

MATHS

BOOKS - SAI MATHS (TELUGU ENGLISH)

THREE DIMENSIONAL COORDINATES DIRECTION COSINES AND DIRECTION RATIOS AND PLANE

Problems

1. If the extremities of a diagonal of a square are (1,2,3) and (2,-3,5), then its side is of length

A.
$$\sqrt{6}$$

B. 15

 $\mathsf{C.}\,\sqrt{15}$

D. 3

Answer: C

Watch Video Solution

2. A(4,3,5), B(0,-2,2) and C(3,2,1) are three points .The coordinates of the point in which the bisector of \triangle BAC meets the side \overline{BC} is

A.
$$\left(\frac{15}{8}, \frac{4}{8}, \frac{11}{8}\right)$$

B.
$$\left(\frac{12}{7}, \frac{2}{7}, \frac{10}{7}\right)$$
C. $\left(\frac{9}{5}, \frac{2}{5}, \frac{7}{5}\right)$
D. $\left(\frac{3}{2}, 0, \frac{3}{2}\right)$

Answer: A

respectively .If the centroid of
$$\triangle PQR$$
 is $\left(1,\frac{1}{2},\frac{1}{3}\right)$, then the equation of plane is .

Plane meets the coordinate axes in P.O.R

A.
$$2x + 4y + 3z = 5$$

B.
$$x + 2y + 3z = 3$$

C.
$$x + 4y + 6z = -5$$

D.
$$2x - 2y + 6z = 3$$

Answer: B

View Text Solution

4. Match the following

- 1. The centroid of the triangle formed by (a) (2, 2, 2) (2, 3, -1), (5, 6, 3), (2, -3, 1) is
- II. The circumcenter of the triangle formed by (b) (3, 1, 4) (1, 2, 3), (2, 3, 1), (3, 1, 2) is
- III. The orthocenter of the triangle formed by (c) (1, 1, 0) (2, 1, 5), (3, 2, 3), (4, 0, 4) is
- IV. The incentre of the triangle formed by (d) (3, 2, 1) (0, 0, 0), (3, 0, 0), (0, 4, 0) is
 - (e) (0, 0, 0)

Answer: A

5. If (2,-1,2) and (K,3,5) are the traids of direction ratios of two lines and the angle between them is 45° , then is a value of k is

A. 2

- B. 3
- C. 4
- D. 6

Answer: C

View Text Solution

6. The length of perpendicular from the origin to the plane which makes intercepts $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ respectively on the coordinate axes is

A.
$$\frac{-}{5\sqrt{2}}$$

B. $\frac{1}{10}$

 $\mathsf{C.}\,5\sqrt{2}$

D. 5

Answer: A

View Text Solution

7. If the joining A(1,3,4) and B is divided by the point $(\,-2,3,5)$ in the ratio $1\!:\!3$ then, B is

A. (-11, 3, 8)

B. (-11, 3, -8)

 $\mathsf{C.}\,(\,-8,12,20)$

D. (13, 6, -13)

Answer: A

View Text Solution

8. If the direction cosines of two lines are given by l+m+n=0 and $l^2-5m^2=0$, then the angle between them is

A.
$$\frac{\pi}{2}$$

$$\mathrm{B.}~\frac{\pi}{6}$$

$$\mathsf{C.}\ \frac{\pi}{4}$$

D.
$$\frac{\pi}{3}$$

Answer: D

View Text Solution

9. If A(3,4,5), B(4,6,3), C(-1,2,4) and D(-1,2,4) are such that the angle between the

lines DC and AB is heta , then $\cos heta$ is equal is

- A. $\frac{7}{9}$
- $\mathsf{B.}\;\frac{2}{9}$
- c. $\frac{4}{9}$
- D. $\frac{5}{9}$

Answer: C

10. If D(2,1,0), E(2,0,0) and F(0,1,0) are mid -points of the sides BC,CA and AB of \triangle ABC , respectively , Then , the centroid of \triangle ABC is

A.
$$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\mathsf{B.}\left(\frac{4}{3},\frac{2}{3},0\right)$$

$$\mathsf{C.}\left(-\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

$$\mathsf{D.}\left(\frac{2}{3},\frac{1}{3},\frac{1}{3}\right)$$

Answer: B

11. The direction ratios of the two lines AB and AC are

 $(,\,-1,\,-1,\,-1)$ and $(2,\,-1,1)$. The direction

ratios of the normal to the plane ABC are

- A. 2, 3, -1
- B. 2, 2, 1
- C. 3, 2, -1
- D. -1, 2, 3

Answer: A

12. A plane passing through $(\,-1,2,3)$ and whose normal makes equal angles with the coordinate axes is

A.
$$x + y + z + 4 = 0$$

B.
$$x - y + z + 4 = 0$$

C.
$$x + y + z - 4 = 0$$

D.
$$x + y + z = 0$$

Answer: C

13. A variable plane passes through a fixed point $(1,\,2,\,3)$ Then , the foot of the perpendicular from the origin to the plane lies on

- A. a circle
- B. a sphere
- C. an elipse
- D. a parabola

Answer: B

14. If x - coordinate of a point P on the line joining the [points $Q(2,\,2,\,1)$ and $R(5,\,1,\,-2)$ is 4 , then the z - cossrdinate of P is

- A.-2
- B. 1
- C. 1
- D. 2

Answer: B

15. A straight line is equally inclined to all the three coordinate axes. Then , an angle made by the line with the y - axis is ,

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{2}{\sqrt{3}}\right)$$

D.
$$\frac{\pi}{4}$$

Answer: B

16. If the foot of the perpendicular from (0, 0, 0) to a plane is (1, 2, 3) then the equation of the plane is ,

A.
$$2x + y + 3z = 14$$

B.
$$x + 2y + 3z = 14$$

C.
$$x + 2y + 3z + 14 = 0$$

D.
$$x + 2y - 3z = 14$$

Answer: B

17. The equation of the sphere through the points (1,0,0),(0,1,0) and (1,1,1,) and having the smallest radius

A.
$$3(x^2 + y^2 + z^2) - 4x - 4y - 2z + 1 = 0$$

B.
$$2(x^2 + y^2 + z^2) - 3x - 3y - z + 1 = 0$$

C.
$$x^2 + y^2 + z^2 - x - y + z + 1 = 0$$

D.
$$x^2 + y^2 + z^2 - 2x - 2y + 4z + 1 = 0$$

Answer: A

18. If the angle made by a straight line with the coordinate axes are α , $\frac{\pi}{2}-\alpha$, β then β is equal to

- A. 0
- $\mathsf{B.}\;\frac{\pi}{6}$
- C. $\frac{\pi}{2}$
- D. π

Answer: C

19. The ratio in which the line joining $(2,\,-4,\,3)$ and $(\,-4,\,5,\,-6)$ is divided by the plane 3x+2y+z-4=0 is

A. 2:1

B. 4:3

C. -1:4

D. 2:3

Answer: C

20. A plane passes through (2,3,-1) and is perpendicular to the line having direction ratios 3,-4,7 . The perpendicular distance from the origin to this plane is

A.
$$\frac{3}{\sqrt{74}}$$

$$\text{B.}\ \frac{5}{\sqrt{74}}$$

$$\mathsf{C.}\;\frac{6}{\sqrt{74}}$$

D.
$$\frac{13}{\sqrt{74}}$$

Answer: D

21. The radius of the circle given by

$$x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = x + 2y + 2z + 7,$$

is

- A. 4
- B. 3
- C. 2
- D. 1

Answer: B

22. The point dividing the join of

 $(3,\ -2,1)$ and $(\ -2,3,11)$ in the ratio $2\!:\!3$ is

A. (1, 1, 4)

B. (1, 0, 5)

 $\mathsf{C}.\,(2,3,5)$

D. (0, 6, -1)

Answer: B

23. A plane meets the coordinate axes A,B,C so that the centroid of the triangle ABC is (1,2,4) . Then , the equation of the plane is

A.
$$x + 2y + 4z = 12$$

B.
$$4x + 2y + z = 12$$

C.
$$x + 2y + 4z = 3$$

D.
$$4x + 2y + z = 3$$

Answer: B

24. If (2,3,-3) is one end of a diameter of the sphere $x^2+y^2+z^2-6x-12y-2z+20=0$

then the other end of the diameter is

A. (4, 9, -1)

B.(4, 9, 5)

C. (-8, -15, 1)

D.(8, 15, 5)

Answer: B

25. The perimeter of the triangle with vertices at (1,0,0),(0,1,0) and (0,0,1) is

A. 3

B. 2

 $\mathsf{C.}\,2\sqrt{2}$

D. $3\sqrt{2}$

Answer: D

26. The angle between the lines whose direction cosines satisfy the equations

$$l+m+n=0, l^2+m^2-n^2=0$$
 is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{2}$

Answer: C

27. If a line in the space makes angle $\alpha, \beta \ {
m and} \ \gamma$ with the coordinate axes , then

 $\cos 2lpha + \cos 2eta + \cos 2\gamma + \sin^2lpha + \sin^2eta + \sin^2\gamma$ equals

- A. 1
- B. 0
- C. 1
- D. 2

Answer: C

28. The image of the point (3,2,1) in the plane

2x - y + 3z = 7 is

A. (1, 2, 3)

B. (2, 3, 1)

C.(3, 2, 1)

D.(2, 1, 3)

Answer: C

29. The radius of the sphere

$$x^2 + y^2 + z^2 = 12x + 4y + 3z$$
 is

A.
$$\frac{13}{2}$$

B. 13

C. 26

D. 52

Answer: A

30. In $\ \triangle \ ABC$ the mid points of the sides AB,BC and

CA are respectively (I,0,0),(0,m,0) and (0,0,n) . Then

$$rac{AB^2+BC^2+CA^2}{l^2+m^2+n^2}$$
 is equal to

- **A.** 2
- B. 4
- C. 8
- D. 6

Answer: C

31. The angle between the lines whose direction cosines

$$\left(\frac{\sqrt{3}}{4},\frac{1}{4},\frac{\sqrt{3}}{2}\right)$$
 and $\left(\frac{\sqrt{3}}{4},\frac{1}{4},\frac{-\sqrt{3}}{2}\right)$ is,

- A. π
- B. $\frac{\pi}{2}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{4}$

Answer: C

32. The ratio in which yz - plane divides the line segment joining (-3,4,-2) and (2,1,3) is

- A. -4:1
- B.3:2
- C. -2:3
- D. 1:4

Answer: B

33. The cosine of the anglee A of the triangle with vertices $A(-1,\,-1,\,2),\,B(6,\,11,\,2),\,C(1,\,2,\,6)$ is

- A. 63/65
- $\mathsf{B.}\,36\,/\,65$
- $\mathsf{C.}\,16/65$
- D. 13/64

Answer: B

34. If OA is equally inclined to OX,OY and OZ and if A

is $\sqrt{3}$ unit from the origin , then A is

- A. (3, 3, 3)
- B. (-1, 1, -1)
- $\mathsf{C.}\,(\,-1,1,1)$
- D. (1, 1, 1)

Answer: D

35. If the direction cosines of two lines are such that $l+m-n=0,\, l^2+m^2-n^2=0\,$ then the angle between them is

- A. π
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{6}$

Answer: B

36. The direction cosines of the line passing through

 $P(2,3,\;-1)$ and the origin are

A.
$$\frac{2}{\sqrt{14}}$$
, $\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

$$\text{B.}\ \frac{2}{\sqrt{14}},\,\frac{-3}{\sqrt{14}},\,\frac{1}{\sqrt{14}}$$

$$\text{C.}\,\frac{-2}{\sqrt{14}},\,\frac{-3}{\sqrt{14}},\,\frac{1}{\sqrt{14}}$$

D.
$$\frac{2}{\sqrt{14}}$$
, $\frac{-3}{\sqrt{14}}$, $\frac{-1}{\sqrt{14}}$

Answer: C

37. If the direction ratios of two lines are given by $l+m+n=0, mn-2\ln+lm=0$ then the angle between the lines is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D. 0

Answer: C

38. If (2, -1, 3) is the foot of the perpendicular drawn from the origin to the plane , then the equation of the plane is

A.
$$2x + y - 3z + 6 = 0$$

B.
$$2x - y + 3z - 14 = 0$$

C.
$$2x - y + 3z - 13 = 0$$

D.
$$2x + y + 3z - 10 = 0$$

Answer: B

39. If the plane 3x-2y-z-18=0 meets the coordinates axes in A,B,C then the centroid of

 \triangle ABC is

- A. (2, 3, -6)
- B. (2, -3, 6)
- C. (-2, -3, 6)
- D. (2, -3, -6)

Answer: D

40. XOZ plane divides the join of (2,3,1) and (6,7,1) in the ratio

A. 3:7

B.2:7

C. -3:7

D. -2:7

Answer: C

41. If the direction ratios of two lines are given by $3lm-4\ln+mn=0$ and l+2m+3n=0, then the angle between the lines , is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\ \frac{\pi}{6}$$

D.
$$\frac{\pi}{2}$$

Answer: D

42. A plane π makes intercepts 3 and 4 respectively on z - axis and x- axis . If π is parallel to y - axis , then its equation is

A.
$$3x + 4z = 12$$

B.
$$3z + 4x = 12$$

C.
$$3y + 4z = 12$$

D.
$$3z + 4y = 12$$

Answer: A

43. The equation of the plane passing through (1,1,1) and (1,-1,-1) and perpendicular to 2x-y+z+5=0, is

A.
$$2x + 5y + z = 8 = 0$$

B.
$$x + y - z - 1 = 0$$

C.
$$2x + 5y + z + 4 = 0$$

D.
$$x - y + z - 1 = 0$$

Answer: B

44. The direction ratios of normal to the plane passing through $(0,0,1),\,(0,1,2)$ and (1,0,3) are

- A. (2, 1, -1)
- B. (1, 0, 1)
- C.(0,0,-1)
- D. (1, 0, 0)

Answer: A

45. If P=(0,1,0), Q=(0,2,1) , then the projection of PQ on the plane x+y+z=3 is

- A. 2
- B. $\sqrt{2}$
- C. 3
- D. $\sqrt{3}$

Answer: B

46. In the space the equation by+cz+d=0 represents a plane perpendicular to the

- A. YOZ plane
- B. ZOX plane
- C. XOY plane
- D. None of these

Answer: A

47. A plane x passes through the point (1,1,1) .If b,c,a are the direction ratios of a normal to the normal to the palne , where a, b ,c (a < b < c) are the factors of 2001 , then the equation of the palne is

A.
$$29x + 31y + 3z = 63$$

$${\rm B.}\ 23x + 29y - 29z = 23$$

C.
$$23x + 29y + 3z = 55$$

D.
$$31x + 37y + 3z = 71$$

Answer: C

48. If the plane 7x+11y+13z=3003 , meets the coordinate axes in A,B,C the the centroid of the

 \triangle ABC is

- A. (143, 91, 77)
- B. (143, 77, 91)
- C. (91, 143, 77)
- D.(143, 66, 91)

Answer: A

49. The foot of the perpendicular from (0,2,3) to the

line
$$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$$
 is

A.
$$(-2, 3, 4)$$

B.
$$(2, -1, 3)$$

$$\mathsf{C.}\,(2,3,\;-1)$$

D.
$$(3, 2, -1)$$

Answer: C

50. If a line makes angles $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the x - axis and y - axis respectively, then the angle made by the line with the z - axis is

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\ \frac{5\pi}{12}$$

D.
$$\frac{\pi}{3}$$

Answer: D

51. If the foot of the perpendicular from (0,0,0) to the plane is (1,2,2) then the equation of the plane is

A.
$$-x + 2y + 8z - 9 = 0$$

B.
$$x + 2y + 2z - 9 = 0$$

C.
$$x + y + z - 5 = 0$$

D.
$$x + 2y - 3z + 1 = 0$$

Answer: B

52. If P = (0, 1, 2), Q = (4, -2, 1), O = (0, 0, 0)

then $\angle POQ$ is equal to

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

$$\operatorname{C.}\frac{\pi}{6}$$

D.
$$\frac{\pi}{3}$$

Answer: A

53. A variable plane is at a constant distance h from the origin and meets the coordinate axes in A,B,C .

Locus of centroid of $\ \triangle \ ABC$ is

A.
$$x^2 + y^2 + z^2 = h^{-2}$$

$${\rm B.}\,x^2+y^2+z^2=4h^{\,-2}$$

C.
$$x^2 + y^2 + z^2 = 16h^2$$

D.
$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{9}{h^2}$$

Answer: D

54. If the extremities of diagonal of a square are

 $(1,\ -2,3),(2,\ -3,5)$ then the length of its side is

- A. $\sqrt{6}$
- B. $\sqrt{3}$
- C. $\sqrt{5}$
- D. $\sqrt{7}$

Answer: B

