びdoubtnut

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

LINEAR COMBINATION OF VECTORS,

DEPENDENT AND INDEPENDENT VECTORS

Dpp 12

1. The number of integral values of p for which

$$
(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k} \quad \text { and }
$$

$-3 \hat{i}+p \hat{j}+(p+1) \hat{k} \quad$ are linearly dependent vectors is q
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

2. The base vectors \vec{a}_{1}, \vec{a}_{2} and \vec{a}_{3} are given in terms of base vectors \vec{b}_{1}, \vec{b}_{2} and \vec{b}_{3} as $\vec{a}_{1}=2 \vec{b}_{1}+3 \vec{b}_{2}-\vec{b}_{3}$,
$\vec{a}_{2}=\vec{b}_{1}-2 \vec{b}_{2}+2 \vec{b}_{3}$
$\vec{a}_{3}=2 \vec{b}_{1}+\vec{b}_{2}-2 \vec{b}_{3}$,
$\vec{F}=3 \vec{b}_{1}-\vec{b}_{2}+2 \vec{b}_{3}$, then vector \vec{F} in terms of \vec{a}_{1}, \vec{a}_{2} and \vec{a}_{3} is

- Watch Video Solution

3. The number of distinct real values of λ for which the vectors $\vec{a}=\lambda^{3} \hat{i}+\hat{k}, \vec{b}=\hat{i}-\lambda^{3} \hat{j}$ and

$$
\vec{c}=\hat{i}+(2 \lambda-\sin \lambda) \hat{j}-\lambda \hat{k} \text { are coplanar is }
$$

A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

4. The coplanar points A, B, C, D are

$$
(2-x, 2,2),(2,2-y, 2),(2,2,2-z) \quad \text { and }
$$

$(1,1,1)$ respectively then
A. $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$
B. $x+y+z=1$
C. $\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}=1$
D. none of these

Answer: A

- Watch Video Solution

5. If a_{1} and a_{2} are two values of a for which the unit vector $a \hat{i}+b \hat{j}+\frac{1}{2} \hat{k}$ is linearly dependent with $\hat{i}+2 \hat{j}$ and $\hat{j}-2 \hat{k}$,then $\frac{1}{a_{1}}+\frac{1}{a_{2}}$ is equal to
A. 1
B. $\frac{1}{8}$
C. $-\frac{16}{11}$
D. $-\frac{11}{16}$

Answer: C

- Watch Video Solution

6. Let a, b and c be distinct non-negative numbers and the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$
lie in a plane, then the quadratic equation $a x^{2}+2 c x+b=0$ has
A. real and equal roots
B. real unequal roots
C. unreal roots
D. both roots real and positive

Answer: A

- Watch Video Solution

7. In the $\triangle O A B, M$ is the mid-point of AB, C is a point on $O M$, such that $20 C=C M . X$ is a point on the side $O B$ such that $O X=2 X B$. The line $X C$ is produced to meet OA in Y . then, $\frac{O Y}{Y A}$ is equal to
A. $\frac{1}{3}$
B. $\frac{2}{7}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$

Answer: B

- Watch Video Solution

8. Points X and Y are taken on the sides $Q R$ and $R S$, respectively of a parallelogram PQRS, so that $Q X=4 X R$ and $R Y=4 Y S$. The line $X Y$ cuts the line $P R$ at
Z. Then, PZ is
A. $\frac{21}{25} \overrightarrow{P R}$
B. $\frac{16}{25} \overrightarrow{P R}$
C. $\frac{17}{25} \overrightarrow{P R}$
D. None of these

Answer: A

- Watch Video Solution

9. On the $x y$ plane where O is the origin, given points, $A(1,0), B(0,1)$ and $C(1,1)$.
P, Q, and R be moving points on the line
$O A, O B, O C$

$\overline{O P}=45 t \overline{(O A)}, \overline{O Q}=60 t \overline{(O B)}, \overline{O R}=(1-t) \overline{(O C)}$

with $t>0$. If the three points P, Q and R are collinear then the value of t is equal to

$$
\begin{aligned}
& \text { А } \frac{1}{106} \\
& \text { в } \frac{7}{187} \\
& \text { С } \frac{1}{100}
\end{aligned}
$$

D none of these

$$
\begin{aligned}
& \text { A. } \frac{1}{106} \\
& \text { B. } \frac{7}{187} \\
& \text { c. } \frac{1}{100}
\end{aligned}
$$

D. none of these

- Watch Video Solution

10. Given three vectors \vec{a}, \vec{b} and \vec{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.
A. $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$
B. $\vec{a}-\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$
C. $\vec{a}+\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$
D. $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}-\vec{a}$

Answer: B::D

- Watch Video Solution

