©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

THERMAL CONDUCTIVITY

Problems

1. The specific heat of helium at constant
volume is $12.6 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The specific heat
of helium at constant pressure in
$\mathrm{Jmol}^{-1} K^{-1}$ is about
(Assume the temperature of the gas is moderate, universal gas constant,
$R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
A. 12.6
B. 16.8
C. 18.9
D. 21

Answer: D
2. A gas does 4.5 J of external work during adiabatic expansion. If its temperature falls by 2 K , then its internal energy will be
A. Increased by $4.5 J$
B. Decreased by $4.5 J$
C. Decreased by $2.25 J$
D. Increased by $9.0 J$
3. The relation between efficiency ' η ' of a heat engine and the co-efficient of performance ' α of a refrigerator is

$$
\begin{aligned}
& \text { A. } \eta=\frac{1}{1-a} \\
& \text { B. } \eta=\frac{1}{1+a} \\
& \text { C. } \eta=1+a \\
& \text { D. } \eta=1-a
\end{aligned}
$$

4. A flask contains argon and chlorine in the ratio of2:1 by mass. The temperature of the mixture is $27^{\circ} \mathrm{C}$. The ratio of average kinetic energies of two gases per molecule is
A. 1:1
B. 2:1
C. 3:1
D. 6:1

Answer: B

- Watch Video Solution

5. A thermos flask contains 250 g coffee at $90^{\circ} \mathrm{C}$. To this 20 g of milk at $5^{\circ} \mathrm{C}$ is added.

After equilibrium is established, the temperature of the liquid is
(Assume no heat loss to the thermos bottle .
Take specific heat of coffee and milk as
$\left.1.00 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right)$
A. $3.23^{\circ} C$
B. $3.17^{\circ} C$
C. $83.7^{\circ} \mathrm{C}$
D. $37.8^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

6. A copper rod of length 75 cm and an iron rod of length 125 cm are joined together end to end. Both are of circular cross section with
diameter 2 cm . The free ends of the copper and iron are maintained at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectively . The surface of the bars are insulated thermally. The temperature of the copper -iron junction is [Thermal conductivity of the copper is $386.4 W / m-K$ and that of iron is $48.46 W / m-K]$.
A. $100^{\circ} C$
B. $0^{\circ} C$
C. $93^{\circ} C$
D. $50^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

7. 1 g of water at $100^{\circ} \mathrm{C}$ is completely converted into steam at $100^{\circ} \mathrm{C} .1 \mathrm{~g}$ of steam occupies a volume of 1650 cc . (Neglect the volume of 1 g of water at $100^{\circ} \mathrm{C}$). At the pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$, latent heat of steam is
$540 \mathrm{cals} / g$ (1 Calorie= 4.2 Joules).The increase in the internal energy in Joules is
A. 2310
B. 2103
C. 1650
D. 2150

Answer: B

D Watch Video Solution

8. A steam at $100^{\circ} \mathrm{C}$ is passed into 1 kg of
water contained in a calorimeter of water equivalent 0.2 kg at $9^{\circ} C$ till the temperature
of the calorimeter and water in it is increased to $90^{\circ} \mathrm{C}$. The mass of steam condensed in kg is nearly (specific heat of water $=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$,latent heat of vaporisation= $540 \mathrm{cal} / \mathrm{g}$)
A. 0.81
B. 0.18
C. 0.27
D. 0.54

Answer: B
9. A very small hole in an electric furnance is used for heating metals. The hole nearly acts as a black body. The area of the hole is $200 \mathrm{~mm}^{2}$. To keep a metal at $727^{\circ} \mathrm{C}$, heat energy flowing through this hole per sec, in joules is ($\sigma=5.67 \times 10^{-8} W^{-2} K^{-4}$)
A. 22.68
B. 2.268
C. 1.134
D. 11.34

Answer: D

D Watch Video Solution

10. Five moles of hydrogen initially at STP is compressed adiabatically so that its
temperature becomes 673 K . The increase in
internal energy of the gas, in kilo joule is ($\mathrm{R}=$
$8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \gamma=1.4$ for diatomic gas)
A. 80.5
B. 21.55

C. 41.5

D. 65.55

Answer: C

D Watch Video Solution

11. On a temperature scale Y, water freezes at
$-160^{\circ} \mathrm{Y}$ and boils at $-50^{\circ} \mathrm{Y}$. On this Y scale,
a temperature of 340 K is
A. $-160.3^{\circ} Y$
B. $-96.3^{\circ} Y$
C. $-86.3^{\circ} Y$

$$
\text { D. }-76.3^{\circ} Y
$$

Answer: C

D Watch Video Solution

12. Three moles of an ideal monoatomic gas undergoes a cyclic process as shown in the figure. The temperature of the gas in different states marked as 1,2,3and 4 are $400 \mathrm{~K}, 700 \mathrm{~K}$,

2500 K and 1100 K respectivelty .The work done by the gas during the process 1-2-3-4-1 is (universal gas constant is R)
A. 1650 R
B. 550 R
C. 1100 R
D. 2200 R

Answer: A
13. Efficiency of a heat engine whose sink is at temperature of 300 K is 40%. To increase the efficiency to 60% keeping the sink temperature same, the source temperature must be increased by
A. 750 K
B. 500 K
C. 250 K
D. 1000 K

Answer: C

D Watch Video Solution

14. Two bodies Aand B of equal surface area
have thermal emissivities of 0.01 and 0.81
respectively . The two bodies are radiating energy at the same rate. Maximum energy is
radiated from the two bodies A and B at
wavelength $\quad \lambda_{A}$ and λ_{B} respectively
Difference in these two wavelengths is $1 \mu \mathrm{~m}$. If
the temperature of the body A is 5802 K , then
value of λ_{B} is
A. $\frac{1}{2} \mu m$
B. $1 \mu m$
C. $2 \mu m$
D. $\frac{3}{2} \mu m$

Answer: D
(Watch Video Solution
15. When the temperature of a body increases
from $T \rightarrow T+\Delta T$, its moment of inertia increases from $I \rightarrow I+\Delta I$. If α is the coefficient of linear expansion of the material of the body, the $\frac{\Delta I}{I}$ is (neglect higher order of $\alpha)$
A. $\alpha \Delta T$
B. $2 \alpha \Delta T$
C. $\frac{\Delta T}{\alpha}$
D. $\frac{2 a}{\Delta T}$

Answer: B

- Watch Video Solution

16. A sound wave passing through an ideal gas
at NTP produces a pressure change of 0.001
dyne $/ \mathrm{cm}^{2}$) during adiabatic compression.
The corresponding change in temperature
($\gamma=1.5$ for the gas and atmospheric pressure is 1.013×10^{6} dyne $\left./ \mathrm{cm}^{2}\right)$ is

$$
\text { A. } 8.97 \times 10^{-4} K
$$

B. $8.97 \times 10^{-6} \mathrm{~K}$
C. $8.97 \times 10^{-8} k$
D. $8.97 \times 10^{-9} K$

Answer: C

D Watch Video Solution

17. Work done to increase the temperature of one mole of an odeal gas by $30^{\circ} C$, if it is expanding under the condition $V \propto T^{2 / 3}$ is, $(R=8.314 J / m o l / K)$
A. 116.2 J
B. 136.2 J
C. 166.2 J
D. 186.2 j

Answer: C

D Watch Video Solution

18. Power radiated by a black body at temperature T_{1} is P and it radiates maximum energy at a wavelength λ_{1}. If the temperature
of the black body is changed from T_{1} to T_{2}, itradiates maximum energy at a wavelength
$\lambda_{1} / 2$. The power radiated at T_{2} is
A. $2 P$
B. $4 p$
C. $8 P$
D. $16 P$

Answer: D

D Watch Video Solution
19. Total emf produd in a thermocouple does not depend on
A. The metals in the thermocouple
B. Thomson coefficients of the metals in
the thermocouple
C. Temperature of the junctions
D. The duration of time for which the
current is passed through thermocouple

Answer: D
20. An insulated cylinderical vessel filled with an insulated piston of negligible weight and negligible thickness at the mid point of the vessel. The cylinder contains a gas at $0^{\circ} \mathrm{C}$

When the gas is heated to $100^{\circ} \mathrm{C}$, the piston moves through a length of 5 cm . Length of the cylindrical vessel in cm is
A. 13.65

$$
\text { B. } 27.3
$$

C. 38.6
D. 64.6

Answer: B

D Watch Video Solution

21. A reversible engine converts one - sixth of
the heat suplied into work. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$,
the efficiency of the engine is doubled. The temperatures of the source and sink are
A. $99^{\circ} C, 37^{\circ} C$
B. $80^{\circ} C, 37^{\circ} C$
C. $95^{\circ} C, 37^{\circ} C$
D. $90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

22. During an adiabatic process, the pressure of a gas is proportional to the cube of its
temperature . The value of C_{I} / C_{v} for that gas
is
A. $\frac{7}{5}$
B. $\frac{4}{5}$
C. $\frac{5}{3}$
D. $\frac{3}{2}$

Answer: D
(Watch Video Solution
23. Two slabs A and B of different materials
but of the same thickness are joined end to
end to form a composite slab. The thermal
conductivities of A and B are K_{1} and K_{2}
respectively. A steady temperature difference
of $12^{\circ} \mathrm{C}$ is maintained across the composite
slab . If $K_{1}=\frac{K_{2}}{2}$, the temperature difference across slab A is
A. $4^{\circ} C$
B. $6^{\circ} C$
C. $8^{\circ} C$

D. $10^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

24. An ideal gas expands isothermally from
volume V_{1} to volume V_{2}. It is then compressed to original volume V_{1} adiabatically. If p_{1}, p_{2} and W represent the initial pressure , final pressure and the net work done by the gas respectively during the entrie process, then
A. $p_{1}>p_{2}, W=0$
B. $P_{1}>P_{2}, W>0$
C. $P_{2}>P_{1}, W>0$
D. $P_{2}>P_{1}, W<0$

Answer: D

D Watch Video Solution

25. 3 moles of an ideal monoatomic gas performs ABCDA cyclic process as shown in
figure below. The gas temperatures are
$T_{A}=400 K, T_{B}=800 K, T_{C}=2400 K$ and
$T=1200 K$. The work done by the gas is
(approximately) $(R=8.314 \mathrm{~J} / \mathrm{molK})$
A. 10 KJ
B. 20KJ
C. 40 KJ
D. 100KJ

Answer: B
26. Three rods $A B, B C$ and $B D$ made of the same material and having the same corss-section
have been joined as shown in the figure. The ends A, C and D are held at temperatures of $20^{\circ} C, 80^{\circ} C$ representatively. If each rod is of same length, then the temperature at the junction B of the three rod is
A. 90°
B. $60^{\circ} \mathrm{C}$
C. $40^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer: B

D View Text Solution

27. A clock pendulum made of invar has a period of 0.5 s , at $20^{\circ} \mathrm{C}$. If the clock is used in a climate where the temperature averages to $30^{\circ} C$, how much time does the clock lose in

$$
\left.\alpha=9 \times 10^{-7} /{ }^{\circ} C, \mathrm{~g}=\text { Constant }\right)
$$

$$
\text { A. } 2.25 \times 10^{-6} s
$$

B. $2.5 \times 10^{-7} s$
C. $5 \times 10^{-7} s$
D. $1.125 \times 10^{-6} s$

Answer: A

D Watch Video Solution
28. A piece of metal weight 45 g is air and 25 g in a liquid of density $1.5 \times 10^{3} \mathrm{~kg}-m^{-3} \mathrm{Kept}$ at 30°. When the temperature of the liquid is raised to $40^{\circ} C$, the metal piece weight 27 g .

The density of liquid at $40^{\circ} \mathrm{C}$ is $1.25 \times 10^{3} \mathrm{~kg}-\mathrm{m}^{-3}$. The coefficient of linear expansion of metal is

> A. $1.3 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
> B. $5.2 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
> C. $2.6 \times 10^{-3} /{ }^{\circ} \mathrm{C}$

$$
\text { D. } 0.26 \times 10^{-3} /{ }^{\circ} C
$$

Answer: C

D Watch Video Solution

29. An ideal gas is subjected to a cyclic process
$A B C D$ as depicted in the $p-V$ diagram given
below

Which of the following curves represents the equivalent cyclic process?
A.
B.
C.
D.

Answer: C

D View Text Solution

30. An ideal gas is subjected to cyclic process involving four thermodynamic states, the amounts of heat (Q) and work (W) involved in
each of these states are
$Q_{1}=6000 J \quad, Q_{2}=-5500 J$,
$Q_{3}=-3000 J, Q_{4}=3500 J$
$W_{1}=2500 J, W_{2}=-1000 J$,
$W_{3}=-1200 J: W_{4}=x J$

The ratio of the net work done by the gas to
the total heat absorbed the gas is η. The
values of x and η respectively are
A. $500,7.5 \%$
B. $700,10.5 \%$
C. $1000,21 \%$

D. $1500,15 \%$

Answer: B

D Watch Video Solution

31. Two cylinder A and B fitted with pistons contain equal number of moles of an ideal monoatomic gas at 400 K . The piston of A is free to move while that of B is held fixed. Same amount of heat energy is given to the gas in each cylinder. If the rise in temperature
of the gas in A is 42 K , the rise in temperature of the gas in B is
A. 21 K
B. 35 K
C. 42 K
D. 70 K

Answer: C
(Watch Video Solution
32. Three rods of same dimentional have
thermal coductivity $3 \mathrm{~K}, 2 \mathrm{~K}$, and K. They are arrenged as shown in the figure below

Then, the temperature of the junction in steady state is
$\frac{200}{3}{ }^{\circ} C$
B. $\frac{100}{3}{ }^{\circ} C$
C. $75^{\circ} \mathrm{C}$
D. $\frac{50}{3}{ }^{\circ} C$

Answer: A

D View Text Solution

33. In the adiabatic compression, the decrease in volume is associated with
A. Increase in temperature and decrease in
pressure
B. Decrease in temperature and increase in
pressure

C. Decrease in temperature and decrease in

pressure

D. Increase in temperature and increase in

pressure

Answer: D

D Watch Video Solution

34. Which of the following is the case of an adiabatic process, where $\gamma=C_{p} / C_{v}$?
A. $p^{1-\gamma} T^{\gamma}=C o n s \tan t$
B. $p^{\gamma} T^{1-\gamma}=C o n s \tan t$
C. $p T^{\gamma}=C o n \tan t$
D. $p^{\gamma} T=C o n s \tan t$

Answer: A

- Watch Video Solution

35. Two slabs A and B of equal surface area are placed one over the other such that their surface are completely in contact. The
thickness of slab A is twice that of B. The coefficient of thermal conductivity of slab A is twice that of B. The first surface of slab a is maintained at $100^{\circ} C$, while the second surface of slab B is maintained at $25^{\circ} \mathrm{C}$. The temperature at the contact of their surface is
A. $62.5^{\circ} \mathrm{C}$
B. $45^{\circ} \mathrm{C}$
C. $55^{\circ} \mathrm{C}$
D. $85^{\circ} \mathrm{C}$
36. A clock which keeps correct time at $20^{\circ} C$, is subjected to $40^{\circ} \mathrm{C}$. If coefficient of linear expension of the pendulum is $12 \times 10^{-6 /{ }^{\circ}} \mathrm{C}$. How much will it gain or lose time?
A. $10.3 s / d a y$
B. $20.6 s$ / day
C. $5 s / d a y$
D. $20 \mathrm{~min} / d a y$

Answer: A

- Watch Video Solution

37. The temperature of the system decraeses
in the process of
A. Free expansion
B. Adiabatic expansion
C. Isothermal expansion
D. Isothermal compression

Answer: B

- Watch Video Solution

38. Two cylinder A and B fitted with pistons
contain equal number of moles of an ideal
monoatomic gas at 400 K . The piston of A is
free to move while that of B is held fixed.
Same amount of heat energy is given to the
gas in each cylinder. If the rise in temperature of the gas in A is 42 K , the rise in temperature of the gas in B is
A. 25.2 K
B. 35 K
C. 42 K
D. 70 K

Answer: A

D Watch Video Solution
39. A black body radiates energy at the rate of
$E W / m^{2}$ at a high temperature T K. When the
temperature is reduced to $\left(\frac{T}{2}\right) \mathrm{K}$, the
radiant energy is
A. $\frac{E}{2}$
B. 2 E
C. $\frac{E}{4}$
D. $\frac{E}{16}$

Answer: D
(Watch Video Solution
40. The temperature of a thin uniform ciruclar disc ,of 1 m diameter is increased by $10^{\circ} \mathrm{C}$. The percenrtage increase in moment of the disc about an axis passing through its centre and perpendicular to the circular face (linear coefficient of expansion = '11xx10^(-6//@C)
A. 0.0055
B. 0.011
C. 0.022
D. 0.044

Answer: C

D Watch Video Solution

41. A given mass of a gas is compressed isothermally untill its pressure is doubled. It is then allowed to expand adiabatically until its original volume is restored and its pressure is then found to be 0.75 of its initial pressure .

The ratio of the specific heats of the gas is approximately .
A. 1.20
B. 1.41
C. 1.67
D. 1.83

Answer: B

D Watch Video Solution
42. Two solid spheres A and B made of the same material have radii r_{A} and r_{B} respectively . Both the spheres are cooled
from the same temperature under the conditions valid for Newton's law of cooling .

The ratio of the rate of change of temperature of A and B is

> A. $\frac{r_{A}}{r_{B}}$
> B. $\frac{r_{B}}{r_{A}}$
> C. $\frac{r_{A}^{2}}{r_{B}^{2}}$
> D. $\frac{r_{B}^{2}}{r_{A}^{2}}$

Answer: B
43. A cyclic process $A B C D$ is down below in the given $\mathrm{p}-\mathrm{V}$ diagram. In the following answers
the one that represents the same process as
in $\mathrm{p}-\mathrm{V}$ diagram.
A.
B.
c.
D.

Answer: A

- View Text Solution

44. The ratio of specific heats of a gas is γ. The change in internal energy of one mole of the gas, when the volume change from V to 2 V at constant pressure p is
A. $\frac{\gamma-1}{p V}$
B. pV
c. $\frac{p V}{\gamma-1}$
D. $\frac{p V}{\gamma}$

Answer: C

D Watch Video Solution

45. Two identical bodies have temperatures
$277^{\circ} \mathrm{C}$ and $67^{\circ} \mathrm{C}$. If the surrounding temperature is $27^{\circ} \mathrm{C}$, the ratio of loss pf heats of the two bodies during the same interval of time is (apporximately).
A. $4: 1$
B. $8: 1$
C. 12: 1
D. 19:1

Answer: D

D Watch Video Solution

46. A metallic solid sphere is rotating about its
diameter as axis of rotation. If the temperature is increased by $200^{\circ} \mathrm{C}$ the percentage increase in its moment of inertia is
(Coefficient of linear expansion of the metal

$$
\left.=10^{-5} /{ }^{\circ} C\right)
$$

A. 0.1%
B. 0.2%
C. 0.3%
D. 0.4%

Answer: D
(Watch Video Solution
47. The pressure and density of a given mass of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$ change adiabatically from (p, d) to $\left(p^{\prime}, d^{\prime}\right)$. If $\frac{d^{\prime}}{d}=32$, then $\frac{p^{\prime}}{p}$ is $(\gamma=$ ration of specific heat).
A. $1 / 28$
B. $1 / 64$
C. 64
D. 128
48. If 4 moles of an ideal monoatomic gas at temperature 400 K is mixed with 2 mole of another ideal monoatomic gas at temperature 700 K , the temperature of the mixture is
A. $550^{\circ} \mathrm{C}$
B. $500^{\circ} \mathrm{C}$
C. 550 K
D. 500 K

Answer: D

D Watch Video Solution

49. A black body of mass 34.38 g and surface
area $19.2 \mathrm{~cm}^{2}$ is at an intial temperature of

400 K . It is allowed to cool inside an evacuated enclosure kept at constant temperature 300 K .

The rate of cooling is $0.04^{\circ} \mathrm{C} / \mathrm{s}$. The sepcific heat of the body $J k g^{-1} K^{-1}$ is
(Stefan's
constant,
$\left.\sigma=5.73 \times 10^{-8} W m^{-2} K^{-4}\right)$
A. 2800
B. 2100
C. 1400
D. 1200

Answer: C

D Watch Video Solution

50. The temperature of 5 moles of a gas at constant volume is changed from $100^{\circ} \mathrm{C}$ to
$120^{\circ} \mathrm{C}$. The change in internal energy is 80 J.

The total heat capacity of the gas at constant volume will be in $\frac{J}{K}$.
A. 8
B. 4
C. 0.8
D. 0.4

Answer: B
(Watch Video Solution
51. The radiation emitted by a star A is 10,000 times that of the sun. If the surface temperatures of the sun and the star A are 6000 K and 2000 K respectively, the ratio of the radii of the star A and the sun is
A. $300: 1$
B. $600: 1$
C. 900:1
D. $1200: 1$

- Watch Video Solution

52. The densities of a liquid at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$

 are respectively 1.0127 and 1. A specific gravity bottle is filled with 300 g of the liquid at $0^{\circ} \mathrm{C}$ upto the brim and it is heated to $100^{\circ} \mathrm{C}$. Then, the mass of the liquid expelled in gram isCoefficient of linear expansion of glass

$$
\left.=9 \times 10^{-6} /{ }^{\circ} C\right)
$$

A. $\frac{3}{10.1}$
B. $\frac{3}{1.01}$

> C. $\frac{3.81}{1.0127}$ D. $\frac{3.81}{0.0127}$

Answer: B

D Watch Video Solution

53. The coefficients of apparent expansion of a
liquid when determined using two different
vessels A and B are y_{1} and y_{2} respectively. If
the coefficient of liner expansion of the vessel

A is α, the coefficient of linear expansion of the vessel B is

$$
\begin{aligned}
& \text { A. } \frac{\alpha \gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}} \\
& \text { B. } \frac{\gamma_{1}-\gamma_{2}}{2 \alpha} \\
& \text { C. } \frac{\gamma_{1}-\gamma_{2}+\alpha}{3} \\
& \text { D. } \frac{\gamma_{1}-\gamma_{2}}{3}+\alpha
\end{aligned}
$$

Answer: D
54. A metal sphere of radius r and specific heat
s is rotated about an axis passing through its
centre at a speed of n rotation/s. It is suddenly
stopped and 50% of its energy is used in
increasing its temperature. Then, the rise in
temperature of the sphere is
A. $\frac{2 \pi^{2} n^{2} r^{2}}{5 s}$
B. $\frac{1 \pi^{2} n^{2}}{10 r^{2} s}$
C. $\frac{7}{8} \pi r^{2} n^{2} s$
D. $\frac{5(\pi r n)^{2}}{14 s}$

Answer: A

- Watch Video Solution

55. 5 moles of Hydrogen $\left(\gamma=\frac{7}{5}\right)$ initially at STP are compressed adiabatically so that its temperature becomes $400^{\circ} \mathrm{C}$. The increase in the internal energy of the gas in kilo-joule is

$$
\left[R=8.30 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]
$$

A. 21.56
B. 41.55
C. 65.55
D. 80.55

Answer: B

D Watch Video Solution

56. When the temperature of a black body increases, it is observed that the wavelenght corresponding to maximum energy changes from $0.26 \mu m$ to $0.13 \mu m$. The ration of the
emissive power of the body at the respective temperature is

> A. $\frac{16}{1}$
> B. $\frac{4}{1}$
> C. $\frac{1}{4}$
> D. $\frac{1}{16}$

Answer: D
(Watch Video Solution
57. The wavelenght of maximum intensity of radiation emitted by a star is 289.8 nm . The radiation intensity of the star is
(Stefan's
constant
$=5.67 \times 10^{-8} W^{-2} K^{-4}$,
constant
$b=2898 \mu m K)$
A. $5.67 \times 10^{8} W / m^{2}$
B. $5.67 \times 10^{12} W / m^{2}$
C. $10.67 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}$
D. $10.67 \times 10^{14} \mathrm{~W} / \mathrm{m}^{2}$

Answer: A

- Watch Video Solution

58. A lead bullet of mass 10 g travelling at $300 \mathrm{~m} / \mathrm{s}$ strikes against a block of wood and comes to rest. Assuming 50% of heat is absorbed by the bullet, the increase in its temperature is
(Specific heat of lead $=150 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$)
A. $100^{\circ} \mathrm{C}$
B. $125^{\circ} C$
C. $150^{\circ} \mathrm{C}$
D. $200^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

59. Thomson coefficient of a conductor is
$10 \mu V K$. The two ends of its are kept at $50^{\circ} C$ and $60^{\circ} C$ respectively. Amount of heat
absorbed by the conductor when a charge of a 10 C flows through it, is
A. 1000 J
B. 100 J
C. 100 mJ
D. 1 mJ

Answer: D
(Watch Video Solution
60. During an adiabatic process, the pressure of a gas is proportional to the cube of its temperature. The value of C_{I} / C_{v} for that gas is
A. $\frac{1}{5}$
B. $\frac{4}{3}$
C. $\frac{5}{3}$
D. $\frac{3}{2}$

Answer: D

61. An ideal gas at a pressure of 1 atm and temperature of $27^{\circ} \mathrm{C}$ is compressed adiabatically until its pressure becomes 8 times the initial pressure, then final temperature is $\left(\gamma=\frac{3}{2}\right)$
A. $627^{\circ} C$
B. $527^{\circ} C$
C. $427^{\circ} \mathrm{C}$
D. $327^{\circ} C$

Answer: D

D Watch Video Solution

62. The liquids at temperature $60^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively have masses in the ratio 3:4 and their specific heats in the ratio $4: 5$. The
the two liquids are mixed, the resultant temperature is

$$
\text { A. } 70^{\circ} C
$$

B. $50^{\circ} \mathrm{C}$
C. $40^{\circ} \mathrm{C}$

$$
\text { D. } 41.25^{\circ} \mathrm{C}
$$

Answer: D

D Watch Video Solution

63. Two metal rods A and B of equal lengths
and equal cross- sectional areas are joined end
to end. The coefficients of thermal
conductivities of A and B are in ratio 2:3,
when the free end of A is maintained at
$100^{\circ} C$, free end of B at $0^{\circ} C$, the temperature of the junction is
A. $30^{\circ} C$
B. $40^{\circ} \mathrm{C}$
C. $50^{\circ} \mathrm{C}$
D. $60^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution
64. If on heating liquid through $80^{\circ} \mathrm{C}$, the mass expelled is $\left(\frac{1}{100}\right)^{\text {th }}$ of mass still remaining , the coefficient of apparent expansion of liquid is

$$
\text { A. } 126.5 \times 10^{-4 / \circ} \mathrm{C}
$$

B. $0.8 \times 10^{-4 /{ }^{\circ}} \mathrm{C}$
C. $1.25 \times 10^{-6 /{ }^{\circ}} \mathrm{C}$
D. $1.25 \times 10^{-4 /{ }^{\circ}} \mathrm{C}$

Answer: D
65. When heat energy of 1500 J is supplied to a gas at constant pressure , $2.1 \times 10^{5} \mathrm{Nm}^{-2}$,
there was an increase in its volume equal to
$2.5 \times 10^{-3} \mathrm{~m}^{3}$. The increase in its internal energy in joule is
A. 450
B. 525
C. 975
D. 2025

Answer: C

D Watch Video Solution

66. A liquid of mass M and specific heat s is at
temperature $2 t$. If another liquid of same
mass, specific heat 1.5 times s at a temperature of $\frac{t}{3}$ is added to it, the resultant temperature will be
A. $\frac{4}{3} t$
B. t
C. $\frac{t}{2}$
D. $\frac{2 t}{3}$

Answer: B

- Watch Video Solution

67. The relation between melting point of ice
and pressure is shown by ice line, which will
be
A. With a positive slope
B. With a negative slope
C. Parallel to pressure axis
D. Parallel to temperature axis

Answer: B

D Watch Video Solution

68. A steel bridge in a town is 200 m long .

Where minimum temperature in winter is
$10^{\circ} \mathrm{C}$ and maximum in summer is $40^{\circ} \mathrm{C}$. The
change in length of bridge from winter to
summer is [for steel $\alpha=11 \times 10^{-6 /{ }^{\circ}} C$]
A. 3.3 cm
B. 6.6 cm
C. 6.6 m
D. 8.3 m

Answer: B
(Watch Video Solution
69. A glass flask of volume $200 \mathrm{~cm}^{3}$ is completely filled with mercury at $20^{\circ} \mathrm{C}$. The amount of mercury that split over when the flask is heated to $80^{\circ} \mathrm{C}$ is (coefficient of volume expension for glass $27 \times 10^{-8 /{ }^{\circ}} \mathrm{C}$)
A. Zero
B. $0.3 \mathrm{~cm}^{3}$
C. $1.84 \mathrm{~cm}^{3}$
D. $2.40 \mathrm{~cm}^{3}$

Answer: A
70. The first law of thermodynamics states that
A. System can do the work
B. System has temperature
C. System has pressure
D. Heat is a form of energy

Answer: D
71. A lead bullet of mass 21 g travelling at a speed of $100 \mathrm{~m} / \mathrm{s}$ comes to rest in a wooden block. If no heat is taken away by the wood the rise in temperature of the bullet in the wood nearly is (specified heat of lead = $30 \mathrm{cal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$)
A. $25^{\circ} C$
B. $28^{\circ} C$
C. $33^{\circ} C$

D. $39^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

72. In order that heat is conducted from one part of a solid to another part, what is required is ?
A. Uniform density
B. Uniform temperature

C. Temperature gradient

D. Density gradient

Answer: C

D Watch Video Solution

73. The coefficient of real expension of mercury is $18 \times 10^{-5 /{ }^{\circ}} C$. The thermometer bulb has a volume of $10^{-6} \mathrm{~m}^{3}$ and crosssection of the steam is $0.002 \mathrm{~cm}^{2}$. Assuming that the bulb is filled with mercury at $0^{\circ} C$,
the length of the mercury column at $100^{\circ} \mathrm{C}$ will be
A. 9 cm
B. 18 cm
C. 9 mm
D. 18 mm

Answer: A
(Watch Video Solution
74. A clock with an iron pendulum keeps correct time at $15^{\circ} \mathrm{C}$. If th room temperature rises to $20^{\circ} \mathrm{C}$, the error in second per day will be (coefficient of linear expansion of iron is $0.000012^{\circ} C$)
A. 2.5 s
B. 2.6 s
C. 2.4 s
D. 2.2 s

Answer: B
75. Certain amount of heat supplied to an ideal gas under isothermal conditions will result in
A. A rise in temperature
B. Doing external work and a change in
temperature
C. Doing external work

D. An increase in the internal energy of the

gas

Answer: C

D Watch Video Solution

76. 30 g of water at $300^{\circ} \mathrm{C}$ is in a beaker. Which of the following when added to water, will have greater cooling effect ?(specific heat of copper $=0.1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$)
A. 100 g of water at $10^{\circ} \mathrm{C}$
B. 15 g of water at $0^{\circ} C$
C. 3 g of ice at $0^{\circ} \mathrm{C}$
D. 18 g of copper at $0^{\circ} C$

Answer: A

D Watch Video Solution

77. Two cylindrical conductors A and b of same metallic material have their diameters in the ratio $1: 2$ and lengths in the ratio $2: 1$. If the
temperature difference between their ends is same , the ratio of heats conducted respectivelty by A and B per sec is
A. $1: 2$
B. 1: 4
C. $1: 16$
D. 1:8

Answer: D

D Watch Video Solution
78. For a constant volume gas thermometer one should fill the gas at
A. High temperature and high pressure
B. High temperature and low pressure
C. Low temperature and low pressure
D. Low temperature and high pressure

Answer: B

D Watch Video Solution

79. A body does not emit heat energy at

A. $0^{\circ} C$
B. 0 K
C. $273^{\circ} C$
D. $373^{\circ} \mathrm{C}$

Answer: A
80. A piece of lead falls from a height of 100 m
on a fixed non - conducting slab which brings
it to rest . The temperature of the piece immediately after collision increase by (specific heat of lead is $30.6 \mathrm{calkg}^{-10} \mathrm{C}^{-1}$ and $g=9.8 m s^{-2}$)
A. 0 K
B. $27^{\circ} \mathrm{C}$
C. $7.63^{\circ} \mathrm{C}$
D. 4.2 K

D Watch Video Solution

81. An amount of water of mass 20 g at $0^{\circ} \mathrm{C}$ is
mixed with 40 g of water at $10^{\circ} \mathrm{C}$. Final
temperature of mixture is
A. $20^{\circ} C$
B. $6.67^{\circ} C$
C. $5^{\circ} C$
D. $0^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

82. Coefficient of real expension of mercury is
$0.18 \times 10^{-3 /{ }^{\circ}} C$. If the density of mercury at
$0^{\circ} C$ is $13.6 \mathrm{~g} / C C$, its density at 473 K will be
A. $13.11 g C C^{-1}$
B. $13.65 g C C^{-1}$
C. $13.51 g C C(-1)$
D. $13.22 g C C^{-1}$

Answer: A

D Watch Video Solution

83. A glass vessel just hold 50 g of a liquid at
$0^{\circ} C$. If the coefficient of linear expension of
 it holds at $50^{\circ} C$ is
A. 46 g
B. 48 g
C. 56 g
D. 42 g

Answer: C

D Watch Video Solution

84. A iron ball of mass 0.2 kg is heated to $100^{\circ} \mathrm{C}$ and put into a block of ice at $0^{\circ} \mathrm{C} .25 \mathrm{~g}$ of ice melts, then specific heat of iron (in cal $k g^{-10} C^{-1}$) is [Latent heat of fusion of ice $=$ $80 \mathrm{calg}^{-1}$]
B. 0.1
C. 0.8
D. 0.08

Answer: B

- Watch Video Solution

85. Work done by 0.1 mole of gas at $27^{\circ} C$ when it expands to double its volme at constant pressur
$R=2 \mathrm{cal} / \mathrm{mol}-K)$
A. 600 cal
B. 42 cal
C. 60 cal
D. 546 cal

Answer: B

D Watch Video Solution

86. A pyknometer weight 40 g when empty and 1040 g when filled with mercury at $0^{\circ} C$. On heating to $100^{\circ} \mathrm{C}, 10 \mathrm{~g}$ of mercury overflows. If
the coefficient of real expansion of mercury is
$0.0002 /{ }^{\circ} C$, the coefficient of expansion of glass is
A. $0.00001 /{ }^{\circ} C$
B. $0.0002 /{ }^{\circ} C$
C. $0.0002 /{ }^{\circ} C$
D. $0.0001 /{ }^{\circ} C$

Answer: D

D Watch Video Solution
87. In an isothermal change, an ideal gas obeys
A. Boyle's law
B. charle's law
C. Gay-Lusac law
D. None of these

Answer: A

D Watch Video Solution
88. A compound slab is made with two
different materials A and B with coefficient of
thermal conductivity $\quad K_{A}=2 K_{B} \quad$ and
thickness $x_{A}=\frac{1}{2} x_{B}$.
If the face of the A surface is at $100^{\circ} c$ and that
of the B surface is at $25^{\circ} \mathrm{C}$ the temperature of
the common surface will be
A. $85^{\circ} C$
B. $45^{\circ} C$
C. $40^{\circ} \mathrm{C}$

D. $15^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

89. Boiling point of a liquid can be defined as
that temperature at which___ the liquid becomes equal to atmospheric pressure.
A. Due point
B. Surface vapour pressure
C. Internal energy of liquid
D. None of the above

Answer: B

D Watch Video Solution

90. When a liquid is taken in a long cylindrical
vessel of material, with linear coeffcient of expansion α, is heated, the level of liquid did not change. The volume coefficient of expansion of liquid is
A. α
B. 2α
C. 3α
D. 1.5α

Answer: C

D Watch Video Solution
91. A liuid of mass m and specific heat s is heated to a temperature T. Another liquid of mass $m / 2$ and specific heat $2 s$ is heated to
temperature 2 T. If these two liquids are mixed,
the resultant temperature of the nixture will
be

> А. $\frac{2}{3} T$
> B. $\frac{8}{5} T$
> C. $\frac{3}{4} T$
> D. $\frac{3}{2} T$

Answer: D

D Watch Video Solution
92. When an ice cube melts and becomes water, the ice water system undergoes
A. The entropy of the system increases and
the internal energy increases
B. The entropy of the system decreases and
the internal energy decreases
C. The entropy of the system decreases and
the internal energy increases
D. The entropy of the system increases and
the internal energy decreases

Answer: A

D Watch Video Solution

93. A 2 m long Al pipe at $27^{\circ} \mathrm{C}$ is heated until
it is 2.0024 m , at $77^{\circ} \mathrm{C}$. The coefficient of
linear expension of Al is
A. $2.4 \times 10^{-5 /{ }^{\circ}} C$
B. $1.4 \times 10^{-5 /{ }^{\circ}} C$
C. $2.4 \times 10^{-3 /{ }^{\circ}} C$
D. $1.4 \times 10^{-3 /{ }^{\circ}} C$

Answer: A

D Watch Video Solution

94. Assume that heat capacity of $\mathrm{H}_{2} \mathrm{O}$ to be
$4.2 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and the latent heat of
vapourisation of $\mathrm{H}_{2} \mathrm{O}$ to be $22.5 \times 10^{5} \mathrm{Jkg}^{-1}$.

The amount of heat in joule required to heat 1
kg of water from $50^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and then to convert into steam at $100^{\circ} \mathrm{C}$ is
A. $12.3 \times 10^{5} \mathrm{~J}$
B. $24.6 \times 10^{5} \mathrm{~J}$
C. $20.0 \times 10^{5} \mathrm{~J}$
D. $18.6 \times 10^{5} \mathrm{~J}$

Answer: B

D Watch Video Solution

95. The hollow spheres of different materials one with double the radius and one- fourth wall thickness of the other are filled with ice. If the time taken for complete melting of ice in
the large radius one is 25 min and that for smaller one is 16 min , the ratio of thermal conductivities of materials of larger sphere to smaller sphere is
A. $4: 5$
B. 5: 4
C. $25: 8$
D. $1: 25$

Answer: B

96. Ice contract on melting when subjected to

pressure and the pressure is increased the melting point
A. Increase
B. Decrease
C. Remains same
D. First increase than decrease

Answer: A

D Watch Video Solution
\square

