©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

QUESTION PAPER

Physics

1. An iron rod of length $1.5 m$ lying on a horizontal table is pulled up from one end
along a vertical line so as to move it with a constant velocity $3 \mathrm{~m} / \mathrm{s}$, while the other end of the rod slides along the floor. After how much time the speed of the end sliding on the floor equals to the speed of the end being pulled
up.

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \sqrt{2}} s \\
& \text { B. } \frac{1}{\sqrt{2}} s \\
& \text { C. } 3 \sqrt{2} s \\
& \text { D. } \frac{1}{4} s
\end{aligned}
$$

2. A body rotates abut a stationary axis. If the angular deceleratin is proportional to square root of angular speed, then the mean angular speed of the body, given ω_{0} as the initial angular speed, is

$$
\begin{aligned}
& \text { A. } \frac{\omega_{0}}{\sqrt{2}} \\
& \text { B. } \frac{\omega_{0}}{4} \\
& \text { C. } \frac{\omega_{0}}{2}
\end{aligned}
$$

D. $\frac{\omega_{0}}{3}$

Answer: B

D View Text Solution

3. A uniform sphere of radius Rand mass m is
placed on an inclined plane which makes an
angle 45° to the horizontal. For which of the
following value of coefficient of friction, the sphere rolls without slipping,

$$
\text { A. } \frac{3}{7}
$$

B. $\frac{1}{2}$
C. $\frac{5}{8}$
D. $\frac{1}{7}$

Answer: A::B::C

D Watch Video Solution

4. A circular ring of mass 10 kg rolls along a
horizontal floor. The center of mass of the ring
has a speed $1.5 \mathrm{~m} / \mathrm{s}$. The work required to
stop the ring is
A. 10 J
B. $-6 J$
C. 14.5 J
D. -22.5 J

Answer: D

D Watch Video Solution

5. A vessel of volume V contains ideal gas
having mass density ρ at temperature T and pressure P. After a portion of the gas is let out,
the pressure in the vessel is decreased by
ΔP. The mass of the released gas is
A. $\rho V \Delta P / P$
B. $\frac{\Delta P}{P}$
C. $\frac{\rho}{P}$
D. $(\rho V)^{2} \Delta P / P$

Answer: A
(Watch Video Solution
6. A cup of coffee cools from $150^{\circ} \mathrm{F}$ to $144^{\circ} \mathrm{F}$
m 1 min in a room at $72^{\circ} \mathrm{F}$. How much time
will the coffee take to cool from $110^{\circ} \mathrm{F}$ to
$104^{\circ} F$ in the same room?
A. 1.55 min
B. 2.14 min
C. 2.89 min
D. 3.35 min

Answer: B
7. An ideal gas at initial temperature T_{9} and initial volume V_{0} is expanded adiabatically to a
volume $2 V_{0}$. The gas is then ecp[anded isothermally to a volume $5 V_{0}$ and there after compressed adiabatically so that the temperature of tha gas becomes again T_{0}. If the final volume of the gas is αV_{0} then the value of constant α is
A. 2.5
B. 1.5
C. 2.0
D. 3.0

Answer: A

D Watch Video Solution

8. The pass axes of two polarizers were kept such that the incident unpolarized beam of intensity I_{0}, gets completely blocked. Another polarizer was introduced in between these two polarizers with its pass axis 60° with
respect to the pass axis of the first one. The

output intensity would then become

A. 0
B. $\frac{3}{32} I_{0}$
C. $\frac{3}{16} I_{0}$
D. $\frac{3}{8} I_{0}$

Answer: B

D View Text Solution

9. A negative charge is placed at the centre of
the non-conducting sphere. The direction of
electric field on any point at the surface of the sphere is
A. Radially inward
B. Radially outward
C. Along the tangent to the surface
D. No electric field produced

Answer: A
10. A magnetic field of $5 \times 10^{-5} \mathrm{~T}$ is produced at a perpendicular distance of 0.2 m from a
long straight wire carrying electric current. If the permeability of free space is
$4 \pi \times 10^{-7} T m / A, \quad$ the current passing through the wire in A is
A. 45
B. 40
C. 50

D. 30

Answer: C

D Watch Video Solution

11. A long wire carries a current of 18 A kept along the axis of a long solenoid of radius 1 cm . The field due to the solenoid is $8 \times 10^{-3} T$. The magnitude of the resultant field at a point 0.6 mm from the solenoid axis
(Assume $\mu_{0}=4 \pi \times 10^{-7} T \mathrm{Tm} / A$)
A. $6 \times 10^{-3} T$
B. $6 \times 10^{-4} T$
C. $2 \sqrt{7} \times 10^{-3} T$
D. $10 \times 10^{-3} T$

Answer: D
(Watch Video Solution
12. In a traveling plane electromagnetic wave, the maximum magnetic field is $1.26 \times 10^{-4} T$.

The intensity of the wave is (Assume

$$
\left.\mu_{0}=1.2610^{-6} H / m\right)
$$

A. $1.56 \times 10^{6} W / m^{2}$
B. $1.89 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}$
C. $8.92 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}$
D. $4.62 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}$

Answer: B
13. A cobalt plate is placed at a distance of 1 m
from a point source of power $1 W$ Assume a circular area of the plate of radius $r=1 A^{\circ}$. A is exposed to the radiation and ejects photoelectrons. The light energy is considered
to be spread uniformly and the work function of cobalt is 5 eV . The minimum time the target should be exposed to the light source to eject a photoelectron (assuming no reflection losses) is
A. 320 s
B. 450 s
C. 860 s
D. 100 s

Answer: D

D Watch Video Solution

14. A hydogene sample is prepared in a particular excited state A of quantum number $n_{A}=3$. The ground state energy of
hydrogen atom is $-|E|$. The photons of energy $\frac{|E|}{12}$ are absorbed in the sample with results in excitation some electrons to excited state B of quantum number n_{B}, whose value is
A. 6
B. 4
C. 5
D. 7

Answer: A

