# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

# BOOKS - SAI PHYSICS (TELUGU 

## ENGLISH)

## NUCLEAR PHYSICS

Mcq

1. A radioactive nucleus can decay by two
different processes. The half lives of the first
and second decay processes are $5 \times 10^{3}$ and
$10^{5}$ years respectively, Then, the effective half-
life of the nucleus is,
A. $105 \times 10^{5}$
B. 4762 yrs
C. 104 yrs
D. 47.6 yrs

Answer: B

D Watch Video Solution
2. In the following nuclear reaction ' $x$ ' stands
for $n \rightarrow p+e^{-}+x$.
A. $\alpha$ particle
B. Position
C. Nutrino
D. Antinutrino

## Answer: D

## D Watch Video Solution

3. If the radius of a nucleus with mass number

125 is 1.5 fermi then radius of nucleus with mass number 64 is
A. 0.48 fermi
B. 0.96 fermi
C. 1.92 fermi
D. 1.2 fermi

Answer: D

- Watch Video Solution

4. The radius of ${ }_{72} T e^{125}$ nucleus is 6 fermi. The radius of ${ }_{13} A l^{27}$ nucleus in meters is
A. $3.6 \times 10^{-12} m$
B. $3.6 \times 10^{-15} m$
C. $7.2 \times 10^{-8} \mathrm{~m}$
D. $7.2 \times 10^{-15} m$

Answer: B

- Watch Video Solution

5. A $U^{235}$ nuclear reactor generates energy at a rate of $3.70 \times x 10^{7} \frac{\mathrm{~J}}{\mathrm{~s}}$. Each fission liberates 185 MeV useful energy. If the reactor has to operate for $144 \times 10^{4} S$, then, the mass of the fuel needed is (Assume Avogadro's number $=$ $\left.6 x 10^{23} \mathrm{~mol}^{-1}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$.
A. 70.5 kg
B. 0.705 kg
C. 13.1 kg
D. 1.31 kg

Answer: B

## D Watch Video Solution

6. The half-life of $R a^{226}$ is 1620 years. Then the number of atoms decay in one second in 1 g of radium(Avogadro number $=6.023 \times \omega \times 10^{23}$ ) .
A. $4.23 \times 10^{9}$
B. $3.16 \times 10^{10}$
C. $3.61 \times 10^{10}$
D. $2.16 \times 10^{10}$

## Answer: C

## - Watch Video Solution

## 7. The half-life of a radioactive element is 10 h .

The fraction of initial radioactivity of the clement that will remain after 40 h is,

> A. $\frac{1}{2}$
> B. $\frac{1}{16}$
> C. $\frac{1}{8}$
> D. $\frac{1}{4}$

Answer: B

## D Watch Video Solution

8. If 200 MeV of energy is released in the fission of one nucleus of ${ }^{236}-(92) U$, the number of nuclei that must undergo fission to release an energy of 1000 J is,
A. $3.125 \times 10^{13}$
B. $6.25 \times 10^{13}$
C. $12.5 \times 10^{13}$

## D. $3.125 \times 10^{14}$

## Answer: A

## D Watch Video Solution

9. Two radiouctive materials $X_{1}$ and $X_{2}$ have decayconstants $10 \lambda$ and $\lambda$ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of $X_{1}$, to that of $X_{2}$ will be $\frac{1}{e}$ after a time,

$$
\text { A. }(1 /(10 \lambda))
$$

B. $(1 /(11 \lambda))$
C. $11 /(10 \lambda)$
D. $1 / 9 \lambda$ )

## Answer: D

## D Watch Video Solution

10. $F_{p p}, F_{\cap}$ and $F_{n p}$ are the nuclear forces between proton, neutron-neutron and neutron-proton respectively. Then, relation between them is,
A. $F_{p p}=F_{n n}!=F_{n p}$
B. $F_{p p}!=F_{n n}=F_{n p}$
C. $F_{p p}=F_{n n}=F_{n p}$
D. $F_{p p}$ != $F_{n n}$ != $F_{n p}$

## Answer: C

D Watch Video Solution
11. In sun, the important source of energy is,
A. Proton-proton cycle
B. Carbon-nitrogen cycle
C. Carbon-carbon cycle
D. Nitrogen-nitrogen cycle

Answer: A

D Watch Video Solution
12. A free neutron decays spontaneously into,
A. A proton, an electron and anti-neutrino
B. A proton, an electron and a-neutrino
C. A proton and an electron
D. A proton, and an electron, a neutrino
and an anti-neutrino.

Answer: A

D Watch Video Solution
13. Particles and their anti-particles have,
A. The same masses but opposite spins
B. The same masses but opposite magnetic
moments
C. The same masses and same magnetic moments
D. Opposite spins and some magnetic

## moments

Answer: B

D Watch Video Solution
14. Consider the following two statements $A$ and $B$ and identify the correct answer given below.
A. Nuclear density is same for all nuclei.
B.Radius of the nucleus $R$ and its mass number

A are related as $\sqrt{A} \alpha R^{\frac{1}{6}}$.
$A$. Both $A$ and $B$ are true
$B$. Both $A$ and $B$ are false
C. $A$ is true but $B$ is false
D. $A$ is false but $B$ is true

## Answer: C

## D Watch Video Solution

15. The mass defect in a particular nuclear reaction is 0.3 g . The amount of energy
liberated, in $k W h$ is (velocity of light $=$ $3 \times 10^{8} \mathrm{~ms}^{-1}$.
A. $1.5 \times 10^{6}$
B. $2.5 \times 10^{6}$
C. $3 \times 10^{6}$

# D. $7.5 \times 10^{6}$ 

## Answer: D

## D Watch Video Solution

16. The masses of neutron, proton and deuteron in amu are 1.00893,1.00813 and
2.01473 respectively .The packing of the deuteron in amu is

$$
\text { A. } 11.65 \times 10^{-4}
$$

B. $23.5 \times 10^{-4}$
C. $33.5 \times 10^{-4}$
D. $47.15 \times 10^{-4}$

Answer: A

## D Watch Video Solution

17. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio 3: 1. The ratio of radii of the fragments is,
A. $1: 3^{\frac{1}{3}}$
B. $3^{\frac{1}{3}}: 4$
C. $4: 1$
D. $2: 1$

Answer: A

## D Watch Video Solution

18. To generate power of 3.2 MW , the number of fissions of $U^{235}$ per minute is (Energy
A. $6 \times 10^{18}$
B. $6 \times 10^{17}$
C. $10^{17}$
D. $6 \times 10^{16}$

Answer: A
( Watch Video Solution
19. In a nuclear reactor, material used for control rods is,

A. Uranium

B. Graphite
C. Liquid sodium
D. Cadmium

Answer: D

D Watch Video Solution
20. When ${ }_{15} P^{30}$ decays to become ${ }_{14} S i^{30}$ the particle released is,
A. Electron
B. $\alpha$-particle
C. Neutron
D. Positron

Answer: D

D Watch Video Solution
21. The number of $\alpha$ and $\beta$ particles,
respectiyely, emitted in the radioactive decay
${ }_{90} X^{200} \rightarrow_{80} Y^{168}$ are,
A. $8 \alpha$ and $8 \beta$
B. $6 \alpha$ and $8 \beta$
C. $8 \alpha$ and $6 \beta$
D. $6 \alpha$ and $6 \beta$

Answer: C

D Watch Video Solution
22. In the carbon cycle of fusion,
A. Four ${ }_{1} H^{1}$ fuse to form ${ }_{2} H e^{4}$ and two positrons
B. Four ${ }_{1} H^{1}$ fuse to form ${ }_{2} \mathrm{He}^{4}$ and two
electrons
C. Two ${ }_{1} H^{2}$ fuse to form ${ }_{2} H e^{4}$
D. Two ${ }_{1} H^{2}$ fuse to form ${ }_{2} H e^{4}$ and two
neutrons
23. When a slow neutron is captured by $U^{235}$
nucleus nuclear fission takes place, each
fission releases an energy of 200 MeV . The number of fissions required to occur (per sec) to produce a power of 1 MW is
A. $6.2 \times 10^{16}$
B. $6.2 \times 10^{15}$
C. $1.56 \times 10^{16}$

D. $3.125 \times 10^{16}$

## Answer: D

## D Watch Video Solution

24. In the following reaction, the energy released is
$4_{1} H^{2} \rightarrow 2 \mathrm{He}^{4}+2 e^{+}+$Energy. (Given: Mass
of _(1) $H^{2}=4.031300 \quad \mathrm{amu}$, mass of
$H e^{4}=4.0026603$ amu, mass of 2 ,
$\left.{ }_{1} e^{0}=0.001098 \mathrm{amu}\right)$.
A. 12.33 MeV
B. 24.67 MeV
C. 25.6 MeV
D. 40.34 MeV

## Answer: C

## D Watch Video Solution

25. A nuclear reactor has power of 16 kW . If the energy per fussion is 200 MeV , the number of fissions per second are,
A. $5 \times 10^{16}$
B. $5 \times 10^{17}$
C. $5 \times 10^{14}$
D. $5 \times 10^{15}$

Answer: C

D Watch Video Solution
26. The mass number of a nucleus is,
A. Always less thun alomic number
B. Always more than atomic number
C. Equal to atomic number
D. Sometimes more than and sometimes
equal to atomic number

## Answer: D

D Watch Video Solution
27. In which of the following decays, the elements does not change?
A. $\alpha-$ decay
B. $\beta^{+}-$decay
C. $\beta-$ decay
D. $\gamma-$ decay

Answer: D

- Watch Video Solution

28. The element which was first observed in
the solar spectrum is,
A. Helium
B. Xenon
C. Neon
D. Argon

Answer: A

- Watch Video Solution

29. The energy produced in the sun is by,
A. Burning of fossil fuel

## B. Radioactivity

C. Fission
D. Fusion

## Answer: D

## D Watch Video Solution

30. In a nuclear reactor the function of the moderator is,
A. To slow down neutrons

## B. To absorb neutrons

C. To speed up neutrons
D. To catalyse the reaction

Answer: A

D Watch Video Solution
31. Energy obtained when I mg mass is completely converted to energy is (in joule)
A. $3 \times 10^{2}$
B. $3 \times 10^{10}$
C. $9 \times 10^{10}$
D. $9 \times 10^{2}$

## Answer: C

## D View Text Solution

32. Nuclear forces are,
A. Short range and charge dependent
B. Short range and charge independent
C. Long range and charge dependent

## D. Long range and charge independent

Answer: B

D View Text Solution
33. When two deuterium nuclei fuse together to form tritium. We get $a$,
A. Neutron
B. Proton

## C. $\alpha-$ particle

D. Deuteron

Answer: B

## D View Text Solution

34. After $2 \mathrm{~h}, \frac{1}{16}$ of the initial amount of a certain radioactive isotope remains undecayed. The half life of the isotope is,
A. 15 min

B. 30 min

## C. 45 min

D. 60 min

Answer: B

D View Text Solution
35. Which of the following is more effective in
inducing nuclear fission?
A. Fast neutron

## B. Fast proton

C. Slow proton
D. Slow neutron

## Answer: D

## D View Text Solution

36. A radioactive sample has half-life of 5 days.

To decay from $8 \mu C u$ to $l \mu C u$, the number of days taken will be,
A. 40
B. 25
C. 15
D. 10

## Answer: C

## - View Text Solution

37. How many neutrons the nucleous of ${ }_{56} B a^{141}$ contains?
A. 75
B. 85
C. 95
D. 100

Answer: B

D View Text Solution
38. The overall process of carbon-nitrogen
fusion cycle results in fusion of four protons
to yield the helium nucleus and two.
A. Positron
B. Electron
C. Neutron
D. Proton

Answer: A

D View Text Solution
39. In two isotopes of an element, the number of protons in their nuclei will be and number of neutrons in their nuclei will,
A. Same, same
B. Same, different
C. Different, same
D. Different, different

## Answer: B

## D View Text Solution

40. It is assumed that nuclear mass is of the order of $10^{-27} \mathrm{~kg}$ and nuclear radius is of the
order of $10^{-15} \mathrm{~m}$. The nuclear density is of the order of,
A. $10^{15}$
B. $10^{10}$
C. $10^{18}$
D. $10^{23}$

Answer: C

D View Text Solution
41. A radio station operates at a frequency of

10 MHz with a power output of 265.2 kW . Given
that the Planck's constant $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}$-s.
The rate of emission of photon from the station is,

> A. $4 \times 10^{20}$
> B. $4 \times 10^{31}$
> C. $5 \times 10^{18}$
> D. $5 \times 10^{12}$

Answer: B
42. A radio active nucleus with mass number $A$
splits into the nuclei whose mass numbers are
in the ratio $3: 2$, then ratio of their radii is,
A. $\left(\frac{3}{2}\right)$
B. $\left(\frac{3}{2}\right)^{\frac{1}{3}}$
C. $\left(\frac{3}{2}\right)^{\frac{1}{2}}$
D. 1

Answer: B

## D View Text Solution

43. A radioactive source has a half-life of 3 h . A
freshly prepared sample of the same exhibits
radioactivity 16 times the permissible safe
value. The minimum time after which it would be possible to work safely with the source is,
A. 8 h
B. 10h
C. 12h
D. 14h

## Answer: C

## D View Text Solution

44. An element $X$ decays first by positron emission and then two a-particles are emitted in successive radioactive decay. If the product nucleus has mass number 227 and atomic
number 89 the mass number and atomic number of element $X$ are,
A. $(273,93)$
B. $(235,94)$
C. ( 238,93 )
D. $(237,92)$

Answer: B

- View Text Solution

