đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

WAVES OPTICS

1. Two coherent sources of intensity ratio $9: 4$
produce interference. The intensity ratio of
maxima and minima of the interference pattern is
A. $13: 5$
B. 5:1
C. $25: 1$
D. $3: 2$

Answer: c
(Watch Video Solution
2. Through a narrow slit of width 2 mm , diffraction pattern is formed on a screen kept at a distance 2 m from the slit. The wavelength of the light used is 6330 A and falls normal to
the slit and screen. Then, the distance between the two minima on either side of the central maximum is
A. 12.7 mm
B. 1.27 mm
C. 2.532 mm

D. 25.3 mm

Answer: b

D Watch Video Solution

3. In a double slit interference experiment, the fringe width obtained with a light of wavelength 5900 A was 1.2 mm for parallel narrow slits placed 2 mm apart. In this arrangement if the slit separation is increased
by one-and-half times the previous value, then
the fringe width is

A. 0.9 mm

B. 0.8 mm
C. 1.8 mm
D. 1.6 mm

Answer: b

- Watch Video Solution

4. Two coherent point sources S, and S, vibrating in phase emit light of wavelength X .

The separation between them is $2 X$ as shown in figure. The first bright fringe is formed at P due to interference on a screen placed at a distance D from $\mathrm{S} 1(D \gg A)$, then OP is
A. \sqrt{D}
B. 1.5 D
C. $\sqrt{3} D$
D. 2D

Answer: c

D View Text Solution

5. Calculate the wavelength of the K_{a} line for z
$=31$, when $a=5 \times 10^{7} H z^{\frac{1}{2}} \quad$ for a
characteristic X-ray spectrum.
A. $1.33{ }^{\circ}$
B. 1.33 nm
C. $133 \times 10^{-10} m$
D. 133 nm

Answer: a

D Watch Video Solution

6. In the Young's double slit experiment, the resultant intensity at a point on the screen is
75% of the maximum intensity of the bright fringe. Then the phase difference between the two interfering rays at that point is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: c

- Watch Video Solution

7. In an optical fibre, core and cladding were made with materials of refractive indices 1.5 and 1.414 respectively. To observe total
internal reflection, what will be the range of incident angle with the axis of optical fibre?
A. $0^{\circ}-60^{\circ}$
B. $0^{\circ}-48^{\circ}$
C. $0^{\circ}-30^{\circ}$
D. $0^{\circ}-82^{\circ}$

Answer: c
(Watch Video Solution
8. The diameter of objective of a telescope is 1
m . Its resolving limit for the light of wavelength $4538 \stackrel{\circ}{A}$, will be

A. $5.54 \times 10^{-7} \mathrm{rad}$
B. $2.54 \times 10^{-4} \mathrm{rad}$
C. $6.54 \times 10^{-7} \mathrm{rad}$
D. None of these

Answer: a

D Watch Video Solution

9. Two coherent sources whose intensity ratio

is $64: 1$ produce interference fringes. The ratio of intensities of maximum and minima is
A. $9: 7$
B. $8: 1$
C. $81: 49$
D. $81: 7$

Answer: c

D Watch Video Solution
10. In the young's double slit experiment, the intensities at two points $P(1)$ and P_{2} on the screen are respectively I_{1} and I_{2}. If P_{1} is located at the centre of a bright fringe and P_{2}
is located at a distance equal to a quarter of fringe width from P_{1}, then $\frac{I_{1}}{I_{2}}$ is
A. 2
B. $\frac{1}{2}$
C. 4
D. 16

Answer: a

D Watch Video Solution

11. In young's double slit experiment, the 10th maximum of wavelength λ_{1}, is at a distance of
y_{1} from the central maximum. When the wavelength of the source is changed to $\lambda_{2}, 5^{t h}$
maximum is at a distance of y_{2} from its central
maximum. The ratio $\left(\frac{y_{1}}{y_{2}}\right)$ is

$$
\text { A. } \frac{2 \lambda_{1}}{\lambda_{2}}
$$

B. $\frac{2 \lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}}{2 \lambda_{2}}$
D. $\frac{\lambda_{2}}{2 \lambda_{1}}$

Answer: a

D Watch Video Solution

12. Four light sources produce the following four waves
(i) $y_{1}=a \sin \left(\omega t+\phi_{1}\right)$
(ii) $y_{2}=a \sin 2 \omega t$
(iii) $y_{3}=a^{\prime} \sin \left(\omega t+\phi_{2}\right)$
(iv) $y_{1}=a \sin \left(\omega t+\phi_{1}\right)$

Superposition of which two waves give rise to interference?
A. (i)and(ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (iii) and (iv)

Answer: c

13. Statement (S): Using Huygen's eyepiece measurement can be taken but are not correct.

Reason (R): The cross wires, scale and final
image are not magnified proportionately
because the image of the object is magnified by two lenses, whereas the cross wire scale is magnified by one lens only.
A. Both (A) and (R) are true, (R) explains (A)
B. Both (A) and (R) are true, but (R) cannot explains (A)
C. Only (A) is correct, but is wrong
D. Only (A) is correct, but is wrong

Answer: a

D Watch Video Solution

14. If Fraunhofer diffraction experiment, L is
the distance between screen and the obstacle,
b is the size of obstacle and X is wavelength of
incident light. The general condition for the applicability of Fraunhofer diffraction is

$$
\begin{aligned}
& \text { A. } \frac{b^{2}}{L \lambda} \gg 1 \\
& \text { B. } \frac{b^{2}}{L \lambda}=1 \\
& \text { C. } \frac{b^{2}}{L \lambda} \ll 1 \\
& \text { D. } \frac{b^{2}}{L \lambda} \neq 1
\end{aligned}
$$

Answer: c

15. In Huygen's eyepiece

A. The cross wires are outside the eyepiece
B. Condition for achromatism is satisfied
C. Condition for minimum spherical aberration is not satisfied
D. The image formed by the objective is a
virtual image

Answer: b
16. In Young's double slit experiment, first slit has width four times the width of the second slit. The ratio of the maximum intensity to the minimum intensity in the interference fringe system is
A. $2: 1$
B. $4: 1$
C. 9:1
D. $8: 1$

Answer: c

D Watch Video Solution

17. A light ray of wavelength X is passing
through a pin hole of diameter D and the effect is observed on a screen placed at a distance L from the pin hole. The approximation of geometrical optics are applicable if
A. $D \leq \lambda$
B. $\frac{L \lambda}{D^{2}}=1$
C. $\frac{L \lambda}{D^{2}} \gg 1$
D. $\frac{L \lambda}{D^{2}} \ll 1$

Answer: c

D Watch Video Solution

18. Consider the following statements A and B and identify the correct answer.
A. Fresnel's diffraction pattern occurs when the source of light or the screen on which the
diffraction pattern is seen or when both are
the finite distance from the aperture.
B. Diffracted light can be used to estimate the helical structure of nuclei acids.
$A . A$ and B are true
$B . A$ and B are false
C. A is true but B is false
D. A is false but B is true

Answer: c

19. In Young's double slit experiment, an interference pattern is obtained on a screen
by a light of wavelength $6000 \stackrel{\circ}{A}$ coming from
the coherent sources S_{1} and S_{2}. At certain point P on the screen third dark fringe is
formed. Then, the path difference $S_{1} P-S_{2} P$ in micron is
A. 0.75
B. 1.5
C. 3
D. 4.5

Answer: b

D Watch Video Solution

20. Consider the following statements A and B.

Identify the correct choice in the given answer
A. The refractive index of the extraordinary ray depends on the angle of incidence in the double refraction.
B. The vibration of light waves acquire one
sided ness of both ordinary and extraordinary
rays in double refraction.
$A . A$ and B are wrong
B. A and B are correct
C. A is correct B is wrong
D. A is wrong B is correct

Answer: b

- Watch Video Solution

21. In Young's double slit interference experiment the wavelength of light used is $6000 \stackrel{\circ}{A}$.If the path difference between waves reaching a point P on the screen is 1.5μ, then at that point P.
A. Second bright band occurs
B. Second dark band occurs
C. Third dark band occurs
D. Third bright band occurs
22. Light waves producing interference have
their amplitudes in the ratio $3: 2$. The intensity
ratio of maximum and minimum of interference fringes is
A. $36: 1$
B. 9: 4
C. 25: 1
D. 6: 4

Answer: c

D Watch Video Solution

23. The difference in the number of wavelengths, when yellow light propagates
through air and vacuum columns of the same thickness, is one. The thickness of the air column is: (Refractive index of air $\mu_{a}=1.0003$
,Wavelength of yellow light in vacuum = 6000 ${ }^{\circ}$)
A. 1.8 mm
B. 2 mm
C. 2 cm
D. 2.2 cm

Answer: b

- Watch Video Solution

