©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

KINETIC THEORY

Problem Mcqs

1. R.M.S. velocity of oxygen molecules at N.T.P.
is $0.5 \mathrm{Km} / \mathrm{s}$. The R.M.S. velocity of he hydrogen
A. $4 \mathrm{Km} / \mathrm{s}$
B. $2 \mathrm{Km} / \mathrm{s}$
C. $3 \mathrm{Km} / \mathrm{s}$

D. $1 \mathrm{Km} / \mathrm{s}$

Answer:

2. In a region of uniform electric field ofn
intencity E , an electron of mass m_{e} is released
from rest. The distance travelled by the eloctron in a time t is

$$
\begin{aligned}
& \text { A. } \frac{2 m_{e} t^{2}}{e} \\
& \text { B. } \frac{e E t^{2}}{2 m_{e}} \\
& \text { C. } \frac{m_{e} g t^{2}}{e E} \\
& \text { D. } \frac{2 E t^{2}}{e m_{e}}
\end{aligned}
$$

Answer:

3. A horizontal force just sufficient to move body of mass 4 kg lying on a rough horizontal surface, is applied on it. Coeficients of static and kinetic frictions are 0.8 and 0.6 respectively. If the force continues to act even after the body has started moving, the acceleration of the body is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $6 m s^{-2}$

$$
\text { B. } 8 m s^{-2}
$$

C. $2 M s^{-2}$

$$
\text { D. } 4 m s^{-2}
$$

Answer:

D Watch Video Solution

4. A ball P moving with a speed of $v m s^{-1}$ collides directly with another identical ball Q moving with a speed $10 \mathrm{~ms}^{-1}$ in the opposite direction. P comes to rest after the collision. If
the coefficient of restitution is 0.6 , the value of v is
A. $30 m s^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $50 \mathrm{~ms}^{-1}$
D. $60 m s^{-1}$

Answer:
(Watch Video Solution
5. The force required to move a body up a rough inclined plane is double the foce required to prevent the body from slinding down the plane. The coefficient of friction, when the angle of plane is 60° is

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \\
& \text { B. } \frac{1}{\sqrt{2}} \\
& \text { C. } \frac{1}{\sqrt{3}} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

- Watch Video Solution

6. The work function a metel is 2 eV . If a radiation of wavelengh $3000 A^{\circ}$ is incident on
it, the maximum kinetic energy of the emitted photoelectros is (Plank's constant
$h=6.6$ times 10^{-34} J, velocity of light
$c=3$ times $10^{8} \mathrm{~ms} / \mathrm{s}, 1 \mathrm{eV}=1.6$ times 10^{-19}
A. 4.4times 10^{-19} J
B. 5.6 times $10^{-19} \mathrm{~J}$
C. 3.4 times $10^{-19} J$

D. 2.5 times $10^{-19} j$

Answer:

D Watch Video Solution

7. When the engine is switched off vehicle of mass M is moving on a rough horizontal road eith moment p. If the coefficient of friction between the road and tyres of vehicle is μ_{k},
the distace travelled by the vehicle before it comes to rest is
A. $\frac{p^{2}}{2 \mu_{k} M^{2} g}$
B. $\frac{2 \mu_{k} M^{2} G}{p^{2}}$
C. $\frac{p^{2}}{2 \mu_{k g}}$
D. $\frac{p^{2} M^{2}}{2 \mu_{k g}}$

Answer:

D Watch Video Solution

8. A uniform chain of length L is lying on the horizontal table.If the coefficient of friction between the chain and table top is m , what is
the maximum length of the chain that can
hang over the edge of the table without disturbing the rest of the chain on the table?

$$
\begin{aligned}
& \text { A. } \frac{L}{(1+\mu)} \\
& \text { B. } \mu \frac{L}{(1+\mu)} \\
& \text { C. } \mu \frac{L}{(1+\mu)} \\
& \text { D. } \mu \frac{L}{(1-\mu)}
\end{aligned}
$$

Answer:

D Watch Video Solution
9. A body of mass $m_{1}=4 \mathrm{~kg}$ moves at $5 \hat{i} \mathrm{~m} / \mathrm{s}$ and another body of mass $m_{2}=2 \mathrm{~kg}$ moves
at $10 \hat{i} \mathrm{~m} / \mathrm{s}$. The kinetic energy of center of mass is

$$
\begin{aligned}
& \text { A. } \frac{200}{3} J \\
& \text { B. } \frac{500}{3} J \\
& \text { C. } \frac{400}{3} J \\
& \text { D. } \frac{800}{3} J
\end{aligned}
$$

Answer:

D Watch Video Solution
10. An object takes n times as much time as to
slide down a 45° rough inclined plane it takes
to slide down a perfectly smooth inclined
plane of the same inslination. The coefficient of kinetic friction between the object and the rough inclied is given by
A. $\left(1-\frac{1}{n^{2}}\right)$
B. $\left(\frac{1}{1-n^{2}}\right)$
C. $\sqrt{1-\frac{1}{n^{2}}}$
D. $\sqrt{1+\frac{1}{n^{2}}}$

Answer:

D Watch Video Solution

11. A body is projected vertically upwatds at
time $\mathrm{t}=0$ and is it seen at a height H at time t_{1}
and t_{2} second during its flight. The maximum height attainet is (g is acceleration due to garavity).

$$
\begin{aligned}
& \text { A. } \frac{g\left(t_{2}-t_{1}\right)^{2}}{8} \\
& \text { B. } \frac{g\left(t_{2}+t_{2}\right)^{2}}{4}
\end{aligned}
$$

C. $\frac{g\left(t_{1}+t_{2}\right)}{8}$
D. $\frac{g\left(t_{2}-t_{1}\right)^{2}}{4}$

Answer:

D Watch Video Solution

12. A partical is projected up from a point at an
angle theta whith the horizontal
displacement, the graph among the following
which does not represent the variation of
kinrtic energy KE of the particle is,
(A) KE
(B)

(C) KE

(D)

A. Graph (A)
B. Graph (B)
C. Graph (C)
D. Graph (D)

Answer:

- Watch Video Solution

13. A motor of power P_{0} is used to deliver water at a certain rate through a given horizontal pipe. To increase the rate of flow of water through the same pipe n times, the power of the moter is increased to P_{1} to P_{0} is
A. $\mathrm{n}: 1$
B. $n^{2}: 1$
C. $n^{3}: 1$
D. $n^{4}: 1$

Answer:

D Watch Video Solution

14. The component of vector
$\vec{A}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$ along the direction of
'hati - hatj'
A. $a_{x}-a_{y}+a_{z}$
B. $a_{x}-a_{y}$
C. $\left(a_{x}-a_{y}\right) \sqrt{2}$
D. $\left(a_{x}+a_{y}+a_{z}\right)$

Answer:

- Watch Video Solution

15. A ball thrown vertically i.lp to reach its maximum height in t second. The total time
from the time of projection to reach a. point at half of its maximum height while returning
(in second) is
A. $\sqrt{2} t$
B. $\left(1+\frac{1}{\sqrt{2}}\right) t$
C. $3 \frac{t}{2}$
D. $\frac{t}{\sqrt{2}}$

Answer:

D Watch Video Solution
16. If a body is projected with angle θ to the horizontal, then •
A. Its velocity is always perpendicular to its
acceleration
B. Its velocity becomes zero at its maximum
height
C. Its velocity makes zero angle with the
horizontal at its maximum height
D. The body just before hitting the ground,
the direction of velocity coincides with
the acceleration.

- Watch Video Solution

17. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are $\vec{V}=2 \hat{i}+c \hat{j}$ and $\vec{a}=3 \hat{i}+4 \hat{j}$ respectively. Then value, of c is
A. 3
B. 1.5
C. -1.5
D. -3

Answer:

D Watch Video Solution

18. A bucket filled with water is tied to a rope of len"gt"h 0.5 m and is rotated in a circular path in vertical plane. The least velocity it should have at the lowest point of circle so that water does not spill is,

$$
\text { A. } \sqrt{5} m s^{-1}
$$

B. $\sqrt{10} m s^{-1}$
C. $5 m s^{-1}$

$$
\text { D. } 2 \sqrt{5} m s^{-1}
$$

Answer:

- Watch Video Solution

19. A man standing on a road has to hold his
umbrella at 30° with the vertical to keep the
rain away. He throws the umbrella and starts
running at $10 \mathrm{kmh}^{-1} \mathrm{He}$ finds that raindrops
are hitting his head vertically. The actual speed

of raindrops is

A. $20 \mathrm{kmh}^{-1}$
B. $10 \sqrt{3} \mathrm{~km}^{-1}$
C. $20 \sqrt{3} k m h^{-1}$
D. $10 \mathrm{~km}^{-1}$

Answer:
(Watch Video Solution
20. A body is projected from the earth at an angle 30° with the horizontal with some initial velocity. If its range is 20 m , the maximum height reached by it is (in metre)
A. $5 \sqrt{3}$
B. $\frac{5}{\sqrt{3}}$
C. $\frac{10}{\sqrt{3}}$
D. $\frac{10}{\sqrt{3}}$

Answer:

21. At a given instant of time the position vector a particle moving in a circle with a velocity $3 \hat{i}-4 \hat{j}+5 k$ is $\hat{i}+9 \hat{j}-3 \hat{k}$. Its angular velocity at that time is

$$
\begin{aligned}
& \text { A. } \frac{(13 \hat{i}+29 \hat{j}-31 \hat{k})}{\sqrt{146}} \\
& \text { B. } \frac{(13 \hat{i}-29 \hat{j}-31 \hat{k})}{146} \\
& \text { C. } \frac{(13 \hat{i}+29 \hat{j}-31 \hat{k})}{\sqrt{146}} \\
& \text { D. } \frac{(13 \hat{i}+29 \hat{j}+31 \hat{k})}{\sqrt{146}}
\end{aligned}
$$

Answer:

D View Text Solution

22. A body is projected vertically upwatds at
time $\mathrm{t}=0$ and is it seen at a height H at time t_{1}
and t_{2} second during its flight. The maximum height attainet is (g is acceleration due to garavity).

$$
\begin{aligned}
& \text { A. } \frac{g}{4}\left(t_{1}+t_{2}\right)^{2} \\
& \text { B. } g\left(\frac{t_{1}+t_{2}}{4}\right)^{2}
\end{aligned}
$$

C. $2 g\left(\frac{t_{1}+t_{2}}{4}\right)^{2}$
D. $\frac{g}{4}\left(t_{1} t_{2}\right)$

Answer:

D Watch Video Solution

23. The equation of trajectory ofa projectile is
$y=10 x-\frac{5}{9} x^{2}$ If we assume $g=10 m s^{-2}$, the range of projectile (in metre) is

A. 36

B. 24
C. 18
D. 9

Answer:

D Watch Video Solution

24. At a given instant of time two particles are having the position vectors $4 \hat{i}-4 \hat{j}+7 \hat{k}$ metre and $2 \hat{i}+2 \hat{j}+5 \hat{k}$ respectively. If the velocity of the first particle be $0.4 \hat{i} m s^{-1}$, the
velocity of second particle in metre per second
if they collide after 10 s is

$$
\begin{aligned}
& \text { А. } 6\left(\hat{i}-\hat{j}+\frac{1}{3} \hat{k}\right) \\
& \text { В. } 0.6\left(\hat{i}-\hat{j}+\frac{1}{3} \hat{k}\right) \\
& \text { С. } 6\left(\hat{i}+\hat{j}+\frac{1}{3} \hat{k}\right) \\
& \text { D. } 0.6\left(\hat{i}+\hat{j}-\frac{1}{3} \hat{k}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

25. The horizontal and vertical displacements x

and y of a projectile at a given time t are given
by $\mathrm{x}=6 \mathrm{t}$ metre and $y=8 t-5 t^{2}$ metre. The range of the projectile in metre is
A. 9.6
B. 10.6
C. 19.2
D. 38.4

Answer:

26. The equations of motion of a projectile are given by $x=36 t$ inetre and $2 y=96 t-9.8 t^{2}$ metre. The angle of projection is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{3}{5}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{4}{3}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer:
27. A body of mass M kg is on the .top point of a smooth hemisphere of radius 5 m . It is released to slide down the surface of the hemisphere. It leaves the surface when velocity is $5 m s^{-1}$, At this instant the angle made by the radius vector of the body with the vertical is (acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

D Watch Video Solution

28. The horizontal and vertical displacements
of a projectile at time t are
$x=36 t$ and $y=48 t-4.9 t^{2} \quad$ respectively.
Imtial velocity of the projectile in $m s^{-1}$ is
A. 15
B. 30
C. 45
D. 60

Answer:

D Watch Video Solution

29. An object is projected with a velocity of $20 \mathrm{~ms}^{-1}$ making an angle of 45° with horizontal. The equation for the trajectory is
$h=A x-B x^{2}$, where h is height, x is
horizontal distance A and B are constants. The
ratio A: B is $\left(g=10 m s^{-2}\right)$
A. $1: 5$
B. 5:1
C. 1: 40
D. $40: 1$

Answer:

D Watch Video Solution
30. A body is thrown vertically upwards with an initial velocity u reaches maximum height in 6 s . The ratio of distance travelled by the body in the first and seventh second is
A. $11: 1$
B. 11:2
C. 1:2
D. 1:11

Answer:

- Watch Video Solution

31. A body is thrown horizontally from the top of a tower of 5 m height. It touches the ground at a distance of 10 m from the foot of the tower. The initial velocity of the body is
A. $2.5 m s^{-1}$
B. $5 m s^{-1}$
C. $10 m s^{-1}$
D. $20 \mathrm{~ms}^{-1}$
32. Four bodies P, Q, R and S are projected with equal velocities having angles ofprojection $15^{\circ}, 30^{\circ}, 45^{\circ}$ and 60° with the horizontal respectively. The body having shortest range is
A. P
B. Q
C. R
D. S

Answer:

- Watch Video Solution

33. The speed of a projectile at its maximum
height is $\frac{\sqrt{3}}{2}$ times its initial speed. If the range of the projectile is P times the maximum height attained by it, then P equals
A. $\frac{4}{3}$
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. $\frac{3}{4}$

Answer:

D Watch Video Solution

34. Water drops fall from a tap on the floor 5 m below at regular intervals of time, the first drop striking the floor when the fifth drop begins to fall. The height at which the third drop will be, from ground, at that instant
when first drop strikes the ground, will be, (taking $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. 1.25 m
B. 2.15 m
C. 2.75
D. 3.75 m

Answer:

- Watch Video Solution

35. A car starts from rest and travels with uniform acceleration a, for some time and then with uniform retardation β and comes to rest. If the total time of car is ' t ', the maximum
velocity attained by it is given by

$$
\begin{aligned}
& \text { A. } \frac{\alpha \beta}{\alpha+\beta} t \\
& \text { B. } \frac{1}{2} \frac{\alpha \beta}{\alpha+\beta} t^{2} \\
& \text { C. } \frac{\alpha \beta}{\alpha-\beta} t \\
& \text { D. } \frac{1}{2} \frac{\alpha \beta}{\alpha-\beta} t^{2}
\end{aligned}
$$

Answer:

36. The angle between two vectors $6 \hat{i}+6 \hat{j}-3 \hat{k}$ and $7 \hat{i}+4 \hat{j}+4 \hat{k}$ is given by

$$
\begin{aligned}
& \text { A. } \frac{\cos ^{-1}(1)}{\sqrt{3}} \\
& \text { B. } \frac{\cos ^{-1}(5)}{\sqrt{3}} \\
& \text { C. } \frac{\sin ^{-1}(2)}{\sqrt{3}} \\
& \text { D. } \frac{\sin ^{-1}(\sqrt{5})}{3}
\end{aligned}
$$

Answer:

Watch Video Solution

37. The minimum speed for a particle al the lowest point of vertical circle of radius R , to describe the circle is v. If the radius of circle is reduced to one-fourth its value, the corresponding minimum speed will be
A. $\frac{v}{4}$
B. $\frac{v}{2}$
C. 2 v
D. 4 v

Answer:

D Watch Video Solution

38. A car is moving on a ciirular level road of
curvature 300 m . If the coefficient of friction is
0.3 and acceleration due to gravity $10 \mathrm{~ms}^{-2}$,
the maximum speed that car can have is
A. $30 k m h^{-1}$
B. $81 \mathrm{kmh}^{-1}$
C. $108 \mathrm{kmh}^{-1}$

D. $162 \mathrm{~km}^{-1}$

Answer:

D Watch Video Solution

39. A person throws a bottle into a dust-bin at
the same height as he is 2 m away at an angle of 45°. The velocity of the throw is
A. g
B. \sqrt{g}
C. 950s
D. $\sqrt{2} g$

Answer:

D Watch Video Solution

40. A car starts from rest, attains a velocity of $36 \mathrm{kmh}^{-1}$ with an acceleration of $0.2 \mathrm{~ms}^{-2}$, travels 9 km with this uniform velocity and then comes to halt with a uniform
deceleration of $0.1 \mathrm{~ms}^{-2}$. The total time of

travel of the car is

A. 1050 s
B. 1000 s
C. 950s
D. 900s

Answer:
(Watch Video Solution
41. 1. A stone tied to a string is rotated in a
vertical circle. The minimum speed with which the string has to be rotated.
A. Decreases with increasing mass of the ston
B. Is independent of the mass of the stone
C. Decreases with increasing in len"gt"h of
the string
D. Is independent of the len"gt"h of the string.

Answer:

- Watch Video Solution

42. The maximum speed with which a car can
be driven touqd a curve of radius 18 m without
skidding $\left\{\right.$ When $g=10 m s^{-2}$ and the coefficient of friction between rubber tyres
and the roadways is 0.2) is
A. $36.0 \mathrm{kmh}^{-1}$
B. $18.0 \mathrm{kmh}^{-1}$

C. $21.6 k m h^{-1}$

D. $14.4 \mathrm{kmh}^{-1}$

Answer:

D Watch Video Solution

43. For an electron circulating around the nucleus, the centripetal force is supplied by
A. Electromagnetic force
B. Electrostatic force

C. Gravitational force

D. Magnetic force

Answer:

D Watch Video Solution

44. A particle is moving east wards with a velocity of $15 \mathrm{~ms}^{-1}$. In a time of 10 s , the velocity changes to $15 m s^{-1}$ northwards.

Average acceleration during this time is (in $m s^{-2}$)

> A. $\frac{3}{\sqrt{2}}$ north-east B. $\frac{3}{\sqrt{2}}$ north-east C. $\frac{3}{\sqrt{2}}$ north-west D. $3 \sqrt{2}$ north - west

Answer:

- Watch Video Solution

45. The reaction time for a car driver is 0.9 s . If
the car travetling initially with $36 \mathrm{kmh}^{-1}$ is stopped by the driver after observing a signal
by the deceleration of $5 m s-2$, the total
distance travelled by the car befo1re coming to rest is
A. 19 m
B. 9 m
C. 10 m
D. 28 m

Answer:

D Watch Video Solution
46. The angular velocity of the second's-hand ofa watch is
A. $0.053 \mathrm{rads}^{-1}$
B. $0.210 \mathrm{rads}^{-1}$
C. $0.105 \mathrm{rads}^{1}$
D. $0.42 \mathrm{rads}^{-1}$

Answer:

- Watch Video Solution

47. The direction of velocity and acceleration
of a projectile at the highest point on the trajectory are
A. Parallel to each other
B. Antiparallel to each other
C. Perpendicular to each other
D. No specific relationship exist between
them
48. A bomb is dropped from an aircraft travelling horizontal at $150 \mathrm{~ms}^{-1}$ at a height of 490 m . The horizontally distance travelled by the bomb before it hits the ground is (in metre)
A. 1000
B. 1200
C. 1500
D. 1800

Answer:

D Watch Video Solution

49. The angle made by the vector $\vec{A}=\vec{i}+\vec{j}$ with x-axis is
A. 90°
B. 45°
C. 22.5°
D. 30°

Answer:

- Watch Video Solution

50. A fan is making $600 \mathrm{rev} / \mathrm{min}$. If it makes
$1200 \mathrm{rev} / \mathrm{min}$, what is the increllse in its angular velocity?
A. $10 \pi \mathrm{rad} / \mathrm{s}$
B. $20 \pi \mathrm{rad} / \mathrm{s}$
C. $60 \pi r a d / s$
D. $40 \pi \mathrm{rad} / \mathrm{s}$

Answer:

- Watch Video Solution

51. The angular velocity of a rickshaw wheel is
$70 \mathrm{rads}^{-1}$. If !he radius of the wheel is 0.5 m , the linear velocity is
A. $10 m s^{-1}$
B. $20 m s^{-1}$
C. $35 m s^{-1}$
D. $70 m s^{-1}$

Answer:

D Watch Video Solution

52. If a particle tied to the end of string is set
in circular motion then the tension of the string is
A. Always parallel to the velocity of the particle
B. Always perpendicular to the velocity of the particle
C. Perpendicular to the velocity of the particle only at one instant
D. Parallel to the velocity of the particle only at one instant

Answer:

D Watch Video Solution

53. A motor cycle is travelling on a curved track
of radius 500 m . If the coefficient of friction
between the tyres and road is 0.5 , with
$g=10 \mathrm{~ms}^{-2}$. What should be the maximum
speed to avoid skidding

A. $500 m s^{-1}$
B. $250 \mathrm{~ms}^{-1}$
C. $50 m s^{-1}$
D. $10 m s^{-1}$

Answer:

D Watch Video Solution
54. A body is projected vertically up with speed
u takes time T to reach maximum height H .

Pick out correct statement
A. It reaches $\mathrm{H} / 2$ distance in a time $\mathrm{T} / 2$
B. It has speed u at time $T / 2$
C. It has speed $\mathrm{u} / 2$ at the height $\mathrm{H} / 2$
D. It has the same velocity at titrte $2 T$

Answer:

- Watch Video Solution

55. The displacement of a particle moving in a straight line is given by $x=2 t^{2}+t+5$ where x is expressed in metre and t in second. The acceleration at $t=2 \mathrm{~s}$ is
A. $4 m s^{-2}$
B. $8 m s^{-2}$
C. $10 m s^{-2}$
D. $15 m s^{-2}$

Answer:

56. A body falling for 2 s covers a distance a which is equal to that covered in next I s. If $g=10 m s^{-2}$, the distance s is
A. 30 m
B. 10 m
C. 60 m
D. 20 m

Answer:
57. A stone tied to a string rotated with uniform speed in a vertical plane. If the mass of the stone is m, len"gt" h of string is r and the speed of the stone is v, the tension in the string when the stone is at its lowest point is ($\mathrm{g}=$ acceleration due to gravity
A. mg
B. $\frac{m v^{2}}{r}$
c. $\frac{m v^{2}}{r}-m g$

$$
\text { D. } \frac{m v^{2}}{r}+m g
$$

Answer:

- Watch Video Solution

58. A 2 kg stone tied at the end of a string of I m len"gt" h , is whirled along a vertical circle at a constant speed of $4 m s^{-1}$. The tension in the string has a value of 52 N when the stone is
A. At the top of the circle
B. Halfway down
C. At the bottom of the circle
D. None of the above

Answer:

D Watch Video Solution

59. A body A starts from rest with an acceleration a_{1}. After 2 s another body B starts
from rest with an acceleration ar If they travel
equal distance in the 5 th second after the start of A. $a_{1}: a_{2}$ is equal to
A. 5:9
B. 5:7
C. 9:5
D. 9:7

Answer:
(Watch Video Solution
60. In the following velocity-time graph, the
distance travelled by the body, in metre is

A. 200
B. 250
C. 300
D. 400

Answer:

D Watch Video Solution

61. A person aiming to reach the exactly opposite point on the bank of a stream is
swimming with a speed of $0.5 m s^{-1}$ at an angle of 120° with the direction of flow of
water. The speed of water in the stream, in $m s^{-1}$ is ,
A. 1: 0
B. $\frac{1}{\sqrt{3}}$
C. 0.25
D. 0.433

Answer:

- Watch Video Solution

62. If a unit vector is represented by
$0.5 \hat{i}+0.8 \hat{j}+c \hat{k}$, the value of c is
A. 1
B. $\sqrt{0.11}$
C. $\sqrt{0.011}$
D. $\sqrt{0.39}$

Answer:

D Watch Video Solution

63. When two vectors \vec{A} and \vec{B} of magnitude a and b are added, the magnitude of the resultant vector is always
A. Equal to $(a+b)$
B. Less than ($a+b$)
C. Greater then
D. Not greater than (a+b)

Answer:

D Watch Video Solution

64. A ball is thrown vertically upwards with a speed of $10 \mathrm{~ms}^{-1}$ from the top of a tower 200 m high and another is throwtl .vertically
downwards with the same speed
simultaneously. The time difference between
them in reaching the ground, in second, if g is
taken as $10 \mathrm{~ms}^{-2}$, is
A. 12
B. 6
C. 2
D. 1

Answer:

65. vec A and vec B are vectors such that $A+B I=I$
$A-B j$. Then, the angle between them is
A. 90°
B. 40°
C. 45°
D. 0°

Answer:

- Watch Video Solution

66. A very small particle rests on the top of a
hemisphere of radius 20 cm . The smallest horizontal velocity to be given to it, if it is to
leave the hemisphere without sliding down its
surface, taking $g=9.8 m s^{-2}$
A. $1.4 m s^{-1}$
B. $2.4 m s^{-1}$
C. $0.4 m s^{-1}$
D. $0.7 m s^{-1}$
67. A particle starts moving from rest under uniformacceleration. It travels a distance x in the first two seconds anda distance of y in the next two seconds. If $\mathrm{y}=\mathrm{nx}$, then $\mathrm{n}=$
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

68. The resuhant of the vectors A and B depends also on the angle θ between them.The magnitude of the resultant is always given by
A. $A+B+2 A B \cos \theta$
B. $\sqrt{A+B+2 A B \cos \theta}$
C. $\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$

$$
\text { D. }\left(A^{2}+B^{2}+\cos \theta\right)^{2}
$$

Answer:

D Watch Video Solution

69. The horizontal stream of $\mathrm{H}_{2} \mathrm{O}$ leaves an opening in the side of a tank. If the opening is
h metre above the ground, and the stream hits the ground D metre away and the acceleration due to gravity is g the speed of
$\mathrm{H}_{2} \mathrm{O}$ as it leaves the tank in terms of g , h and
D is

> A. $D\left(\frac{g}{2 h}\right)^{3 / 2}$
> B. $D\left(\frac{g}{2} h\right)^{2}$
> C. $D\left(\frac{g}{2} h\right)^{-1 / 2}$
> D. $D \sqrt{\frac{g}{2 h}}$

Answer:

- Watch Video Solution

70. The banking angle for a curved road of radius 490 m for a vehicle moving at $35 \mathrm{~ms}^{-1}$ is
A. $\tan ^{-1}(0.25)$
B. $\tan ^{-} 1(0.55)$
C. $\tan ^{-1} 1(0.45)$
D. $\tan ^{-1}(0.75)$

Answer:

D Watch Video Solution
71. Keeping the banking angle same, to increase the maximum speed with which a vehicle can travel on a curved road by 10 percent the radius of curvature of road has to be changed from 20 m to
A. 6 m
B. 18 m
C. 24.2 m
D. 30.5
72. A wooden block is dropped from the top of a cliff 100 m high. Simultaneously a bullet of mass 10 g is fired from the foot of the cliff upwards with a velocity of $100 \mathrm{~ms}^{-1}$. The bullet and wooden block will meet each other after a time
A. 10 s
B. 0.5 s
C. 1 s
D. 7 s

Answer:

D Watch Video Solution

73. If \vec{A}, \vec{B} are perpendicular vectors
$\because \vec{A}=5 \hat{i}+7 \hat{j}-3 \hat{k}$
$\because \vec{B}=2 \hat{i}+2 \hat{j}-c \hat{k}$. Value of c is
A. -2
B. 8
C. -7
D. -8

Answer:

D Watch Video Solution

74. A body falling from rest has a velocity v after it falls through a distanc.e h. The distance it has to fall down further, for its velocity to become double, is times h
A. 5 h
B. h
C. 5 h
D. 3 h

Answer:

D Watch Video Solution

75. A body of mass m thrown horizontally with velocity v , from the fop of tower of height h , touches the level of ground at a distance of

250 m from the foot of the tower. A body of mass 2 m , thrown horizontally with velocity
$\mathrm{v} / 2$, from top of the tower or'height 4 h will touch the level ground at a distance in meter from the foot of the tower is
A. 150 m
B. 200
C. 250
D. 2500 m

Answer:
76. A boat is moving with a velocity $3 \hat{i}+4 \hat{j}$ with respect to (d) ground, the water in the river is moving with a velocity $-3 \hat{i}-4 \hat{j}$ w.r.t. ground. The relative velocity of boat w.r.t. water is
A. $5 \hat{i}+6 \hat{j}$
B. $6 \hat{i}+8 \hat{j}$
C. $6 \hat{j}+6 \hat{k}$
D. $5 \hat{j}+6 \hat{k}$

Answer:

- Watch Video Solution

