©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

CURRENT ELECTRICITY AND ALTERENATING CURRENT

1. A battery of the emf 18 V and internal resistance of 3Ω and another of emf 10 V and internal resistance of 1Ω are connected as shown in figure. Then the voltmeter reading is
A. 10 V
B. 12 V
C. 16V
D. 8 V
2. A voltmeter of 250 mV range having a resistance of 10Ω is converted into an ammeter of 250 mA range . The value of necessary shunt is (nearly)
A. 2Ω
B. 0.1Ω
C. 1Ω
D. 10Ω

Answer: B

D Watch Video Solution

3. In a half wave rectifier, the AC input source of frequency 50 Hz is used. The fundamental
frequency of the output is
A. 50 Hz
B. 150 Hz
C. 200 Hz
D. 75 Hz

Answer: C

D Watch Video Solution

4. In a circuit L, C and R are connected in series
with an alternating voltage source of
frequency f. when current in the circuit leads
the voltage by $45 \circ$ the value of C.

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi f(2 \pi f L+R)} \\
& \text { B. } \frac{1}{2 \pi(2 \pi f R+L)} \\
& \text { C. } \frac{1}{2 \pi f(R+L)}
\end{aligned}
$$

$$
\text { D. } \frac{1}{2 \pi \frac{f(R+(1))}{L}}
$$

Answer: A

D Watch Video Solution

5. A constant potential difference is applied between the ends of the wire. If the length of the wire is elongated 4 times, then the drift velocity of electrons will be
A. Increase 4 times

B. Decrease 4 times

C. Increase 2 times
D. Decrease 2 times

Answer: A

D Watch Video Solution

6. In a metre bridge, the gaps are enclosed by resistances of 2ω and 3Ω. The value of shunt to be added to 3Ω resister to shift the balancing point by 22.5 cm is
A. 1Ω
B. 2Ω
C. 2.5Ω
D. 5Ω

Answer: B

D Watch Video Solution

7. In a Ac circuit aV and I are given below, then
find the power dissiapted in the circuit
$V=50 \sin (50 t) V$
$I=50 \sin \left(50+\left(\frac{\pi}{3}\right)\right) m A$
A. 0.625 W
B. 1.25 w
C. 2.50 w
D. 5.0 w

Answer: B
(Watch Video Solution
8. Wires A and B have resistivities p_{A} and p_{B}. If
the diameter of the wire B is twice that of A
and the Two wires have same resistance, then $\frac{L_{b}}{L_{A}}$ is
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B

9. In the circuit shown, the heat produced in

5Ω resistance due to current through is $50 \mathrm{~J} / \mathrm{s}$.
Then, the heat generated per sescond in 2Ω resistance is
A. $5 \mathrm{~J} / \mathrm{s}$
B. $4 \mathrm{~J} / \mathrm{s}$
C. $9 \mathrm{~J} / \mathrm{s}$
D. $10 \mathrm{~J} / \mathrm{s}$

D View Text Solution

10. A capacitor $50 \mu F$ is connected to a power source $V=220 \sin 50 t(V$ in volt, t in second $)$.

The value of rms current (in ampere)
A. $\frac{\sqrt{10}}{0.55} A$
B. 0.55 A
C. $\sqrt{2} A$
D. $\frac{0.55}{\sqrt{2}} A$

Answer: D

D Watch Video Solution

11. In the circuit shown in the figure, the current ' T ' is
A. 6 A
B. 2 A
C. 4 A
D. 7A

Answer: D

D View Text Solution

12. In the meter bridge experiment, the length
$A B$ of the wire is 1 m . The resister Xand Y have
vlaues 5Ω and Ω respectively. When a shunt resistance S is connected to X, the balancing point is found to be 0.625 m form A . Then the resistance of the shunt is
A. 5Ω
B. 10Ω
C. 7.5Ω
D. 12.5Ω

Answer: A

D View Text Solution
13. A series LCR circuit is cnnected across a source of alternating emf of changing frequency and resonates at frequency f_{0}.

Keepinf capacitance constant，if the inductant
（L）is increased by $\sqrt{3}$ times and resistance is increased（ R ）by 1.4 times ，the resonant frequency now is

A． $3^{\frac{1}{4}} F_{\text {。 }}$

B．$\sqrt{3} f$ 。
C．$(\sqrt{3}-1)^{\frac{1}{4}} F_{\text {。 }}$
D．$\left(\frac{i}{3}\right)^{\frac{1}{4}} f_{\circ}$

Answer：B
14. The sensitivity of a galvanometer that measure current is decreased by $\frac{1}{40}$ times bu using shunt resistance of 10Ω.

Then , the value of the resistance of the galvanometer is
A. 400Ω
B. 410Ω
C. 30Ω
D. 390Ω

Answer: D

- Watch Video Solution

15. Three resistences of equal values are arranged in four different configuration as
shown below. Power dissipation in the increasing order is

B. (II) $\operatorname{lt}(\mathrm{III}) \operatorname{lt}(\mathrm{IV}) \mid \mathrm{It}(\mathrm{II})$

C. (I)lt(III) $\mathrm{It}(\mathrm{II}) \mathrm{lt}(\mathrm{IV})$

D. (IV) $|\mathrm{t}(\mathrm{III})| \mathrm{t}(\mathrm{II}) \mid \mathrm{lt}(\mathrm{I})$

Answer:

D View Text Solution

16. Four resistors A, and D form a Wheatstone bridge.

The bridge is balanced, when $C=100 \Omega$ If A
and B are interchanged the bridge balances

for $C=121 \Omega$. The value of D is

A. 10Ω
B. 100Ω
C. 110Ω
D. 120Ω

Answer: A
(Watch Video Solution

17. The electric current I in the circuit shown is

A. 6 A
B. 2A
C. 3A
D. 4 A

Answer: C
18. In the circuit shown below, the ammeter reading is zero Then the value of the resistance R is
A. 50Ω
B. 100Ω
C. 200Ω
D. 400Ω

Answer: D

D View Text Solution
19. A constant voltage of 25 V is applied to a series L-R circuit at $\mathrm{t}=0$, by closing a switch .

What is the pitential difference across the resister and the inductor at time $\mathrm{t}=0$?
A. $0 \mathrm{~V}, 25 \mathrm{~V}$
B. $12.5 \mathrm{~V}, 1.25 \mathrm{~V}$
C. $10 \mathrm{~V}, 15 \mathrm{~V}$
D. $25 \mathrm{~V}, 0 \mathrm{~V}$

Answer: B

- Watch Video Solution

20. The sensitivity of a galvanometer is 60 division /A . When a shunt is used, its sensitivity becomes 10 division/A. If the galvanometer is of resistance 20Ω, the value of shunt used is
A. 4Ω
B. 5Ω
C. 20Ω

D. 2Ω

Answer: A

D Watch Video Solution

21. 6Ω and 12Ω resistors are connected in parallel. This combination is connected in seires with a 10 V batery and 6Ω resister.

What is the potential difference between the teriminal of the 12Ω resistor ?
A. 4 V

B. 16V

C. 2V
D. 8 V

Answer: A

D Watch Video Solution

22. Charge passing through a conductor of cross- section area $A=0.3 \mathrm{~m}^{2}$ is given by $\mathrm{q}=$ $3 t^{2}+5 t+2$ in coulomb, where t is in second.

What is the value of drift velocity at $t=2 s$?

$$
\left(\text { Given, } n=2 \times \frac{10^{25}}{m^{3}}\right)
$$

$$
\text { A. } 0.77 \times 10^{-5} \frac{m}{s}
$$

B. $1.77 \times 10^{-5} \frac{m}{s}$
C. $2.08 \times 10^{-5} \frac{m}{s}$
D. $0.57 \times 10^{-5} \frac{m}{s}$

Answer: A

- Watch Video Solution

23. In the adjacent shown circuit, a voltmeter
of internal resistance R, When connected across B and C reads $\frac{100}{3} V$. Negative the internal resistance of the battery, The value of R is
A. 100Ω
B. 75Ω
C. 50Ω
D. 25Ω

Answer: B

D View Text Solution

24. A cell in secondary circuit gives null
deflection for 2.5 m length of potentiometer
having 10 m length of wire. If the length of the potentiometer the cell in the primary, the position of the nul point now is
A. 3.5 m
B. 3 m
C. 2.75 m
D. 2.0 m

Answer: C

D View Text Solution

25. In the given circuit, the angular frequency of the voltage source is $70 \times 10^{3} \mathrm{rads}^{-1}$. The
circuit effectively behaves like,

A. purely resistive circuit
B. Series R-L circuit
C. Series R-C cricuit
D. Series L-C circuit with $R=0$

Answer: C
26. A current of 2 A flows in an electric circuit
as shown in figure . The potential difference (
V_{R} and V_{3} are potenstials at R and S respectively)is
A. -4
B. $(+) 2$
C. (+) 4
D. (-)2

Answer: C

D View Text Solution

27. When a battery connected across a resistor of 16Ω, the voltage across the resistor is 12 V .

When the same battery is connected across the resistor of 10Ω voltage across it is 11 V . The internal resistance of the battery in ohm is
A. $\frac{10}{7}$
B. $\frac{20}{7}$
c. $\frac{25}{7}$
D. $\frac{30}{7}$

Answer: C

D Watch Video Solution

28. In a galvanometer 5% of the total current
in the circuit passes through it. If the resistance of the galvanometer is G , the shunt resistance S connected to the galvanometer is
A. 19 G
B. $\frac{G}{19}$
C. 20G
D. $\frac{G}{20}$

Answer: B

D Watch Video Solution

29. In a meter bridge experiment, the ratio of
the left gap resistance to right gap resistance
is $2: 3$, the balance point form left is
A. 60 cm
B. 50 cm
C. 40 cm
D. 20 cm

Answer: C

D Watch Video Solution

30. An aluminium (respectively
$p=2.2 \times 10^{8} \Omega-m$) wire of a diameter 1.4
mm is used to make a 4Ω resister. The length of the wire is
A. 220 m
B. 1000 m
C. 280 m
D. 1 m

Answer: C
(Watch Video Solution
31. twevle cells, each having emf E volt are connected in series ans are kept in a closed
box. Some of these cells are wrongly connected with positive and negative terminals reversed. This 12 cell battery is connected In series with an ammeter, an external resistance R ohms adn a two -cell battery (two cells of the same type used earlier, connected perfectly in sesries). The
current in the circuit when the 12 cell battery oppose each other Then, the number of cells
ij 12 - cells battery that are connected wrongly is
A. 4
B. 3
C. 2
D. 1

Answer: D
(D) View Text Solution
32. A 6 V cell with 0.5Ω internal resistance, a 10 v cell with 1Ω internal resistance and a 12Ω external resistance are connected in parallel . The current (in amper) through the 10 V cell is
A. (0.60)
B. 2.27
C. 2.87
D. 5.14

Answer: C
33. In a meter bridge a 30Ω resistance is connected in the left gap and a pair of resistance p and Q in the gap. Measured from
the left, the balance point is 37.5 cm When
they the parallel. The values of P and Q (in Ω)
are
A. $(40,10)$
B. 35,15
C. 30,20

D. 25,25

Answer: C

D View Text Solution

34. n conducting wires of same dimension but
having resitives $1,2,3, \ldots . . n$ are connected In
series . The equivalent resistivity of the combination is

$$
\text { A. } \frac{n+(n+1)}{2}
$$

B. $\frac{n+1}{2}$
C. $\frac{n+2}{2 n}$
D. $\frac{2 n}{n+1}$

Answer: C

D Watch Video Solution

35. connected in the secondary circuit of a potentiometer one at a time and the balancing length are respectively 400 cm and

440 cm . The emf of the cell A is 1.08 V . The emf of the second cell B in volt is
A. 1.08
B. 1.188
C. 11.28
D. 12.8

Answer: A
(Watch Video Solution
36. Two resistance of 400Ω and 800Ω are connected I series with 6 V battery of negligible internal resistance. A voltemeter of resistance 10000Ω is used to measure the potential difference across 400Ω The error in the measurement of potential difference in volt approximately is
A. 0.03
B. 0.02
C. 0.03

D. 0.05

Answer: B

D Watch Video Solution

37. Three unequal resistor in parallel are equivalent to a resistance 1Ω If two of them are in the ratio $1: 2$ and if no resistance value is fractional the largest of the three resistance in ohm is
A. 4
B. 6
C. 8
D. 12

Answer: D

D Watch Video Solution

38. A galvanometer having a resistance of 50Ω
, gives a full scale deflection for a current if
0.05 A. The length in metre if a resistance wire of area of cross- section $2.97 \times 10^{-2} \mathrm{~cm}^{2}$ that
can be used to convert the gaivanometer into
an ammeter which can read a maximum of 5 A
current is (specific resistance of the wire $=$
$\left.5 \times 10^{-7} \Omega-m\right)$
A. 9
B. 6
C. 3
D. 1.5

Answer: B
39. The balancing length for a cell is 560 cm in a potentiometer experiment . When an external resistance of 10 ohm are connected in parallel to the cell, the balancing length changes by 60 cm . find the internal resistance of the cell in ohm , is
A. 1.6
B. 1.4
C. 1.2
D. 0.12

Answer: C

D Watch Video Solution

40. A conductor of resistance 3Ω is stretched
uniformly till its length if doubled. The wire is now bent in the form of an equivalent triangle.

The effective resistance between the ends of any side of the triangle in ohm is
A. $\frac{9}{2}$
B. $\frac{8}{3}$
C. 2
D. 1

Answer: C

D Watch Video Solution

41. A uniform conductor of resistance R is cut
into 20 equal pieces. Half of them are joined in
series and the remaining half of them are connected in parallel . If the two combinations
are joined in series, the effective resistance of all the pieces is
A. R
B. $\frac{R}{2}$
C. $\frac{101 R}{200}$
D. $\frac{201 R}{200}$

Answer: B
(Watch Video Solution
42. A moving coil galvanometer of resistance 100Ω shows full scale deflection when a current of $100 \mu A$ passes through it. If is intended to show full scle deflection when a current of 1mA passes through it the value of shunt resistance in ohm to be connected to the galvanometer is

$$
\begin{aligned}
& \text { A. } \frac{9}{4} \\
& \text { B. } \frac{10}{3} \\
& \text { C. } \frac{100}{9}
\end{aligned}
$$

900
 D. $\frac{900}{7}$

Answer: C

D Watch Video Solution

43. A nichorme wire 50 cm long $1 \mathrm{~mm}^{\wedge} 2$ crosssection carries a current of 4 A . When connected to 2 V battery The resistivity of nichrome wire in $\Omega-m$ is

$$
\text { A. } 1 \times 10^{-6}
$$

B. 4×10^{-7}
C. 3×10^{-2}
D. 2×10^{7}

Answer: C

D Watch Video Solution

44. When a resistor of 11Ω is conntected in series with an electric cell, the current flwoing in it is 0.5 A . Instead, when a resistor of 5Ω is conntected to the same electric cell in series,
the current increase by 0.4 A , The internal resistance of the cell is
A. 1.5Ω
B. 2Ω
C. 2.5Ω
D. 3.5Ω

Answer: A
(Watch Video Solution
45. An ammeter and a voltmeter of resistance
R are connected in series to an electric cell of negligible internal resistance . Their readings are A and V respectively. If another resistance
R is connected in prallel with voltmeter
A. Both A and V will increase
B. Both A and V will decrease
C. A will decrease and V will increase

D. A increase and V will decrease

- Watch Video Solution

46. Two wires of equal diameters of resistivities p_{1} and p_{2} and length x_{1} and x_{2} respectively are joined in series. The equivalent resistivity of the combination is

$$
\begin{aligned}
& \text { A. } \frac{P_{1} X_{1}+P_{2} X_{2}}{X_{1}+X_{2}} \\
& \text { B. } \frac{P_{1} X_{2}-P_{2} X_{1}}{X_{1}-X_{2}} \\
& \text { C. } \frac{P_{2} X_{2}+P_{2} X_{1}}{X_{1}+X_{2}} \\
& \text { D. } \frac{P_{1} X_{2}-P_{2} X_{1}}{X_{1}+X_{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

47. In a metre bridge, the gaps are enclosed
by resistances of 2ω and 3Ω. The value of
shunt to be added to 3Ω resister to shift the balancing point by 22.5 cm is
A. 1Ω
B. 2Ω
C. 2.5Ω

D. 5Ω

Answer: A

D Watch Video Solution

48. A wire of resistance 10Ω is elongated by
10% the resistance of the elongated wire
A. 11Ω
B. 11.1Ω
C. 12.1Ω

D. 13.1Ω

Answer: B

- Watch Video Solution

49. In a meter bridge the balancing length rom
the left end (standard resistance of 1Ω is in
the right gap) is found to be 20 cm . The value of the unkown resistance is
A. 0.3Ω
B. 0.2Ω
C. 0.25Ω
D. 0.5Ω

Answer: C

- Watch Video Solution

50. A galvanmeter has a resistance of 50Ω and a current of 0.01 A will cause full scale deflection. To converted this into an ammeter
with full deflection for 5 A , we have to connect approximately
A. 0.1Ω in series
B. 0.1Ω in parallel
C. 0.2Ω in series
D. 0.2Ω in parallel

Answer: B
(Watch Video Solution
51. The emf of a daniel cell is 1.08 V . When the terminals of the cell are connected to resistance of 3Ω, the potential difference across the terminals is found to be 0.6 V . Then , the internal resistance of the cell is
A. 1.8Ω
B. 2.4Ω
C. 0.2Ω
D. 0.24Ω

Answer: B

- Watch Video Solution

52. A sensitive galvanometer like a moving coil gavanometer can be converted into an ammeter or into a voltmeter by connecting a proper resistance to it . Then, which of the following statement is not true ?
A. An ammeter is connected in series in a
circuit and the pontential difference across it is small
B. An ammeter is connected in series in a
circuit and the current through it is
negligible
C. A voltmeter is connected in parallel in a
circuit and the current through it is
negligible
D. A voltmeter is connected in parallel a
circuit the potential difference across it
is maximum .

- Watch Video Solution

53. The potential difference across the terminals of a battery is 50 V when 11 A are drown and 60 V when 1 A is drown. The emf and the internal resistance of the battery are
A. $62 \mathrm{~V}, 2 \Omega$
B. $63 \mathrm{~V}, 1 \Omega$
C. $61 \mathrm{~V}, 1 \Omega$
D. $64 \mathrm{~V}, 2 \Omega$

Answer: B

D Watch Video Solution

54. If in a wheatstone bridge the battery and galvanometer are interchanged the condition
for balance
A. Is disturbed
B. Is not disturbed
C. Depend on the internal resistance of the
bridge

D. Depend on the values of the resistance

 in the bridge
Answer: C

D View Text Solution

55. An ammeter whose resistance is 180Ω shows full scale deflection when the current is

2 mA . The shunt required to convert into an ammeter reading 20mA is (in ohm)
A. 18
B. 20
C. 0.1
D. 10

Answer: B

D Watch Video Solution
56. A current is passed through two coils connected in series. The potential difference across the first coil is 3 V and that of the
A. 3Ω
B. 5Ω
C. 7Ω
D. 9Ω

Answer: B
(Watch Video Solution

57. To convert a 800 mV range millivoltmeter of

resistance 40Ω, itno a miliammeter of 100 mA
range, the resistance to be connected as shunt is
A. 5Ω
B. 10Ω
C. 15Ω
D. 20Ω

Answer: A

