©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SAI PHYSICS (TELUGU

ENGLISH)

WORK, ENERGY AND POWER

Mcq

1. A man of weight 50 kg carries an object to a
height of 20 m in a time of 10 sec . The power
used by the man in this process is 2000W,
then find the weight of the object carried by
the man [assume $g=10 \mathrm{~ms}^{-2}$]

A. 100 KG

B. 25 KG
C. 50KG
D. 10KG

Answer: c

D Watch Video Solution
2. A body of mass 10 kg is acted upon by a
force given by equation $F=\left(3 t^{2}-30\right)$
Newtons. The initial velocity of the body is 10 m / s. The velocity of the body after 5 secs. is
A. $4.5 \mathrm{~m} / / \mathrm{s}$
B. $6 \mathrm{~m} / / \mathrm{s}$
C. $7.5 \mathrm{~m} / / \mathrm{s}$
D. $5 \mathrm{~m} / / \mathrm{s}$

Answer: c

D Watch Video Solution
3. A ball is released from the top of a tower.

The ratio of work done by force of gravity in
1st second, 2nd second and 3rd second of the
motion of ball is
A. 1:3:5
B. 1:4:16
C. 1:9:25
D. 1:2:3
4. A body of mass 2.4 kg is subjected to a force which varies with distance as shown is figure.

The body starts from rest at $x=0$. Its velocity at $x=9 \mathrm{~m}$ is
A. $5 \sqrt{3 m / \mathrm{sec}}$
B. $20 \sqrt{3 m / \mathrm{sec}}$
C. $10 \mathrm{~m} / / \mathrm{sec}$

D. $40 \mathrm{~m} / / \mathrm{sec}$

Answer: c

D View Text Solution

5. When a big drop of water is formed from n small drops of water, the energy loss is 3 E , where, E is the energy of the bigger drop. If the radius of the bigger drop is R and r is the radius of the smaller drop, then number of smaller drops (n) is
A. $4 \frac{R}{r^{2}}$
B. $4 \frac{R}{r}$
C. $2 \frac{R^{2}}{r}$
D. $4 \frac{R^{2}}{r^{2}}$

Answer: d

- Watch Video Solution

6. A canon shell fired breaks into two equal parts at its highest point. One part retraches
the path to the canon with kinetic enegry E_{1}
and the kinetic energy of the second part is E_{2}
. Relation between E_{1} and E_{2} is
A. $E_{2}=15 E_{1}$
B. $E_{2}=E_{1}$
C. $E_{2}=E_{3}$
D. $E_{2}=9 E_{1}$

Answer: d

D Watch Video Solution
7. The work done in moving an object from origin to a point whose position vector is $r=3 \hat{i}+2 \hat{j}-5 \hat{k}$ by a force $F=2 \hat{i}-\hat{j}-\hat{k}$
A. 1 unit
B. 9 unit
C. 13 units
D. 60 units

Answer: b

- Watch Video Solution

8. A ball at rest is dropped from a height of 12
m. It losses 25% of its kinetic energy on
striking the ground and bounces back to a height ' h '. then value of ' h ' is
A. 3 m
B. 6 m
C. 9 m
D. 12 m

Answer: c
9. Two bodies of mass 4 kg and 5 kg are moving along East and North directions with
velocities $5 \mathrm{~m} / / \mathrm{s}$ and $3 \mathrm{~m} / / \mathrm{s}$ respectively.

Magnitude of the velocity of centre of mass of the system is
A. $\frac{25}{9} m / s$
B. $\frac{9}{25} \mathrm{~m} / \mathrm{s}$
C. $\frac{41}{9} \mathrm{~m} / \mathrm{s}$
D. $\frac{16}{9} \mathrm{~m} / \mathrm{s}$

Answer: a

D Watch Video Solution

10. The velocity v reached by a car of mass m at certain distance from the starting point driven with constant Power P is such that
A. $v \alpha \frac{3 P}{m}$
B. $v^{2} \alpha \frac{3 P}{m}$
C. $v^{3} \alpha \frac{3 P}{m}$
D. $v \alpha\left(\frac{3 P}{m}\right)^{2}$

D Watch Video Solution

11. A ball is let fall from a height h. It makes n collisions with the earth. After n collisions it rebounds with a velocity $v_{-}(n)$ and the ball rises to a height $h_{-}(n)$ then coefficient of restitution is given by

$$
\begin{aligned}
& \text { A. } e=\left[\frac{h_{n}}{h_{0}}\right]^{1 / 2 n} \\
& \text { B. } e=\left[\frac{h_{0}}{h_{n}}\right]^{1 / 2 n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } e=\frac{1}{n} \frac{\sqrt{h_{n}}}{h_{0}} \\
& \text { D. } e=\frac{1}{n} \frac{\sqrt{h_{0}}}{h_{n}}
\end{aligned}
$$

Answer: a

D Watch Video Solution

12. A large open tank has two holes in the wall.

One is a square hole of side L at a depth y
from the top and the other is a circular hole of radius R at a depth $4 y$ from the top. When the tank is completely filled with water, the
quantities of water flowing out per second
from the two holes are the same. The value of
R is

> A. $\frac{L}{\sqrt{2 \pi}}$
> B. $2 \pi L$
> C. $L \frac{\sqrt{2}}{\pi}$
> D. $\frac{L}{2} \pi$

Answer: a

D Watch Video Solution
13. A body of mass 5 kg makes an elastic collision with another body at rest and continues to move in the original direction after collision with velocity equal to $\frac{1}{10}$ th of its original velocity. Then the mass of the second body is
A. 4.09 kg
B. 0.5 kg
C. 5 kg
D. 5.09 kg

Answer: a

D Watch Video Solution

14. A particle of mass 4 m explodes into three
pieces of masses, m, m and 2 m . The equal
masses move along X -axis and Y -axis with
velocities $4 m s^{-1}$ and $6 m s^{-1}$ respectively.

The magnitude of the velocity of the heavier mass is
A. $\sqrt{17 m s^{-1}}$
B. $2 \sqrt{13 m s^{-1}}$
C. $\sqrt{13 m s^{-1}}$
D. $\frac{\sqrt{13}}{2} m s^{-1}$

Answer: c

D Watch Video Solution

15. A river of salty water is flowing with a velocity $2 \mathrm{~ms}^{-1}$ If the density of the water is $1.28 c c^{-1}$, then the kinetic momentum during
a collision, the condition is energy of each cubic meter of water is
A. 2.4 j
B. 24 j
C. 2.4 kj
D. 4.8 kj

Answer: c

- Watch Video Solution

16. A ball is dropped from a heighth on a floor of coefficient of restitution e. the total distance coverewd by the ball just before second hit is
A. $h\left(1-2 e^{2}\right)$
B. $h\left(1+2 e^{2}\right)$
C. $h\left(1+2 e^{2}\right)$
D. $h e^{2}$

Answer: b
17. A block of mass $\mathrm{m}=25 \mathrm{~kg}$ sliding on a smooth horizontal mg surface with a velocity v
$=3 \mathrm{~ms}$ meets the spring of 4 d spring constant
$\mathrm{k}=100 \mathrm{Nm}$ fixed at one end as shown in
figure. The maximum compression of the
spring and 23. Consider the following
statements A and B and identify velocity of
block as it returns to the original position the correct answer respectively are
A. $1.5 m,-3 m s^{-1}$
B. $1.5 m, 0.01 m s^{-1}$
C. $1.0 m, 3 m s^{-1}$
D. $0.5 m, 2 m s ?^{-1}$

Answer: a

D View Text Solution

18. In two separate collisions, the coefficient of restitutions d) A is false but B is true e and e are in the ratio 3: 1. In the first collision the
relative velocity of approach is twice the relative velocity of separation, then the ratio between relative velocity of approach and the relative velocity of separation in the second collision is,
A. $1: 6$
B. $2: 3$
C. $3: 2$
D. 6:1

Answer: d
19. A motor of power P_{0} is used to deliver water at a certain rate through a given horizontal pipe. To increase the rate of flow of water through the same pipe n times, the power of the moter is increased to P_{1} to P_{0} is
A. n-times
B. $n^{2}-\times$
C. $n^{3}-\times$
D. $n^{4}-\times$

Answer: c

D Watch Video Solution

20. A bullet of mass 10 g is fired horizontally
$1000 \mathrm{~m} / \mathrm{s}$ from a rifle situated at a height 50 m above the ground. If the bullet reaches the ground with velocity $500 \mathrm{~m} / \mathrm{s}$ the work done against air resistance in the trajectory of the bullet in joule is $\left(g=10 \frac{m}{s^{-2}}\right)$ A. $5005{ }^{j}$
B. 3755 j
C. 3750 j
D. 17.5 j

Answer: B

D Watch Video Solution

21. For a system to follow the law of conservation of linear momentum during a collision, the condition is (1) Total external force acting on the system is zero (2) Total
external force acting on the system is finite and time of collision is negligible (3) Total internal force acting on the system is zero
A. (1) Only
B. (2) Only
C. (3) Only
D. (1) or (2)

Answer: a

D Watch Video Solution
22. To the free end of spring hanging from a rigid support, a block of mass m is hung and slowly allowed to come to its equilibrium position. Then, stretching in the spring is d. If the same block is attached to the same spring and allowed to fall suddenly, the amount of stretching is (force constant k)
A. mg / k
B. 2d
C. $m g / 3 \mathrm{k}$
D. 4 d

Answer: b

D Watch Video Solution

23. Consider the following statements A and B and identify the correct answer A. In an elastic collision, if a body suffers a head on collision with another of same mass at rest, the first body comes to rest while the other starts moving with the velocity of the first one B. Two bodies of equal mass suffering a head on
elastic collision merely exchanges their

velocities

A. Both A and B are true
B. Both A and B are false
C. A is true but B is false

D. A is false but B is true

Answer: a

D Watch Video Solution

24. A 2 kg ball moving at 24 ms undergoes inelastic head on collision with a 4 kg ball moving in the opposite direction at 48 ms . If the coefficient of restitution is $2 / 3$, their velocities in ms-after impact are
A. $-56,-8$
B. $-28,-4$
C. -14.-2
D. $-7,-1$

- Watch Video Solution

25. A block of mass 2 kg is initially at rest on a
horizontal frictionless surface. A horizontal
froce $\bar{F}=\left(9-x^{2}\right) \bar{i}$ newton acts on it, when
the block is at $x=0$. The maximum kinetic energy of the block between $x=0 m$ and $x=3 m$ in joule is

Conservation of mechanical energ
A. 24
B. 20
C. 18
D. 15

Answer: c

D Watch Video Solution

26. Two identical blocks A and B, each of mass
m resting on smooth floor, are connected by a
light spring of natural length L and the spring
constant k, with the spring at its natural
length. A third identical block C (mass m)
moving with a speed v along the line joining A
and B collides with A. The maximum
compression in the spring is proportional to

> A. $\frac{\sqrt{m}}{2 k}$
> B. $m \frac{\sqrt{v}}{2 k}$
> C. $\frac{\sqrt{m v}}{k}$
> D. $\frac{m v}{2 k}$

Answer: a

D Watch Video Solution
27. Consider the following statements A and B and identify the correct answer given below.
(A) A body initially at rest is acted upon by a constant force. The rate of change of its kinetic energy varies linearly with time. (B) When a body is at rest, it must be in equilibrium
A. A and B are correct
B. A and B are wrong
C. A is correct and B is wrong
D. A is wrong and B is correct

Answer: c

D Watch Video Solution

28. Two particles having position vectors
$\vec{r}_{1}=(3 \hat{i}+5 \hat{j}) m$ and $r_{2}=(-5 \hat{i}+3 \hat{j}) m$
are moving with velocities $V_{1}=(4 \hat{i}+3 \hat{j}) \frac{m}{s}$
and $V_{2}=(-a \hat{i}+4 \hat{j}) \frac{m}{s}$. If they collide
after 2 s , the value of a is
A. 2
B. 4
C. 6
D. 8

Answer: d

- Watch Video Solution

29. A body of mass 4 kg is moving with momentum of $8 \mathrm{kgms}^{-1}$. A force of 0.2 N acts on it in the direction of motion of the body for 10 s . The increase in kinetic energy is
A. 10
B. 8.5
C. 4.5
D. 4

Answer: c

D Watch Video Solution

30. A body is moving up an inclined plane of angle θ with an initial kinetic energy E. The coefficient of friction between the plane and
the body is μ. The work done against friction before the body comes to rest is
A. $\frac{\mu \cos \theta}{E \cos \theta+\sin \theta}$
B. E
C. $\frac{\mu E \cos \theta}{\mu \cos \theta+\sin \theta}$
D. $\frac{\mu E \cos \theta}{\mu \cos \theta+\sin \theta}$

Answer: b

D Watch Video Solution

31. A body of mass 2 kg starts from rest and moves with uniform acceleration. It acquires a velocity $20 \mathrm{~m} / \mathrm{s}$ in 4 s . The power exerted on the body in 2 s in Watt is
A. 50
B. 100
C. 150
D. 200

Answer: b
32. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio 3: 1. The ratio of radii of the fragments is
A. $1: 3$
B. 3: 4
C. $4: 1$
D. $2: 1$

Answer: a
33. A particle falls from a height h upon a fixed horizontal plane and rebounds. If e is the coefficient of restitution, the total distance travelled before rebounding has stopped is
A. $h\left(\frac{1+e^{2}}{1-e^{2}}\right)$
B. $h\left(\frac{1-e^{2}}{1+e^{2}}\right)$
C. $\frac{h}{2}\left(\frac{1-e^{2}}{1+e^{2}}\right)$
D. $\frac{h}{2}\left(\frac{1+e^{2}}{1-e^{2}}\right)$

Answer: a

D Watch Video Solution

34. A body of mass 6 kg is under a force which causes displacement in it given by $s=\frac{t^{2}}{4}$ metre where t is time. The work done by the force in 2 s is
A. 12 j
B. 9 j
C. 6 j
D. 3 j

Answer: d

D Watch Video Solution

35. A force applied by an engine on a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ changes its velocity from 5 ms to 25 msin 5 min . The power of the engine is

A. 1.025 MW

B. 2.05 MW

C. 5MW
D. 6MW

Answer: b

D Watch Video Solution

36. A force of 5 N making an angle with the horizontal acting on an object displaces it by
0.4 m along the horizontal direction. If the
object gains kinetic energy of 1 J the horizontal

component of the force is

A. 1.5 N
B. 2.5 N
C. 3.5 N
D. 4.5 N

Answer: b
(Watch Video Solution
37. A body of mass m, moving with a velocity 10
ms. collides with another body at rest of mass
m. After collision the velocities of the two bodies are 2 ms and $5 \mathrm{~ms}^{\prime}$ respectively, along
the direction of motion of m The ratio $\mathrm{m} 1 / \mathrm{m} 2$ is
A. $\frac{5}{12}$
B. $\frac{5}{8}$
C. $\frac{8}{5}$
D. $\frac{12}{5}$

Answer: b

- Watch Video Solution

38. A ball is projected vertically down with an
initial velocity from a height of 20 m on to a
horizontal floor. During the impact it loses
50% of the energy and rebounds to the same
height, the initial velocity of its projection is
A. $20 m s^{-1}$
B. $15 m s^{-1}$

C. $10 m s^{-1}$

$$
\text { D. } 5 m s^{-1}
$$

Answer: a

D Watch Video Solution

39. A 10 HP motor pumps out water from a well of 30 m and fills a water tank of volume 2238 L at a height of 10 m from the ground. The running time of the motor to fill the empty water tank is
A. 5 min
B. 10 min
C. $15 \min$
D. 20 min

Answer: d

D Watch Video Solution
40. An object initially at rest explodes into 3
fragments A, B and C. The momentum of A is $p i$
and that of B is $\sqrt{3 p \hat{j}}$ where p is a positive number. The momentum of C will be
A. (1 + sqrt(3))pin a direction of making
120° with that of A
B. $(1+\operatorname{sqrt}(3))$ Pin a direction of making
150° with that of B
C. 2 p in a direction of making 150° with
that of A
D. 2 p in a direction making 150° with that of B

Answer: d

D Watch Video Solution

41. A ball A moving with a speed of $90 \mathrm{~ms}^{\prime}$
collides directly with another identical ball B
moving with a speed v in the opposite direction, A comes to rest after the collision. If
the coefficients of restitution is 0.8 , the speed of B before collision is
A. $10 m s^{-1}$
B. $81 m s^{-1}$
C. $22.5 m s^{-1}$
D. $90 \mathrm{~ms}^{-1}$

Answer: a

D Watch Video Solution

42. A mass of 12 kg at rest explodes into two pieces of masses 4 kg and 8 kg which move in opposite directions. If the velocity of 8 kg
piece is 6 ms then the kinetic energy of the other piece is (in Joule)
A. 64
B. 128
C. 144
D. 288

Answer: d
(Watch Video Solution
43. A force $\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k}$ acting on a

$$
\begin{aligned}
& \text { particle causes a displacement } \\
& \vec{s}=-4 \hat{i}+2 \hat{j}+3 \hat{k} \text { in its own direction. If }
\end{aligned}
$$ the work done is 6 J , the value of c is

A. zero
B. 1
C. 12
D. 6

Answer: d
44. A solid wooden block resting on a frictionless surface is hit by a bullet. The bullet gets embedded. During this process
A. Only kinetic energy is conversed
B. Only momentum is conserved
C. Both momentum and kinetic energy are
conserved
D. Neither momentum nor kinetic energy is

Answer: b

- Watch Video Solution

45. Two bodies with kinetic energies in the ratio of 4:1are moving with equal linear momentum. The ratio of their masses is
A. $1: 2$
B. $1: 1$
C. $4: 1$
D. 1: 4

Answer: d

- Watch Video Solution

46. A uniform chain of length L hangs partially
from table and held in equilibrium by friction.

If greatest length of chain that hangs without
slipping is \mid then the coefficient of friction
between chain and table is
A. L
B. $\frac{1}{L+l}$
C. $\frac{l}{L-l}$
D. $\frac{l}{L+l}$

Answer: c

D Watch Video Solution

47. At high altitude, a body explodes at rest into two equal fragments with one of the fragments receiving horizontal velocity 10 ms .

The time when the radius vectors connecting
point of explosion to fragments make 90° is

$$
\left(g=10 m s^{-^{2}}\right)
$$

A. 10s
B. 4 s
C. 2 s
D. 1 s

Answer: d
(Watch Video Solution
48. 1 s 48. Two bodies have masses 2 m and m .

Their kinetic energies are in the ratio 8:1, their linear momentum are in the ratio of
A. $1: 1$
B. 2:1
C. $4: 1$
D. $8: 1$

Answer: c

D Watch Video Solution
49. Two trolleys of masses m and 3 m are connected by aspring. The spring is compressed and released the trolleys move off in opposite directions and come to rest after travelling distances s, and s, respectively. Assuming coefficient of friction is same for both the ratio of sto s_{1} to s_{2} is
A. $1: 9$
B. $1: 3$
C. $3: 1$
D. 9:1

Answer: c

D Watch Video Solution

50. A 2 kg mass moving on a smooth frictionless surface with a velocity of 10 mshits another 2 kg mass kept at rest in an elastic collision. After collision, if they move together
A. They travel with a velocity of $5 m s^{1}$ in
the same direction
B. They travel with a velocity of $10 m s^{1}$ in
the same direction
C. They travel with a velocity of $10 m s^{1}$ in
the
D. They travel in the opposite direction
with a velocity of $5 \mathrm{~m} s^{1}$

Answer: a

51. A 2 kg body and 3 kg body have equal momentum. If the kinetic energy of 3 kg body is 10 J , the kinetic energy of 2 kg body will be in Joule)
A. 6.66
B. 15
C. 22.5
D. 45

- Watch Video Solution

52. A bullet of mass x moves with a velocity y, hits a wooden block of mass z , at rest and gets embedded in it. After collision if the wooden block with bullet in it moves the velocity is

$$
\begin{aligned}
& \text { A. } \frac{x}{x+z} y \\
& \text { B. } x+\frac{z}{x} y \\
& \text { C. } \frac{z}{x+y} y \\
& \text { D. } x+\frac{y}{z} y
\end{aligned}
$$

Answer: a

D Watch Video Solution

53. A ball of mass moving with a velocity
collides head on elastically with another of the
same mass m but moving with a - in the opposite direction). After the collision
A. The velocities are exchanged between
the two balls
B. Both the balls come to rest
C. Both of them move at right angles to
the original line of motion
D. One ball comes to rest and the other ball travels back with velocity 2 V

Answer: a

D Watch Video Solution

54. The work done on a particle moving round a horizontal circular path of radius r with
uniform speed v under a centripetal force F is equal to,
A. $m v r$
B. 0
C. m or ${ }^{2}$
D. $m \frac{v^{2}}{r}$

Answer: b
(Watch Video Solution
55. A railway truck of mass $m=2 \times 10^{4} \mathrm{~kg}$ travelling at $0.5 \mathrm{~ms}^{\wedge}(-1)$ collides with another of half of its mass moving in the opposite direction with a velocity 0.4 ms . If they collide each other the combined velocity is
A. $0.1 m s^{-1}$
B. $0.4 m s^{-1}$
C. $0.2 m s^{-1}$
D. $0.5 m s^{-1}$

Answer: c

- Watch Video Solution

56. A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed of v each in mutually perpendicular direction. The total energy released in the process is
A. $\frac{1}{2} m v^{2}$
B. $m v^{2}$
C. $\frac{5}{3} m v^{2}$
D. $\frac{3}{2} m v^{2}$

Answer: d

- Watch Video Solution

