x=0,\,y=0\,$ and $\,x+y=5\,$ is

A. 12

B. 10

C. 6

D. 4

Answer: C

Watch Video Solution

18. The image of the point (3, 8) in the line x+3y=7 is

A.
$$(1, 4)$$

C.
$$(-1, -4)$$

D.
$$(-4, -1)$$

Answer: C

19. The line joining the points A(2,0) and B(3,1) is rotated through an angle of 45° , about A in the anti-clockwise direction. The coordinates of B in the new position

- A. $(2, \sqrt{2})$
- B. $\left(\sqrt{2},\,2\right)$
- C.(2,2)
- D. $(\sqrt{2}, \sqrt{2})$

Answer: A

20. The polar equation of the line perpendicular to the line $\sin\theta-\cos\theta=\frac{1}{r}$ and passing through the point $\left(2,\frac{\pi}{6}\right)$ is

A.
$$\sin \theta + \cos \theta = \frac{\sqrt{3}+1}{r}$$
B. $\sin \theta - \cos \theta = \frac{\sqrt{3}+1}{r}$
C. $\sin \theta + \cos \theta = \frac{\sqrt{3}-1}{r}$

D. $\cos \theta - \sin \theta = \frac{\sqrt{3}}{r}$

Answer: A

21. If a straight line L is perpendicular to the line 4x-2y=1 and forms a triangle of area 4 square units with the coordinate axes, then an equation of the line L is

A.
$$2x + 4y + 7 = 0$$

B.
$$2x - 4y + 8 = 0$$

C.
$$2x + 4y + 8 = 0$$

D.
$$4x - 2y - 8 = 0$$

Answer: C

22. The image of the point (4, -13) with respect to the line

$$5x + y + 6 = 0$$
 is :

A.
$$(-1, -14)$$

D.
$$(-4, 13)$$

Answer: A

Watch Video Solution

23. The image of the line x+y-2=0 in the y-axis is

A.
$$x - y + 2 = 0$$

B.
$$y - x + 2 = 0$$

C.
$$x + y + 2 = 0$$

D.
$$x + y - 2 = 0$$

Answer: A

Watch Video Solution

24. A straight line which makes equal positive intercepts on X and Y axes and which is at a distance 1 unit from the origin intersects the straight line $y=2x+3+\sqrt{2}$ at (x_0,y_0) . Then $2x_0+y_0$ is equal to

A.
$$3 + \sqrt{2}$$

B.
$$\sqrt{2} - 1$$

- C. 1
- D. 0

Answer: B

View Text Solution

25. The area (in square unit) of the circle which touches the lines $4x+3y=15 \ {
m and} \ 4x+3y=5$ is

- A. 4π
- B. 3π
- $\mathsf{C.}\ 2\pi$
- D. π

Answer: D

View Text Solution

26. The point on the line 3x+4y=5 which is equidistant from (1, 2) and (3, 4) is :

A.
$$(7, -4)$$

B.
$$(15, -10)$$

D.
$$(0, 5/4)$$

Answer: B

27. The equation of the straight line perpendicular to the straight line 3x+2y=0 and passing through the point of intersection of the lines

x + 3y - 1 = 0 and x - 2y + 4 = 0 is

B.
$$2x - 3y + 3 = 0$$

A. 2x - 3y + 1 = 0

C.
$$2x - 3y + 5 = 0$$

D.
$$2x - 3y + 7 = 0$$

Answer: D

28. If the sum of the distance of a point P from two perpendicular lines in a plane is 1, then the locus of P is a

- A. Rhombus
- B. Circle
- C. Straight line
- D. Pair of straight lines

Answer: C

Watch Video Solution

29. If 1, m, n are in arithmetic progression, then the straight line lx+my+n=0 will pass through the

point.

A.
$$(-1, 2)$$

B.
$$(1, -2)$$

D.
$$(2, 1)$$

Answer: B

View Text Solution

30. The value of k such that the lines

2x - 3y + k = 0, 3x - 4y - 13 = 0 and 8x - 11y - 33 = 0

are concurrent, is

- A. 20
- B. 7
- C. 7
- D. -20

Answer: B

View Text Solution

 $(1,\;-2),(3,2)$ and the line x+2y-7=0, is

31. The angle between the line joining the points

- A. π
 - B. $\pi/2$

C. $\pi/3$

D. $\pi/6$

Answer: B

View Text Solution

32. If A(2, -1) and B(6, 5) are two points. The ratio in which the foot of the perpendicular from (4, 1) to AB divides it, is

A. 8:15

B. 5:8

C. -5:8

D. -8:5

Answer: B

View Text Solution

33. The lines $x-y-2=0, \, x+y-4=0 \, ext{ and } \, x+3y=6 \, ext{ meet at}$ the common point

- A. (1, 2)
- B.(2,2)
- C.(3,1)
- D.(1,1)

Answer: C

View Text Solution

HEW TEXT SOLUTION

34. The equation of the line passing through the point of intersection of the lines x-3y+2=0 and 2x+5y-7=0 and perpendicular to the line 3x+2y+5=0, is

A.
$$2x - 3y + 1 = 0$$

B.
$$6x - 9y + 11 = 0$$

C.
$$2x - 3y + 5 = 0$$

D.
$$2x - 2y + 1 = 0$$

Answer: A

View Text Solution

35. If PM is the perpendicular from P(2,3) onto the line x+y=3, then the coordinates of M are

- A.(2,1)
- B. (-1, 4)
- C.(1,2)
- D. (4, -1)

Answer: C

View Text Solution

36. The equation of the straight line perpendicular to 5x-

2y=7 and passing through the point of intersection of the

lines 2x + 3y = 1 and 3x + 4y = 6 is

A.
$$2x + 5y + 17 = 0$$

B.
$$2x + 5y - 17 = 0$$

C.
$$2x - 5y + 17 = 0$$

D.
$$2x - 5y = 17$$

Answer: A

Watch Video Solution

37. Suppose A,B are two points on 2x-y+3=0 and P(1,2) is such that PA=PB.

Then, the mid-point of AB is

$$\mathsf{A.}\left(\frac{-1}{5},\frac{13}{5}\right)$$

B.
$$\left(\frac{-7}{5}, \frac{9}{5}\right)$$
C. $\left(\frac{7}{5}, \frac{-9}{5}\right)$

D.
$$\left(\frac{-7}{5}, \frac{-9}{5}\right)$$

Answer: A

View Text Solution

38. The polar equation $\cos \theta + 7 \sin \theta = \frac{1}{r}$ represents a

A. circle

B. parabola

C. Straight line

D. hyperbola

Answer: C

Watch Video Solution

- **39.** If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent the n b=
 - A. 4
 - B. 5
 - C. 6
 - D. 7

Answer: C

40. The line passing through
$$\left(-1, \frac{\pi}{2}\right)$$
 and perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$, is

A.
$$2=\sqrt{3}r\cos\theta-2r\sin\theta$$

B.
$$5=\ -2\sqrt{3}r\sin\theta+4r\cos\theta$$

C.
$$2=\sqrt{3}r\cos heta+2r\sin heta$$

D.
$$5 = 2\sqrt{3}r\sin\theta + 4r\cos\theta$$

Answer: A

View Text Solution

41. If a straight line perpendicular to 2x - 3y + 7 = 0 forms a triangle with the coordinates axes whose area is 3 sq unit, then the equation of the straight line is

A.
$$3x+2y=\pm 2$$

$$\mathrm{B.}\,3x+2y=~\pm~6$$

$$\mathsf{C.}\,3x+2y=\ \pm\ 4$$

D.
$$3x + 2y = \pm 8$$

Answer: B

View Text Solution

42. If (-2,6) is the image of the point (4,2) with respect to line L=0, then L is:

A.
$$6x - 4y - 7 = 0$$

B.
$$2x + 3y - 5 = 0$$

C.
$$3x - 2y + 5 = 0$$

D.
$$3x - 2y + 10 = 0$$

Answer: C

Watch Video Solution

43. For all the values of 'a' and 'b', the lines (a+2b)x+(a-b)y+(a+5b)=0 passes through

the point

A.
$$(-1, 2)$$

B.
$$(2, -1)$$

$$\mathsf{C.}\ (\ -2,1)$$

D.
$$(1, -2)$$

Answer: C

Watch Video Solution

44. The line 2x+3y=6, 2x+3y-8 cut the X-axis at A,B respectively. A line L=0 drawn through the point

 $\left(2,2\right)$ meets the X-axis at C in such a way that abscissa of

A,B,C are in arithmetic Progression. then the equation of the line L is

A.
$$2x + 3y = 10$$

$$8x + 2y = 10$$

$$\mathsf{C.}\,2x-3y=10$$

D.
$$8x - 2y = 10$$

Answer: A

Watch Video Solution

45. Incentre of the triangle formed by the lines

$$x + y = 1, x = 1, y = 1$$
 is

A.
$$\left(1-\frac{1}{\sqrt{2}},1-\frac{1}{\sqrt{2}}\right)$$
B. $\left(1-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$

D.
$$\left(-\frac{1}{\sqrt{2}}, 1 - \frac{1}{\sqrt{2}}\right)$$

Answer: C

