©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

MOTION IN A STRAIGHT LINE AND A

PLANE

1. A particle aimed at a target, projected with
an angle 15^{0} with the horizontal is short of
the target by 10 m . If projected with an angle of 45° is away from the target by 15 m , then
the angle of projection to hit the target is
A. (a) $\frac{1}{2} \frac{\sin ^{-1} 1}{10}$
B. (b) $\frac{1}{2} \frac{\sin ^{-1} 3}{10}$
C. (c) $\frac{1}{2} \frac{\sin ^{-1} 9}{10}$
D. (d) $\frac{1}{2} \frac{\sin ^{-1} 7}{10}$
2. A force $(2 \hat{I}+\hat{j}-\hat{k}) N$ acts on a body which is initially at rest. At the end of 20 sec the velocity of the body is
$(4 \hat{i}+2 \hat{j}-2 \hat{k}) m s^{-1}$,then mass of the body is
A. (a) 8 kg
B. (b) 10 kg
C. (c) 5 kg
D. (d) 4.5 kg

Answer: (b)

D Watch Video Solution

3. The displacement of a particle moving in a straight line Is given by the expression $x=A t^{3}+B t^{2}+C t+D$ meters, where t is in seconds and A, B, C and D are constants. The ratio between the initial acceleration and initial velocity is
A. (a) $2 \frac{C}{B}$
B. (b) $2 \frac{B}{C}$
C. (c) $2 C$
D. (d) $\frac{C}{2 B}$

Answer: (b)

- Watch Video Solution

4. A, B, C are points in a vertical line such that
$A B=B C$. If a body falls freely from rest at A and
t_{1} and t_{2} are times taken to travel distances
AB and BC , then ratio $\left(t_{2} / t_{1}\right)$ is
A. (a) $\sqrt{2}+1$
B. (b) $\sqrt{2}-1$
C. (c) $2 \sqrt{2}$
D. (d) $\frac{1}{\sqrt{2}+1}$

Answer: (d)

D Watch Video Solution

5. The path of a projectile is given by the equation $y=a x-b x^{2}$, where a and b are constants and x and y are respectively
horizontal and vertical distances of projectile
from the point of projection. The maximum
height attained by the projectile and the angle of projection are respectively.

$$
\begin{aligned}
& \text { A. (a) } 2 \frac{a^{2}}{b}, \tan ^{-1}(a) \\
& \text { B. (b) } \frac{b^{2}}{2 a}, \tan ^{-1}(b) \\
& \text { C. (c) } \frac{a^{2}}{b}, \tan ^{-1}(2 b) \\
& \text { D. (d) } \frac{a^{2}}{4 b}, \tan ^{-1}(a)
\end{aligned}
$$

Answer: (d)
6. Velocity (v) versus displacement (x) plot of a body moving along a straight line is as shown in the graph. The corresponding plot of acceleration (a) as a function of displacement (x) is
A.
B.
C.
D.

Answer: (c)

D View Text Solution

7. A particle is projected from the ground with an initial speed of V at an angle of projection θ
. The average velocity of the particle between its time of projection and time it reaches highest point of trajectory is
A. (a) $\frac{V}{2} \sqrt{1+2 \cos ^{2} \theta}$
B. (b) $\frac{V}{2} \sqrt{1+2 \sin ^{2} \theta}$

c. (с) $\frac{V}{2} \sqrt{1+3 \cos ^{2} \theta}$

D. (d) $V \cos \theta$

Answer: (c)

D Watch Video Solution

8. It is possible to project a particle with a given velocityin two possible ways so as to make them pess through a point P at a horizontal distance r from the point of projection. If t_{1} and t_{2} are times taken to reach
this point in two possible ways, then the product $t_{1} t_{2}$ is proportional to

> A. (a) $\frac{1}{r}$
> B. (b) r
> C. (c) r^{2}
> D. (d) $\frac{1}{r^{2}}$

Answer: (b)
(Watch Video Solution
9. Sum of magnitudes of two forces acting at a
point is 16 N . If their resultant is normal to
smaller force and has a magnitude 8 N , then
forces are
A. (a) $6 \mathrm{~N}, 10 \mathrm{~N}$
B. (b) $8 \mathrm{~N}, 8 \mathrm{~N}$
C. (c) $4 \mathrm{~N}, 12 \mathrm{~N}$
D. (d) $2 \mathrm{~N}, 14 \mathrm{~N}$

Answer: (a)
10. A certain vector in the $x y$-plane has an x component of 4 m and a y-component of 10 m .

It is then rotated in the xy-plane so that its x component is doubled. Then its new y component is (approximately)
A. (a) 20 m
B. (b) 7.2 m
C. (c) 5.0 m
D. (d) 4.5 m

Answer: (b)

D Watch Video Solution

11. A particle is falling freely from a height.

When it reaches 10 m height from the ground
its velocity is v_{0}.It colloids with the ground and loses 50% of its energy and rises back to
height of 10 m . The velocity v_{0} is
A. (a) $7 m / s$
B. (b) $10 \mathrm{~m} / \mathrm{s}$
C. (c) $14 \mathrm{~m} / \mathrm{s}$
D. (d) $16 m / s$

Answer: (c)

D Watch Video Solution

12. Two persons A and B are located in $X-Y$ plane at the points $(0,0)$ and $(0,10)$ respectively, The distances are measured in

MKS unit. At a time $t=0$, they start moving simultaneously with velocities $\vec{v}_{A}=2 \hat{j} m s^{-1}$
and $\vec{v}_{B}=2 \hat{i} m s^{-1}$ respectively. The time after which A and B are at their closest distance is
A. (a) 2.5 s
B. (b) 4 s
C. (c) 1 s
D. (d) $\frac{10}{\sqrt{2}} s$

Answer: (a)

D View Text Solution

