©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

OSCILLATIONS

Mcqs

1. A particle of mass 4 kg is excuting S.H.M. Its
displacement is given by the equation $\mathrm{y}=8$
$\cos [100 t+\pi / 4] \mathrm{cm}$. Its maximum kinetic energy is,
A. 128 J
B. 64 j
C. 16 j
D. 32 j

Answer: a
(Watch Video Solution
2. The amplitude of a simple pendulum is 10 cm . When the pendulum is at a displacement of 4 cm from the mean position, the ratio of kinetic and potential enegies at that point is,
A. 5.25
B. 2.5
C. 4.5
D. 7.5
3. The ratio between kinetic and potential enerdies of a body executing simple harmonic motion,when its is at a distance of $1 / \mathrm{N}$ of its amplitude from the mean potion is,
A. $N^{2}+1$
B. $\frac{1}{N^{2}}$
C. N^{2}
D. $N^{2}-1$

Answer: d

- Watch Video Solution

4. A closed pipe is suddenly opened and changed to an open pipe osf same lenghth
.The fundamental frequency of the resulting open pipe is less than that of $3^{r d}$ harmonic of
the earlier closed pipe by 55 Hz .THEN the value of fundamental frequency of the closed pipe is,

A. 165 Hz

B. 110 Hz
C. 55 Hz
D. 229 Hz

Answer: C

D Watch Video Solution
5. Two particle A and B of mases ' m ' and $2^{\prime} \mathrm{m}^{\prime}$ are suspended from springs of force constants

K_1 and K_2. During their oscillation, if their
maximum velocities are equal, then the ratio of amplitude of A and Bis,
A. $\sqrt{\frac{k^{2}}{k^{1}}}$
B. $\sqrt{\frac{k^{2}}{2 k_{1}}}$
C. $\frac{\sqrt{k}^{2}}{k_{1}}$
D. $\frac{\sqrt{k}^{2}}{k_{1}}$

Answer: b

- Watch Video Solution

6. The time period of a simple harmonic motion is 8 s At $\mathrm{t}=0$. it is at the mean position.The ratio of the distance travelled bi it in the first and second seconds is,
A. $1 / 2$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{2-1}}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

7. The length of a pendulum is measuredas 1,01

m and time for 30 oscillation is measured as
one minute 3 s . Error length is 0.01 m and error in the 3 s . The percentage error in the measurement of acceleration due to gravity id,
A. 1
B. 5
C. 10
D. 15

Answer: c

- Watch Video Solution

8. AIN pendulum bob is held at an angle θ
from the vertical by a 2 N horizontal force F as
shown supporting the pendulum bob (in N ewton) is,
A. $\cos \theta$
B. $\frac{2}{\cos \theta}$
C. $\sqrt{5}$
D. 1

Answer: c

D View Text Solution

9. A simple harmonic oscillator consists of particle of mass m and an ideal spring with spring constant k. The particle oscillates with atime period T , The spring is cut into two
equal part. If one part oscillates with same particle,the time period will be,
A. 2 T
B. $\sqrt{2 T}$
C. $\frac{T}{\sqrt{2}}$
D. $\frac{T}{2}$

Answer: C
(Watch Video Solution
10. The displacement of two particle of same mass executing SHM are represented by the equations
$x_{1}=4 \sin \left(10 t+\frac{\pi}{6}\right)$ and $x_{2}=5 \cos (\omega t)$
The value of ω for which the energies of both
the particle remain same is,
A. 16 unit
B. 6 unit
C. 18 unit
D. 8 unit

Answer: d

- Watch Video Solution

11. An organ pipe P_{1}, closed at one end and containing a gass of density P_{1} is vibrating in
the harmonic. Another organ pipe P_{2} is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning fork. If the compressbility of gases is equal in both pipes, the ratio of the lenghth of P_{1} and P_{2}
(assume the given gases to be monoatonic).
A. $\frac{1}{3}$
B. 3
C. $\frac{1}{6} \frac{\sqrt{P_{1}}}{P_{2}}$
D. $\frac{1}{6} \frac{\sqrt{P_{2}}}{P_{1}}$

Answer: d

D View Text Solution

12. The displacement of a particle executing

SHM is given by.
$y=5 \sin \left(4 t+\frac{\pi}{3}\right)$ If T is the time period and
the mass of the particle is 2 g , the kinetic energy of the particle when $t=\frac{T}{4}$ is given by,
A. 0.4 j
B. 0.5 j
C. 3 j
D. 0.3 j

Answer: D
(Watch Video Solution
13. A particle is excuting simple harmonic motion with an amplitude A and time period T .

The dispolacement of the particle after 2 T period from its intial position is,
A. A
B. $4 A$
C. $8 A$
D. zero

Answer: d
14. THE magnitude of maximum accesleration
is π times that of maximum velocity of a simble harmonic oscillator The time period of the oscillator. The time period of the oscillator in second is,
A. 4
B. 2
C. 1
D. 0.5

Answer: b

D Watch Video Solution

15. A body of mass m is suspended to an ideal
spring of force constant K. The expected
change in the position of the body due to an
additional force F acting vertically downwards
is,

> A. $\frac{3 F}{2 K}$
> B. $\frac{2 F}{K}$
C. $\frac{5 F}{2 K}$
D. $\frac{4 F}{K}$

Answer:

D Watch Video Solution

16. The time period of a simple pendulum is T.

When the length is increased by 10 cm , its period is T_{1}. Then, relation between T, T_{1} and T_{2} is,
A. $\frac{2}{T^{2}}=\frac{1}{T^{2}}+\frac{1}{T^{2}}$
B. $\frac{2}{T^{2}}=\frac{1}{T^{2}}+\frac{1}{T^{2}}$
C. $2 T^{2}=T_{1}^{2} \top_{-} 2^{\wedge} 2$
D. $2 T_{2}=T_{1}^{2} T_{2}^{2}$

Answer: c

D Watch Video Solution

17. When a body of mass 1.0 kg is suspended from a ceryain light spring hanging vertically, its length increase by 5 cm by suspending 2.0
kg block to the spring and if the block is pulled
throughn 10 cm and released, the maximum
velocity in it in $m s^{-1}$ (Accesleration due to
gravity $=m s^{-1}$.
A. 0.5
B. 1
C. 2
D. 4

Answer: b

18. An object is attached to the bottom of a
light vertical spring and set vobrating. The maximum speed of the object is $15 \mathrm{cms}^{-1}$ and the period is 628 milli-seconds The amplitude of the motion in cm is,
A. 3
B. 2
C. 1.5
D. 1

Answer: c

- Watch Video Solution

19. If the displacement (x) and velocity (v) of a
particle executing simple harmonic motion are related through the expression $4 v^{2}=25-x^{2}$, then time period is,
A. $\pi \mathrm{sec}$
B. $2 \pi \mathrm{sec}$
C. $4 \pi \mathrm{sec}$

D. $6 \pi \mathrm{sec}$

Answer:

D Watch Video Solution

20. A body executes simple harmonic motion
under the action of a force F_{1} with a time period $\frac{4}{5} s$. If the force is changed to F_{1} and F_{2} it executes SHM with time period $\frac{3}{5}$ s. If the both the forces F_{1} and F_{2} act
simultaneously in the same direction on the body, its time period in seconds is,
A. $\frac{12}{25}$
B. $\frac{24}{25}$
C. $\frac{35}{24}$
D. $\frac{25}{12}$

Answer: a
(Watch Video Solution
21. Two particles P and Q start from origin and execute simple harmonic motion along X-axis with the same amplitude but with period 3 s and 6 s respectivel,y . The ratio of the velocities of P and Q when they meet is,
A. 1:2
B. 2:1
C. 2:3
D. 3:2

- Watch Video Solution

22. A body is executing simple harmonic motion. At a displacement x its potential energy is E_{1} and at a displacement y its potential energy is E_{2}. The potential energy (E) at a discplcement ($x+y$) is,

$$
\begin{aligned}
& \text { A. } \sqrt{E}=\sqrt{E_{1}}-\sqrt{E_{2}} \\
& \text { B. } \sqrt{E}=\sqrt{E_{1}}+\sqrt{E_{2}} \\
& \text { C. } E=E_{1}+E_{2}
\end{aligned}
$$

$$
\text { D. } E=E_{1}-E_{2}
$$

Answer: b

D Watch Video Solution

23. A body of mass 1 kg is executing harmonic motion. Its displacement y cm at $\mathrm{t} \sec$ is given by
$y=6 \sin \left(100 t+\frac{\pi}{4}\right)$ its maximum kinetic energy is,
A. 6 j
B. 18 j
C. 24 j
D. 36 j

Answer: b

- Watch Video Solution

24. A particle executing simple harmonic motion has an amplitude of 6 cm . Its acceslleration at a distance from the mean
position 2 cm is $8 \mathrm{cms}^{-1}$. The maximum speed of the particle is,
A. $8 \mathrm{cms}^{-1}$
B. $12 \mathrm{cms}^{-1}$
C. $16 \mathrm{cms}^{-1}$
D. $24 \mathrm{cms}^{-1}$

Answer: b
(Watch Video Solution
25. The maximum velocity of a particle executing SHM is V, If the amplitude is doubled and the time period of oscillation de4creased to $\frac{1}{3}$ of its original value, the bmaximum velocity becomes,
A. 14 V
B. 12 V
C. 6 V
D. 3 V
26. Two simple pendulum of lengths 161 and I are in phase at the mean position at a certain time.IF T is the time period of shorter pendulum. The maximum time after which they will be again in phase.
A. $\frac{1}{3} T$
B. $\frac{2}{3} T$
C. $\frac{3}{2} T$
D. $\frac{4}{3} T$

Answer: d

D View Text Solution

27. A simple body hanging freely and at rest is
vertical because in that position.
A. Kinetic energy is zero
B. Kinetic energy is minimum
C. Potential energy is zero

D. Potentential energy is minimum

Answer: c

D Watch Video Solution

28. The equation of motion of a particle is given by $d \frac{p}{d t}+m o^{2} n=0$, where p is the momentum and n is the position. Then ,the particle
A. Moves along a straight line
B. Moves along parabola
C. Executes simple harmonic motion
D. Falls freely under gravity

Answer: C

D Watch Video Solution

29. Average energy in one time period of a single harmonic oscillator whose amplitude is

A, angular velocity is ω and mass is m is,
A. $m \omega^{2} A^{2}$
B. $2 m \omega^{2} A^{2}$
C. $m \omega^{2} A^{2} / 2$
D. zero

Answer: c

D Watch Video Solution

30. A simple harmonic oscillator has an amplitude A. The potential energy is one-
fourth of the total energy, when the displacement is,
A. $\frac{A}{\sqrt{2}}$
B. $\frac{A}{2}$
C. $\frac{A}{4}$
D. $\frac{A}{2} \sqrt{2}$

Answer: b

D Watch Video Solution
31. The time period of a simple pendulum measured inside a ststionary lift is found to be
T. IF the lift starts accelarating upwards with an acceslaration of $g / 3$, the time period of the pendulum will be.
A. $\sqrt{3} T$
B. $\frac{\sqrt{3}}{2} T$
C. $T / \sqrt{3}$
D. $T / 3$
A. $k / 2$
B. K
C. 2 k
D. 4 K

Answer: c
33. The displacement of a particle executing

SHM is given by $y=10 \sin (6 t+\pi / 3)$ in metre and time t in second.The initial displacement and the velocity of the particle are respectively.
A. $5 \sqrt{3} m$ and $30 m s^{-1}$
B. $15 m$ and $5 \sqrt{3} m s^{-1}$
C. $15 \sqrt{3} m$ and $30 m s^{-1}$
D. $20 \sqrt{3} m$ and $30 m s^{-1}$

Answer: a

D Watch Video Solution

34. The total mechanical energy of a harmonic oscillator of $A=1 \mathrm{~m}$ and force constant $200 \mathrm{Nm}^{-1} i s 150 j$. Then
A. The minimum PE is zero
B. The minimum PE is 100 j
C. The minimum PE is 50 j
D. The minimum PE is $150 j$

Answer: d

D Watch Video Solution

35. A simple harmonic oscillation is represented by the equation
$y=0.40 \sin \left(40 \frac{t}{7}+0.61\right)$ where y and t are in metre and second respectively. The value of time period is,
A. $7 \frac{\pi}{20} \mathrm{sec}$
B. $5 \frac{\pi}{20} \mathrm{sec}$
C. $4 \frac{\pi}{15} \mathrm{sec}$
D. $2 \pi \mathrm{sec}$

Answer: a
(Watch Video Solution

