© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

MATRICES

Example

1. If e^{A} is defined as $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots=\frac{1}{2}\left[\begin{array}{ll}f(x) & g(x) \\ g(x) & f(x)\end{array}\right]$, where $A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right], 0<x<1$ and I is identity matrix, then find the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

2. Prove that matrix $\left[\begin{array}{cc}\frac{b^{2}-a^{2}}{a^{2}+b^{2}} & \frac{-2 a b}{a^{2}+b^{2}} \\ \frac{-2 a b}{a^{2}+b^{2}} & \frac{a^{2}-b^{2}}{a^{2}+b^{2}}\end{array}\right]$ is orthogonal.
3. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are real numbers, then prove that $A^{2}-(a+d) A+(a d-b c) I=O$. Hence or therwise, prove that if $A^{3}=O$ then $A^{2}=O$

- Watch Video Solution

4. If $A=\left(\left[a_{i j}\right]\right)_{n \times n}$ is such that $(a)_{i j}=\overline{a_{j i}}, \forall i, j$ and $A^{2}=O$, then

Statement 1: Matrix A null matrix.
Statement 2: $|A|=0$.

- Watch Video Solution

5. Find the possible square roots of the two rowed unit matrix I.

- Watch Video Solution

6. Prove the orthogonal matrices of order two are of the form $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

- Watch Video Solution

7. Let $A=\left[\begin{array}{cc}\tan \frac{\pi}{3} & \sec \frac{2 \pi}{3} \\ \cot \left(2013 \frac{\pi}{3}\right) & \cos (2012 \pi)\end{array}\right]$ and P be a 2×2 matrix such that $P P^{T}=I$, where I is an identity matrix of order 2 . If $Q=P A P^{T}$ and $R=\left[r_{\mathrm{ij}}\right]_{2 \times 2}=P^{T} Q^{8} P$, then find r_{11}.

- Watch Video Solution

8. Consider, $A=\left[\begin{array}{ccc}a & 2 & 1 \\ 0 & b & 0 \\ 0 & -3 & c\end{array}\right]$, where a, b and c are the roots of the equation $x^{3}-3 x^{2}+2 x-1=0$. If matric B is such that $A B=B A, A+B-2 I \neq O$ and $A^{2}-B^{2}=4 I-4 B$, then find the value of det. (B)
9. If A and B are square matrices of order 3 such that $|A|=3$ and $|B|=2$, then the value of $\left|A^{-1} \operatorname{adj}\left(B^{-1}\right) a d j\left(3 A^{-1}\right)\right|$ is equal to

- Watch Video Solution

Illustration

1. If a matrix has 28 elements, what are the possible orders it can have ?

- Watch Video Solution

2. Construct a 2×2 matrix, where
(i) $a_{\mathrm{ij}}=\frac{(i-2 j)^{2}}{2}$ (ii) $a_{\mathrm{ij}}=|-2 i+3 j|$

- Watch Video Solution

3. What is the maximum number of different elements required to form a symmetric matrix of order 12 ?

Watch Video Solution

4. If a square matix a of order three is defined $A=\left[a_{\mathrm{ij}}\right]$ where $a_{\mathrm{ij}}=\operatorname{sgn}(i-j)$, then prove that A is skew-symmetric matrix.

D Watch Video Solution

5. For what values of x and y are the following matrices equal ?
$A=\left[\begin{array}{cc}2 x+1 & 3 y \\ 0 & y^{2}-5 y\end{array}\right], B=\left[\begin{array}{cc}x+3 & y^{2}+2 \\ 0 & -6\end{array}\right]$

- Watch Video Solution

6. For $\alpha, \beta, \gamma \in R$, let
$A=\left[\begin{array}{ccc}\alpha^{2} & 6 & 8 \\ 3 & \beta^{2} & 9 \\ 4 & 5 & \gamma^{2}\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 \alpha & 3 & 5 \\ 2 & 2 \beta & 6 \\ 1 & 4 & 2 \gamma-3\end{array}\right]$

- Watch Video Solution

7. Find the values of x for which matrix $\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ is singular.

- Watch Video Solution

8. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & -2 \\ 1 & -5 \\ 4 & 3\end{array}\right]$, then find $D=\left[\begin{array}{ll}p & q \\ r & s \\ t & u\end{array}\right]$ such that $A+B-D=O$.
9. $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ and $A+A^{T}=I$, find the value of α.

- Watch Video Solution

10. Let A be a square matrix. Then prove that $(i) A+A^{T}$ is a symmetric matrix, $(i i) A-A^{T}$ is a skew-symmetric matrix and $(i i i) \forall^{T}$ and $A^{T} A$ are symmetric matrices.

- Watch Video Solution

11. If $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 7 & 2\end{array}\right]$, find $3 A-2 B$.

- Watch Video Solution

12. Find non-zero values of x satisfying the matrix equation:
$x\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right]+2\left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]=2\left[\begin{array}{cc}x^{2}+8 & 24 \\ 10 & 6 x\end{array}\right]$
13. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$, then find $\operatorname{tr}(A)-\operatorname{tr}(B)$.

- Watch Video Solution

14. If $\left[\begin{array}{cc}\lambda^{2}-2 \lambda+1 & \lambda-2 \\ 1-\lambda^{2}+3 \lambda & 1-\lambda^{2}\end{array}\right]=A \lambda^{2}+B \lambda+C$, where A, B and C are matrices then find matrices B and C.

- Watch Video Solution

15. Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

- Watch Video Solution

16. Matrix A ha $s m$ rows and $n+5$ columns; matrix B has m rows and $11-n$ columns. If both $A B$ and $B A$ exist, then (A) $A B$ and $B A$ are square matrix (B) $A B$ and $B A$ are of order 8×8 and 3×13, respectively (C) $A B=B A$ (D) None of these

- Watch Video Solution

17. If $A=\left[\begin{array}{lll}2 & 3 & -1 \\ 1 & 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$ then AB and BA are defined and equal.

(D) Watch Video Solution

18. Find the value of x and y that satisfy the equations $\left[\begin{array}{cc}3 & -2 \\ 3 & 0 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}y & y \\ x & x\end{array}\right]=\left[\begin{array}{cc}3 & 3 \\ 3 y & 3 y \\ 10 & 10\end{array}\right]$
19. Find the values of x, y, z if the matrix $A=[02 y z x y-z x-y z]$ satisfy the equation $A^{T} A=I_{3}$.

- Watch Video Solution

20. If $A=[\cos \theta \sin \theta-\sin \theta \cos \theta]$, then prove that
$A^{n}=[\cos n \theta \sin n \theta-\sin n \theta \cos n \theta], n \in N$.

- Watch Video Solution

21. If $A=\left(\begin{array}{cc}p & q \\ 0 & 1\end{array}\right)$, then show that $A^{8}=\left(\begin{array}{cc}p^{8} & q\left(\frac{p^{8}-1}{p-1}\right) \\ 0 & 1\end{array}\right)$

- Watch Video Solution

22. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ be a matrix. If $A^{10}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then prove that $a+d$ is divisible by 13 .
23. Show that the solutions of the equation $\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]^{2}=0 \operatorname{are}\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc} \pm \sqrt{\alpha \beta} & -\beta \\ \alpha & \pm \sqrt{\alpha \beta}\end{array}\right]$, where α, β are arbitrary.

- Watch Video Solution

24. Let a be square matrix. Then prove that $A A^{T}$ and $A^{T} A$ are symmetric matrices.

- Watch Video Solution

25. If A, B are square materices of same order and B is a skewsymmetric matrix, show that $A^{T} B A$ is skew-symmetric.

- Watch Video Solution

26. If a and B are square matrices of same order such that $A B+B A=O$, then prove that $A^{3}-B^{3}=(A+B)\left(A^{2}-A B-B^{2}\right)$.

- Watch Video Solution

27. Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$.lf $A^{6}=k A-205 I$ then then numerical quantity of $k-40$ should be

- Watch Video Solution

28. Let A, B, C, D be (not necessarily square) real matrices such that $A^{T}=B C D: B^{T}=C D A ; C^{T}=D A B$ and $D^{T}=A B C$. For the matrix $S=A B C D$, consider the two statements. I. $S^{3}=S$ II. $S^{2}=S^{4}$ (A) II is true but not I (B) I is true but not II (C) both I and II are true (D) both I and II are false
29. If A and B are square matrices of the same order such that $A B=B A$, then proveby induction that $A B^{n}=B^{n} A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in N$.

- Watch Video Solution

30. If $A=[-110-2]$, then prove that $A^{2}+3 A+2 I=O$. Hence, find BandC matrices of order 2 with integer elements, if $A=B^{3}+C^{3}$.

- Watch Video Solution

31. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then find tr. $\left(A^{2012}\right)$.

- Watch Video Solution

32. If A is a nonsingular matrix satisfying $A B-B A=A$, then prove that $\operatorname{det} .(B+I)=\operatorname{det},(B-I)$.
33. If det, $(A-B) \neq 0, A^{4}=B^{4}, C^{3} A=C^{3} B$ and $B^{3} A=A^{3} B$, then find the value of det. $\left(A^{3}+B^{3}+C^{3}\right)$.

- Watch Video Solution

34. Given a matrix $A=[a b c b c a c a b]$, wherea, b, c are real positive numbers $a b c=1$ and $A^{T} A=I$, then find the value of $a^{3}+b^{3}+c^{3}$.

- Watch Video Solution

35. If M is a 3×3 matrix, where det $M=1 a n d M M^{T}=1$, where I is an identity matrix, prove theat $\operatorname{det}(M-I)=0$.

- Watch Video Solution

36. Consider point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in first quadrant. Its reflection about x -axis is $Q\left(x_{1}, y_{1}\right)$. So, $x_{1}=x$ and $y(1)=-y$.
This may be written as: $\left\{\begin{array}{l}x_{1}=1 . x+0 . y \\ y_{1}=0 . x+(-1) y\end{array}\right.$
This system of equations can be put in the matrix as :
$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
Here, matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is the matrix of reflection about x-axis. Then find the matrix of reflection about the line $y=x$.

- Watch Video Solution

37. If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ then A is ${ }^{1}$) an idempotent matrix 2)
nilpotent matrix 3) involutary 4) orthogonal matrix

- Watch Video Solution

38. If $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then find $A^{14}+3 A-2 I$
39. The matrix $A=[-5-8035012-]$ is a. idempotent matrix b . involutory matrix c. nilpotent matrix d . none of these
A. idempotent matrix
B. involutory matrix
C. nilpotent matrix
D. none of these

Answer: involutory matrix

- Watch Video Solution

40. If $a b c=p$ and $A=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$, prove that A is orthogonal if and only if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the roots of the equation $x^{3} \pm x^{2}-p=0$.
41. Let A be an orthogonal matrix, and B is a matrix such that $A B=B A$, then show that $A B^{T}=B^{T} A$.

- Watch Video Solution

42. Find the adjoint of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3\end{array}\right]$.

- Watch Video Solution

43. If $S=\left[\begin{array}{cc}\frac{\sqrt{3}-1}{2 \sqrt{2}} & \frac{\sqrt{3}+1}{2 \sqrt{2}} \\ -\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) & \frac{\sqrt{3}-1}{2 \sqrt{2}}\end{array}\right], A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$ and $P=S($ adj.A $) S^{T}$, then find matrix $S^{T} P^{10} S$.

- Watch Video Solution

44. If A is a square matrix such that $A(\operatorname{adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then $=\frac{|\operatorname{adj}(a d j A)|}{2|\operatorname{adj} A|}$ is equal to

- Watch Video Solution

45. Let A be a square matrix of order 3 such that
$\operatorname{adj} .(\operatorname{adj} .(\operatorname{adj} . A))=\left[\begin{array}{ccc}16 & 0 & -24 \\ 0 & 4 & 0 \\ 0 & 12 & 4\end{array}\right]$. Then find
(i) $|A|$ (ii) adj. A

- Watch Video Solution

46. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$. If B is the inverse of A , then α is :

- Watch Video Solution

47. Matrices a and B satisfy $A B=B^{-1}$, where $B=\left[\begin{array}{cc}2 & -1 \\ 2 & 0\end{array}\right]$. Find
(i) without finding B^{-1}, the value of K for which
$K A-2 B^{-1}+I=O$.
(ii) without finding A^{-1}, the matrix X satifying $A^{-1} X A=B$.

- Watch Video Solution

48. Given the matrices A and B as $A=\left[\begin{array}{ll}1 & -1 \\ 4 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right]$. The two matrices X and Y are such that $X A=B$ and $A Y=B$, then find the matrix $3(X+Y)$

- Watch Video Solution

49. If M is the matrix $\left[\begin{array}{cc}1 & -3 \\ -1 & 1\end{array}\right]$ then find matrix $\sum_{r=0}^{\infty}\left(\frac{-1}{3}\right)^{r} M^{r+1}$

- Watch Video Solution

50. Let p be a non singular matrix, and $I+P+p^{2}+\ldots+p^{n}=0$, then find p^{-1}.

Watch Video Solution

51. If A and B are square matrices of same order such that $A B=O$ and $B \neq O$, then prove that $|A|=0$.

- Watch Video Solution

52. If A is a symmetric matrix, B is a skew-symmetric matrix, $A+B$ is nonsingular and $C=(A+B)^{-1}(A-B)$, then prove that
(i) $C^{T}(A+B) C=A+B$ (ii) $C^{T}(A-B) C=A-B$
(iii) $C^{T} A C=A$

- Watch Video Solution

53. If the matrices, A, B and $(A+B)$ are non-singular, then prove that $\left[A(A+B)^{-1} B\right]^{-1}=B^{-1}+A^{-1}$.

- Watch Video Solution

54. If matrix a satisfies the equation $A^{2}=A^{-1}$, then prove that $A^{2^{n}}=A^{2^{(n-2)}}, n \in N$.

- Watch Video Solution

55. If A and B are non-singular symmetric matrices such that $A B=B A$, then prove that $A^{-1} B^{-1}$ is symmetric matrix.

- Watch Video Solution

56. If A is a matrix of order n such that $A^{T} A=I$ and X is any matric such that $X=(A+I)^{-1}(A-I)$, then show that X is skew symmetric
matrix.

- Watch Video Solution

57. Show that two matrices
$A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 3 & 1\end{array}\right]$ are row equivalent.

- Watch Video Solution

58. Using elementary transformations, find the inverse of the matrix :
$(20-1510013)$

- Watch Video Solution

59. Let a be a 3×3 matric such that
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, then find A^{-1}.
60. Solve the following system of equations, using matrix method. $x+2 y+z=7, x+3 z=11,2 x-3 y=1$

- Watch Video Solution

61. Using matrix method, show that following system of equation is inconsistent

$$
: \quad 2 x+3 y-z+4=0
$$

$$
x-y+2 z-7=0
$$

$x+4 y-3 z+5=0$

- Watch Video Solution

62. about to only mathematics

- Watch Video Solution

63. Find the characteristic roots of the two-rowed orthogonal matrix $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and verify that they are of unit modulus.

(Watch Video Solution

64. Show that if $\lambda_{1}, \lambda_{2}, \ldots, \operatorname{lamnda} a_{n}$ are n eigenvalues of a square matrix a of order n , then the eigenvalues of the matric A^{2} are $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}$.

- Watch Video Solution

65. If A is nonsingular, prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalue of A.

- Watch Video Solution

66. If one of the eigenvalues of a square matrix a order 3×3 is zero, then prove that $\operatorname{det} A=0$.

Watch Video Solution

Cae 131

1. Construct a 3×4 matrix, whose elements are given by:
$a_{i j}=\frac{1}{2}|-3 i+j|^{\text {, }}$

- Watch Video Solution

2. Find the value of a if $[a-b 2 a+c 2 a-b 3 c+d]=[-15013]$

- Watch Video Solution

3. Find the number of all possible matrices of order 3×3 with each entry 0 or 1 . How many of these are symmetric ?

- Watch Video Solution

4. Find the value of x for which the matrix $A=\left[\begin{array}{ccc}2 / x & -1 & 2 \\ 1 & x & 2 x^{2} \\ 1 & 1 / x & 2\end{array}\right]$ is singular.

- Watch Video Solution

5. If matric A is skew-symmetric matric of odd order, then show that tr. $\mathrm{A}=$ det. A.

- Watch Video Solution

1. Solve for x and $\mathrm{y}, x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{l}-8 \\ -11\end{array}\right]=0$.

Watch Video Solution

2. If $A=\left[\begin{array}{ll}1 & 5 \\ 7 & 12\end{array}\right]$ and $B=\left[\begin{array}{ll}9 & 1 \\ 7 & 8\end{array}\right]$ then find a matrix C such that $3 A+5 B+2 C$ is a null matrix.

- Watch Video Solution

3. Solve the following equations for X and Y :
$2 X-Y=\left[\begin{array}{ccc}3 & -3 & 0 \\ 3 & 3 & 2\end{array}\right], 2 Y+X=\left[\begin{array}{ccc}4 & 1 & 5 \\ -1 & 4 & -4\end{array}\right]$

- Watch Video Solution

4. If

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] B=\left[\begin{array}{ccc}
1 & 2 & 2 \\
-2 & -1 & -2 \\
2 & 2 & 3
\end{array}\right]
$$

$C=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$ then find the value of $\operatorname{tr} .\left(A+B^{T}+3 C\right)$.
5. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$, then find all the possible values of λ such that the matrix $(A-\lambda I)$ is singular.

- Watch Video Solution

6. If matrix $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]=B+C$, where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

- Watch Video Solution

Cae 133

1. Consider the matrices

$$
A=\left[\begin{array}{ccc}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5
\end{array}\right], B=\left[\begin{array}{cc}
2 & 4 \\
0 & 1 \\
-1 & 2
\end{array}\right], C=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

Out of the given matrix products, which one is not defined?
A. $(A B)^{T} C$
B. $C^{T} C(A B)^{T}$
C. $C^{T} A B$
D. $A^{T} A B B^{T} C$

Answer: B

- Watch Video Solution

2. Let $A=B B^{T}+C C^{T}$, where $B=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], C=\left[\begin{array}{c}\sin \theta \\ -\cos \theta\end{array}\right], \theta \in R$. Then prove that a is unit matrix.

Watch Video Solution

3. The matrix $\mathrm{R}(\mathrm{t})$ is defined by $R(t)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$. Show that $R(s) R(t)=R(s+t)$.
4. if $A=\left[\begin{array}{cc}i & 0 \\ 0 & i\end{array}\right]$ where $i=\sqrt{-1}$ and $x \varepsilon N$ then $A^{4 x}$ equals to:

- Watch Video Solution

5. If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$ prove that $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$ where k is any positive integer.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and X is a matrix such that $A=B X$, then $\mathrm{X}=$

- Watch Video Solution

7. for what values of x :
$\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$?

(Watch Video Solution

8. Find the matrix X so that $X[123456]=[-7-8-9246]$

- Watch Video Solution

9. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\operatorname{Lim}_{x>\infty} \frac{1}{n} A^{n}$ is
A. (A) an identity matrix
B. (B) $[010-10]$
C. (C) a null matrix
D. (D) none of these

(D) Watch Video Solution

10. $A=\left[\begin{array}{ccc}3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2\end{array}\right]$ is symmetric and $B=\left[\begin{array}{ccc}d & 3 & a \\ b-a & e & -2 b-c \\ -2 & 6 & -f\end{array}\right]$ is skew-symmetric, then find AB.

- Watch Video Solution

Cae 134

1. If A and B are matrices of the same order, then $A B^{T}-B^{T} A$ is a (a) skew-symmetric matrix (b) null matrix (c) unit matrix (d) symmetric matrix

- Watch Video Solution

2. If A and B are square matrices such that $A B=B A$ then prove that $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$.
3. If A is a square matrix such that $A^{2}=I$, then $(A-I)^{3}+(A+I)^{3}-7 A$ is equal to

- Watch Video Solution

4. If B, C are square matrices of order nand if $A=B+C, B C=C B, C^{2}=O, \quad$ then without using mathematical induction, show that for any positive integer $p, A^{p+1}=B^{p}[B+(p+1) C]$.

Watch Video Solution

5. Let A be any 3×2 matrix. Then prove that det. $\left(A A^{T}\right)=0$.

- Watch Video Solution

6. Let A be a matrix of order 3, such that $A^{T} A=I$. Then find the value of det. $\left(A^{2}-I\right)$.

- Watch Video Solution

7. A and B are different matrices of order n satisfying $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$. If det. $(A-B) \neq 0$, then find the value of det. $\left(A^{2}+B^{2}\right)$.

- Watch Video Solution

8. If $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{n}\right]$, then prove that $f(D)=\operatorname{diag}\left[f\left(d_{1}\right), f\left(d_{2}\right),, f\left(d_{n}\right)\right]$, where $f(x)$ is a polynomial with scalar coefficient.

- Watch Video Solution

9. Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is rotated by an angle θ in anticlockwise direction. The new position of point P is $Q\left(x_{1}, y_{1}\right)$. If $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$, then find matrix A.

(Watch Video Solution

10. How many different diagonal matrices of order n can be formed which are involuntary?

D Watch Video Solution

11. How many different diagonal matrices of order n can be formed which are involuntary?

- Watch Video Solution

12. If A and B are n-rowed unitary matrices, then $A B$ and $B A$ are also unitary matrices.

Cae 135

1. By the method of matrix inversion, solve the system.
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1\end{array}\right]\left[\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3}\end{array}\right]=\left[\begin{array}{cc}9 & 2 \\ 52 & 15 \\ 0 & -1\end{array}\right]$

- Watch Video Solution

2. Let $A=\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-x & 14 x & 7 x \\ 0 & 1 & 0 \\ x & -4 x & -2 x\end{array}\right]$ are two matrices such that $A B=(A B)^{-1}$ and $A B \neq I$ then $\operatorname{Tr}\left((A B)+(A B)^{2}+(A B)^{3}+(A B)^{4}+(A B)^{5}+(A B)^{6}\right)=$
3. Find A^{-1} if $A=\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$ and show that $A^{-1}=\frac{A^{2}-3 I}{2}$

- Watch Video Solution

4. For the matrix $A=[3175]$, find x and y so that $A^{2}+x I=y A$.

- Watch Video Solution

5. If $A^{3}=O$, then prove that $(I-A)^{-1}=I+A+A^{2}$.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right], B=\left[\begin{array}{cc}\cos 2 \beta & \sin 2 \beta \\ \sin \beta & -\cos \beta\end{array}\right]$ where $0<\beta<\frac{\pi}{2}$, then prove that $B A B=A^{-1}$. Alsp, find the least value of α of which $B A^{4} B=A^{-1}$
7. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3\end{array}\right], C=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right], D=\left[\begin{array}{c}10 \\ 13 \\ 9\end{array}\right]$, and $C B=D$.

Solve the equation $A X=B$.

- Watch Video Solution

8. If A is a 2×2 matrix such that $A^{2}-4 A+3 I=O$, then prove that $(A+3 I)^{-1}=\frac{7}{24} I-\frac{1}{24} A$.

- Watch Video Solution

9. For two unimobular complex numbers z_{1} and z_{2}, find $\left[\begin{array}{cc}\bar{z}_{1} & -z_{2} \\ \bar{z}_{2} & z_{1}\end{array}\right]^{-1}\left[\begin{array}{cc}z_{1} & z_{2} \\ -\bar{z}_{2} & \bar{z}_{1}\end{array}\right]^{-1}$

- Watch Video Solution

10. Prove that inverse of a skew-symmetric matrix (if it exists) is skewsymmetric.

- Watch Video Solution

11. If square matrix a is orthogonal, then prove that its inverse is also orthogonal.

- Watch Video Solution

12. If A is a skew symmetric matrix, then $B=(I-A)(I+A)^{-1}$ is (where I is an identity matrix of same order as of A)

- Watch Video Solution

13. Prove that $(\operatorname{adj} . \quad A)^{-1}=\left(\operatorname{adj} . \quad A^{-1}\right)$.
14. Using elementary transformation, find the inverse of the matrix $A=\left[\begin{array}{cc}a & b \\ c & \left(\frac{1+b c}{a}\right)\end{array}\right]$.

- Watch Video Solution

15. If A and P are the square matrices of the same order and if P be invertible, show that the matrices A and ${ }^{\prime} P^{\wedge}(-1)$ have the same characteristic roots.

- Watch Video Solution

16. Show that the characteristics roots of an idempotent matris are either O or 1

- Watch Video Solution

17. If α is a characteristic root of a nonsin-gular matrix, then prove that $\frac{|A|}{\alpha}$ is a characteristic root of adj A .

- Watch Video Solution

Exercises

1. If A is symmetric as well as skew-symmetric matrix, then A is
A. diagonal matrix
B. null matrix
C. triangular materix
D. none of these

Answer: B

- Watch Video Solution

2. Elements of a matrix A of order 10×10 are defined as $a_{i j}=\omega^{i+j}$ (where omega is cube root unity), then $\operatorname{tr}(\mathrm{A})$ of matrix is
A. 0
B. 1
C. 3
D. none of these

Answer: D

- Watch Video Solution

3. If $A_{1}, A_{2}, A_{2 n-1}$ aren skew-symmetric matrices of same order, then $B=\sum_{r=1}^{n}(2 r-1)\left(A^{2 r-1}\right)^{2 r-1}$ will be i) symmetric ii) skew-symmetric iii) neither symmetric nor skew-symmetric iv) data not adequate
A. symmetric
B. skew-symmetric
C. neither symmetric nor skew-symmetric
D. data not adequate

Answer: B

- Watch Video Solution

4. The equation $[1 x y]\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=[0]$ has
i) $y=0(p)$ rational roots
ii) $y=-1$ (q) irrational roots
(r) integral roots
(i) (ii)
(p) (r)
(i) (ii)
B.
(q) (p)
(i) (ii)
C.
(p) (q)
(i) (ii)
(r) (p)

- Watch Video Solution

5. Let AandB be two 2×2 matrices. Consider the statements (i)
$A B=O \Rightarrow A=O$ or $B=O \quad$ (ii) $A B=I_{2} \Rightarrow A=B^{-1}$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$ (a)(i) and (ii) are false, (iii) is true (b)(ii) and (iii) are false, (i) is true (c)(i) is false (ii) and, (iii) are true (d)(i) and (iii) are false, (ii) is true
A. (i) and (ii) are false, (iii) is true
B. (ii) and (iii) are false, (i) is true
C. (i) is false, (ii) and (iii) are true
D. (i) and (iii) are false, (ii) is true

Answer: D

- Watch Video Solution

6. The number of diagonal matrix, A or ordern which $A^{3}=A$ is a. is a a. 1
b. 0 c. 2^{n} d. 3^{n}
A. 1
B. 0
C. 2^{n}
D. 3^{n}

Answer: D

- Watch Video Solution

7. A is a 2×2 matrix such that
$A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. The sum of the elements of
A is a. -1 b. 0 c. 2 d. 5
A. -1
B. 0
C. 2
D. 5

Answer: D

- Watch Video Solution

8.

If $\theta-\phi=\frac{\pi}{2}$,
prove
that,
$\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]=0$
A. $2 n \pi, \in Z$
B. $n \frac{\pi}{2}, n \in Z$
C. $(2 n+1) \frac{\pi}{2}, n \in X$
D. $n \pi, n \in Z$

Answer: C

- Watch Video Solution

9. If $A=[a b 0 a]$ is nth root of I_{2}, then choose the correct statements: If n is odd, $a=1, b=0$ If n is odd, $a=-1, b=0$ If n is even, $a=1, b=0$ If n is even, $a=-1, b=0 \mathrm{a} . \mathrm{i}, \mathrm{ii}$, iii , iv b . ii , iii , iv $\mathrm{c} . \mathrm{i}, \mathrm{ii}$, iii, iv d. i, iii, iv
A. i, ii, iii
B. ii, iii, iv
C. i, ii, iii, iv
D. i, iii, iv

Answer: D

- Watch Video Solution

10. If $[\alpha \beta \gamma-\alpha]$ is to be square root of two-rowed unit matrix, then $\alpha, \beta a n d \gamma$ should satisfy the relation. $1-\alpha^{2}+\beta \gamma=0 \mathrm{~b} . \alpha^{2}+\beta \gamma=0 \mathrm{c}$.

$$
1+\alpha^{2}+\beta \gamma=0 \mathrm{~d} .1-\alpha^{2}-\beta \gamma=0
$$

A. $1-\alpha^{2}+\beta \gamma=0$
B. $\alpha^{2}+\beta \gamma-1=0$
C. $1+\alpha^{2}+\beta \gamma=0$
D. $1-\alpha^{2}-\beta \gamma=0$

Answer: B

- Watch Video Solution

11. If $A=\left[\begin{array}{cc}i & -i \\ -i & i\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$, then, A^{8} equals a. $4 B$ b. $128 B$ c. $-128 B$ d. $-64 B$
A. 4 B
B. 128 B
C. -128 B
D. -64 B

Answer: B

12. If $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$, then sum of all the elements
of matrix A is 0 b .1 c .2 d . -3
A. 0
B. 1
C. 2
D. -3

Answer: B

- Watch Video Solution

13. For each real $x,-1<x<1$. Let $\mathrm{A}(\mathrm{x})$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$. Then

$$
\text { A. } A(z)=A(x) A(y)
$$

B. $A(z)=A(x)-A(y)$
C. $A(z)=A(x)+A(y)$
D. $A(z)=A(x)[A(y)]^{-1}$

Answer: A

- Watch Video Solution

14. Let $A=[0-\tan (\alpha / 2) \tan (\alpha / 2) 0]$ and I be the identity matrix of order 2. Show that $I+A=(I-A)[\cos \alpha-\sin \alpha \sin \alpha \cos \alpha]$.
A. $-I+A$
B. $I-A$
C. $-I-A$
D. none of these

Answer: B

15. The number of solutions of the matrix equation $X^{2}=[1123]$ is a. more than 2 b. 2 c. 0 d. 1
A. more then 2
B. 2
C. 0
D. 1

Answer: A

- Watch Video Solution

16. If $A=[a b c d]$ (where $b c \neq 0$) satisfies the equations $x^{2}+k=0$, then $a+d=0 \mathrm{~b} . K=-|A| \mathrm{c} . k=|A|$ d. none of these
A. $a+d=0$
B. $k=-|A|$
C. $k=|A|$
D. none of these

Answer: C

- Watch Video Solution

17. $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right] ; B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right] \quad \& \quad c=\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$,
$\operatorname{tr}(A)+\operatorname{tr}\left[\frac{A B C}{2}\right]+\operatorname{tr}\left[\frac{A(B C)^{2}}{4}\right]+\operatorname{tr}\left[\frac{A(B C)^{2}}{8}\right]+\ldots . \infty$ is:
A. 6
B. 9
C. 12
D. none of these

Answer: A

18. If $\left[\frac{\cos (2 \pi)}{7}-\frac{\sin (2 \pi)}{7} \frac{\sin (2 \pi)}{7} \frac{\cos (2 \pi)}{7}\right]=[1001]$, then the least positive integral value of k is (a) 3 (b) 4 (c) 6 (d) 7
A. 3
B. 6
C. 7
D. 14

Answer: C

- Watch Video Solution

19. If A and B are square matrices of order n, then prove that AandB will commute iff $A-\lambda \operatorname{Iand} B-\lambda I$ commute for every scalar λ.
A. $A B=B A$
B. $A B+B A=O$
C. $A=-B$
D. none of these

Answer: A

- Watch Video Solution

20. Matrix A such that $A^{2}=2 A-I$, where I is the identity matrix, the for $n \geq 2 . A^{n}$ is equal to $2^{n-1} A-(n-1) l$ b. $2^{n-1} A-I$ C. $n A-(n-1) l$ d. $n A-I$
A. $2^{n-1} A-(n-1) I$
B. $2^{n-1} A-I$
C. $n A-(n-1) I$
D. $n A-I$

Answer: C

- Watch Video Solution

21. Let $A=\left[\begin{array}{ll}0 & \alpha \\ 0 & 0\end{array}\right]$ and $(A+I)^{50}=50 A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ Then the value of $a+b+c+d$ is (A) 2 (B) 1 (C) 4 (D) none of these
A. 2
B. 1
C. 4
D. none of these

Answer: A

- Watch Video Solution

22. If Z is an idempotent matrix, then $(I+Z)^{n}$
A. $I+2^{n} Z$
B. $I+\left(2^{n}-1\right) Z$
C. $I-\left(2^{n}-1\right) Z$
D. none of these

Answer: B

D Watch Video Solution

23. if AandB are squares matrices such that $A^{2006}=\operatorname{Oand} A B=A+B$, thendet (B) equals $0 \mathrm{~b} .1 \mathrm{c} .-1 \mathrm{~d}$. none of these
A. 0
B. 1
C. -1
D. none of these

Answer: A

24. If matrix A is given by $A=\left[\begin{array}{cc}6 & 11 \\ 2 & 4\end{array}\right]$ then determinant of $A^{2005}-6 A^{2004}$ is
A. 2^{2006}
B. $(-11) 2^{2005}$
C. $-2^{2005} .7$
D. $(-9) 2^{2004}$

Answer: B

25. If A is a non-diagonal involutory matrix, then
A. $A-I=O$
B. $A+I=O$
C. $A-I$ is nonzero singular
D. none of these

Answer: C

- Watch Video Solution

26. If A and B are two nonzero square matrices of the same order such that the product $A B=O$, then
A. both A and B must be singular
B. exactly one of them must be singular
C. both of them are nonsingular
D. none of these

Answer: A

- Watch Video Solution

27. If A and B are symmetric matrices of the same order and $X=A B+B A$ and $Y=A B-B A$, then $(X Y)^{T}$ is equal to : (A) $X Y$ (B) $Y X$ (C) $-Y X$ (D) non of these
A. $X Y$
B. $Y X$
C. $-Y X$
D. none of these

Answer: C

- Watch Video Solution

28. If $A, B, A+I, A+B$ are idempotent matrices, then $A B$ is equal to $B A$ b. $-B A$ c. I d. O
A. $B A$
B. $-B A$
C. I
D. O

Answer: B

- Watch Video Solution

29. If $A=\left[\begin{array}{ll}0 & x \\ y & 0\end{array}\right]$ and $A^{3}+A=O$ then sum of possible values of xy is
A. 0
B. -1
C. 1
D. 2

Answer: B

- Watch Video Solution

30．Which of the following is an orthogonal matrix？（ $\lceil\mid\lfloor 6 / 72 / 7-3 /$ 72／73／76／73／7－6／72／7才｜」（b）「｜【6／72／73／72／7－3／7 6／73／76／7－2／7才｜」（c）「｜L－6／7－2／7－3／72／73／76／7－3 ／76／72／7才｜」（d）「｜【6／7－2／73／72／72／7－3／7－6／72／73 ／ 7 1｜」

A．$\left[\begin{array}{ccc}6 / 7 & 2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ 3 / 7 & -6 / 7 & 2 / 7\end{array}\right]$
B．$\left[\begin{array}{ccc}6 / 7 & 2 / 7 & 3 / 7 \\ 2 / 7 & -3 / 7 & 6 / 7 \\ 3 / 7 & 6 / 7 & -2 / 7\end{array}\right]$
C．$\left[\begin{array}{ccc}-6 / 7 & -2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ -3 / 7 & 6 / 7 & 2 / 7\end{array}\right]$

Answer：A

－Watch Video Solution

31. Let A and B be two square matrices of the same size such that $A B^{T}+B A^{T}=O$. If A is a skew-symmetric matrix then BA is
A. a symmetric matrix
B. a skew-symmetric matrix
C. an orthogonal matrix
D. an invertible matrix

Answer: B

- Watch Video Solution

32. In which of the following type of matrix inverse does not exist always?
a. idempotent b. orthogonal c. involuntary d . none of these
A. idempotent
B. orthogonal
C. involuntary
D. none of these

Answer: A

- Watch Video Solution

33. Let A be an nth-order square matrix and B be its adjoint, then $\left|A B+K I_{n}\right|$ is (where K is a scalar quantity) $(|A|+K)^{n-2}$ b. $(|A|+K)^{n}$ c. $(|A|+K)^{n-1}$ d. none of these
A. $(|A|+K)^{n-2}$
B. $(|A|+K)^{n}$
C. $(|A|+K)^{n-1}$
D. none of these

Answer: B

D Watch Video Solution

34. If $A=\left[\begin{array}{ccc}a & b & c \\ x & y & z \\ p & q & r\end{array}\right], B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ and If A is invertible, then
which of the following is not true?
A. $|A|=|B|$
B. $|A|=-|B|$
C. $|\operatorname{adj} \mathrm{A}|=|\operatorname{adj} \mathrm{B}|$
D. A is invertible if and only if B is invertible

Answer: A

- Watch Video Solution

35. If $A(\alpha, \beta)=\left[\cos \alpha s \in \alpha 0-s \in \alpha \cos \alpha 000 e^{\beta}\right]$, then $A(\alpha, \beta)^{-1}$ is equal to $A(-\alpha,-\beta)$ b. $A(-\alpha, \beta)$ c. $A(\alpha,-\beta)$ d. $A(\alpha, \beta)$
A. $A(-\alpha,-\beta)$
B. $A(-\alpha, \beta)$
C. $A(\alpha,-\beta)$
D. $A(\alpha, \beta)$

Answer: A

- Watch Video Solution

36. If $A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$ and $a^{2}+b^{2}+c^{2}+d^{2}=1$, then A^{-1} is equal to
A. $\left[\begin{array}{cc}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]$
B. $\left[\begin{array}{cc}a+i b & -c+i d \\ -c+i d & a-i b\end{array}\right]$
C. $\left[\begin{array}{cc}a-i b & -c-i d \\ -c-i d & a+i b\end{array}\right]$
D. none of these

Answer: A

37. Id $[1 / 250 x 1 / 25]=[50-a 5]^{-2}$, then the value of x is $a / 125 \mathrm{~b}$.
$2 a / 125$ c. $2 a / 25 \mathrm{~d}$. none of these
A. $a / 125$
B. $2 a / 125$
C. $2 a / 25$
D. none of these

Answer: B

- Watch Video Solution

38. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=\frac{1+x}{1-x}$, then $f(A)$ is
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
D. none of these

Answer: C

- Watch Video Solution

39. There are two possible values of A in the solution of the matrix equation

$$
\left[\begin{array}{cc}
2 A+1 & -5 \\
-4 & A
\end{array}\right]^{-1}\left[\begin{array}{cc}
A-5 & B \\
2 A-2 & C
\end{array}\right]=\left[\begin{array}{cc}
14 & D \\
E & F
\end{array}\right]
$$

where A, B, C, D, E and F are real numbers. The absolute value of the difference of these two solutions, is
A. $\frac{8}{3}$
B. $\frac{19}{3}$
C. $\frac{1}{3}$
D. $\frac{11}{3}$

Answer: B

40. If A and B are two square matrices such that $B=-A^{-1} B A$, then $(A+B)^{2}$ is equal to
A. $A^{2}+B^{2}$
B. O
C. $A^{2}+2 A B+B^{2}$
D. $A+B$

Answer: A

- Watch Video Solution

41.

$A=[1 \tan x-\tan x 1]$,
show
that
$A^{T} A^{-1}=[\cos 2 x-\sin 2 x \sin 2 x \cos 2 x]$
A. $\left[\begin{array}{ll}-\cos 2 x & \sin 2 x \\ -\sin 2 x & \cos 2 x\end{array}\right]$
B. $\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$
C. $\left[\begin{array}{ll}\cos 2 x & \cos 2 x \\ \cos 2 x & \sin 2 x\end{array}\right]$
D. none of these

Answer: B

- Watch Video Solution

42. If A is order 3 square matrix such that $|A|=2$, then $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|$ is
A. 512
B. 256
C. 64
D. none of these

Answer: B

43. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$ and $A^{-1}\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & b \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$ then
A. 1, 1
B. $1,-1$
C. 1, 2
D. $-1,1$

Answer: B

- Watch Video Solution

44. If nth-order square matrix A is a orthogonal, then $|\operatorname{adj}(\operatorname{adj} A)|$ is
A. always -1 if n is even
B. always 1 if n is odd
C. always 1
D. none of these

Answer: B

- Watch Video Solution

45. Let $a a n d b$ be two real numbers such that $a>1, b>1$. If $A=(a 00 b)$, then $(\lim)_{n} \vec{\infty} A^{-n}$ is a. unit matrix b. null matrix c. $2 l \mathrm{~d}$. none of these
A. unit matrix
B. null matrix
C. $2 I$
D. none of these

Answer: B

46. If $A=\left[a_{\mathrm{ij}}\right]_{4 \times 4}$, such that $a_{\mathrm{ij}}=\left\{\begin{array}{ll}2, & \text { when } i=j \\ 0, & \text { when } i \neq j\end{array}\right.$, then $\left\{\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))}{7}\right\}$ is (where $\{\cdot\}$ represents fractional part function)
A. $1 / 7$
B. $2 / 7$
C. $3 / 7$
D. none of these

Answer: A

- Watch Video Solution

47. A is an involuntary matrix given by $A=[01-14-343-34]$, then the inverse of $A / 2$ will be $2 A$ b. $\frac{A^{-1}}{2}$ c. $\frac{A}{2}$ d. A^{2}
A. $2 A$
B. $\frac{A^{-1}}{2}$
C. $\frac{A}{2}$
D. A^{2}

Answer: A

- Watch Video Solution

48. If A is a nonsingular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then matrix B is
A. involuntary
B. orthogonal
C. idempotent
D. none of these

Answer: B

49. If P is an orthogonal matrix and $Q=P A P^{T} a n d x=P^{T} A$ b. I c.
A^{1000} d. none of these
A. A
B. I
C. A^{1000}
D. none of these

Answer: B

- Watch Video Solution

50. If $A a n d B$ are two non-singular matrices of the same order such that $B^{r}=I, \quad$ for some positive integer $r>1$, then $\left(A^{-1} B^{r-1} A\right)-\left(A^{-1} B^{-1} A\right)=$ a. I b. $2 I$ c. O d. -1
A. I
B. $2 I$
C. O
D. $-I$

Answer: C

- Watch Video Solution

51. If $\operatorname{adj} B=A,|P|=|Q|=1$, thenadj $\left(Q^{-1} B P^{-1}\right)$ is $P Q$ b. $Q A P$ c. $P A Q$ d. $P A^{1} Q$
A. $P Q$
B. $Q A P$
C. $P A Q$
D. $P A^{-1} Q$

Answer: C

52. If A is non-singular and $(A-2 I)(A-4 I)=O$, then $\frac{1}{6} A+\frac{4}{3} A^{-1}$ is equal to $O I \mathrm{~b} .2 I \mathrm{c} .6 I \mathrm{~d} . I$
A. O
B. I
C. $2 I$
D. $6 I$

Answer: B

- Watch Video Solution

53. Let $f(x)=\frac{1+x}{1-x}$. If A is matrix for which $A^{3}=0$,then $f(A)$ is (a) $I+A+A^{2}$ (b) $I+2 A+2 A^{2}$ (c) $I-A-A^{2}$ (d) none of these
A. $I+A+A^{2}$
B. $I+2 A+2 A^{2}$
C. $I-A-A^{2}$
D. none of these

Answer: B

- Watch Video Solution

54. Find the matrix A satisfying the matrix equation
$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
D. $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Answer: A

55. If $A^{2}-A+I=0$, then the inverse of A is: (A) $A+I$ (B) A (C) $A-I$
(D) $I-A$
A. A^{-2}
B. $A+I$
C. $I-A$
D. $A-I$

Answer: C

- Watch Video Solution

56. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(y)=\left[\begin{array}{ccc}\cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y\end{array}\right]$, then $[F(x) G(y)]^{-1}$ is equal to
A. $F(-x) G(-y)$
B. $G(-y) F(-x)$
C. $F\left(x^{-1}\right) G\left(y^{-1}\right)$
D. $G\left(y^{-1}\right) F\left(x^{-1}\right)$

Answer: B

- Watch Video Solution

57. about to only mathematics
A. $A^{-n} B^{n} A^{n}$
B. $A^{n} B^{n} A^{-n}$
C. $A^{-1} B^{n} A$
D. $n\left(A^{-1} B A\right)$

Answer: C

58. If $k \in R_{o}$ then $\operatorname{det}\left\{\operatorname{adj}\left(k I_{n}\right)\right\}$ is equal to K^{n-1} b. $K^{n(n-1)}$ c. K^{n} d. k
A. k^{n-1}
B. $k^{n(n-1)}$
C. k^{n}
D. k

Answer: B

- Watch Video Solution

59. Given that matrix $A\left[\begin{array}{lll}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$. If $x y z=60$ and $8 x+4 y+3 z=20$, then $A(\operatorname{adj} A)$ is equal to
A. $\left[\begin{array}{ccc}64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64\end{array}\right]$
B. $\left[\begin{array}{ccc}88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88\end{array}\right]$
C. $\left[\begin{array}{ccc}68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68\end{array}\right]$
D. $\left[\begin{array}{ccc}34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34\end{array}\right]$

Answer: C

- Watch Video Solution

60. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$. Which of the following is a true? a. $A X=B$ has a unique solution b. $A X=B$ has exactly three solutions c. $A x=B$ has infinitely many solutions d. $A X=B$ is inconsistent
A. $A X=B$ has a unique solution
B. $A X=B$ has exactly three solutions
C. $A X=B$ has infinitelt many solutions
D. $A X=B$ is inconsistent

- Watch Video Solution

61. If A is a square matrix of order less than 4 such that $\left|A-A^{T}\right| \neq 0$ and $B=\operatorname{adj}$. (A), then adj. $\left(B^{2} A^{-1} B^{-1} A\right)$ is
A. A
B. B
C. $|A| A$
D. $|B| B$

Answer: A

- Watch Video Solution

62. Let A be a square matrix of order 3 such that det. $(A)=\frac{1}{3}$, then the value of det. (adj. $\left.A^{-1}\right)$ is
A. $1 / 9$
B. $1 / 3$
C. 3
D. 9

Answer: D

- Watch Video Solution

63. If A and B are two non-singular matrices of order 3 such that $A A^{T}=2 I$ and $A^{-1}=A^{T}-A$. Adj. $\left(2 B^{-1}\right)$, then det. (B) is equal to
A. 4
B. $4 \sqrt{2}$
C. 16
D. $16 \sqrt{2}$
64. If A is a square matric of order 5 and $2 A^{-1}=A^{T}$, then the remainder when $|\operatorname{adj} .(\operatorname{adj} .(\operatorname{adj} . ~ A))|$ is divided by 7 is
A. 2
B. 3
C. 4
D. 5

Answer: A

- Watch Video Solution

65. Let $P=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1\end{array}\right]$. If the product $P Q$ has inverse
$R=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]$ then Q^{-1} equals
A. $\left[\begin{array}{ccc}3 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 8\end{array}\right]$
B. $\left[\begin{array}{ccc}5 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 7\end{array}\right]$
C. $\left[\begin{array}{ccc}2 & -1 & 0 \\ 10 & 6 & 3 \\ 8 & 6 & 4\end{array}\right]$
D. none of these

Answer: C

Watch Video Solution

Multiple Correct Answer

1. If A is unimodular, then which of the following is unimodular? $-A \mathrm{~b}$.
A^{-1} c. adj A d. ωA, where ω is cube root of unity
A. $-A$
B. A^{-1}
C. $\operatorname{adj} \mathrm{A}$
D. ωA, where ω is cube root of unity

Answer: B::C

- Watch Video Solution

2. Let $A=a_{0}$ be a matrix of order 3 , where $a_{i j}=x ; \quad$ if $i=j, x \in R, 1$ if $|i-j|=1,0 ;$ otherwise then when of the following Hold (s) good: for $x=2$, (a) A is a diagonal matrix (b) A is a symmetric matrix for $x=2$, (c) det A has the value equal to 6 (d) Let $f(x)=$, det A, then the function $f(x)$ has both the maxima and minima.
A. for $\mathrm{x}=2, \mathrm{~A}$ is a diagonal matrix
B. A is a symmetric matrix
C. for $x=2, \operatorname{det} A$ has the value equal to 6
D. Let $f(x)=\operatorname{det} \mathrm{A}$, then the function $\mathrm{f}(\mathrm{x})$ has both the maxima and minima

Answer: B::D

- Watch Video Solution

3.

$A=[1-121], B=[a 1 b-1] \operatorname{and}(A+B)^{2}=A^{2}+b^{2}+2 A B$, then $a=-1 \mathrm{~b} \cdot a=1 \mathrm{c} \cdot b=2 \mathrm{~d} . b=-2$
A. $a=-1$
B. $a=1$
C. $b=2$
D. $b=-2$

Answer: A: D

4. If $A B=A$ and $B A=B$ then which of the following is/are true ?
A. (a) A is idempotent
B. (b) B is idempotent
C. (c) A^{T} is idempotent
D. (d) none of these

Answer: A::B::C

- Watch Video Solution

5. If $A(\theta)=\left[\begin{array}{cc}\sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta\end{array}\right]$, then which of the following is not true?
A. $A(\theta)^{-1}=A(\pi-\theta)$
B. $A(\theta)+A(\pi+\theta)$ is a null matrix
C. $A(\theta)$ is invertible for all $\theta \in R$
D. $A(\theta)^{-1}=A(-\theta)$

D Watch Video Solution

6. Let A and B be two nonsingular square matrices, A^{T} and B^{T} are the tranpose matrices of A and B, respectively, then which of the following are correct ?
A. $B^{T} A B$ is symmetric matrix if A is symmetric
B. $B^{T} A B$ is symmetric matrix if B is symmetric
C. $B^{T} A B$ is skew-symmetric matrix for every matrix A
D. $B^{T} A B$ is skew-symmetric matrix if A is skew-symmetric

Answer: A::D

- Watch Video Solution

7. If B is an idempotent matrix, and $A=I-B$, then
A. $A^{2}=A$
B. $A^{2}=I$
C. $A B=O$
D. $B A=O$

Answer: A::C::D

- Watch Video Solution

8. If $A_{1}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right], A_{2}=\left[\begin{array}{cccc}0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0\end{array}\right]$, then $A_{i} A_{k}+A_{k} A_{i}$ is equal to $2 l$ if $i=k \mathrm{~b} . O$ if $i \neq k \mathrm{c} .2 l$ if $i \neq k \mathrm{~d}$. O always
A. $2 I$ if $i=k$
B. O if $i \neq k$
C. $2 I$ if $i \neq k$
D. O always

- Watch Video Solution

9. Suppose a_{1}, a_{2}, \ldots. Are real numbers, with $a_{1} \neq 0$. If $a_{1}, a_{2}, a_{3}, \ldots$ Are in A.P., then
A. $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{5} & a_{6} & a_{7}\end{array}\right]$ is singular (where $i=\sqrt{-1}$)
B. the
system of
equations

$$
a_{1} x+a_{2} y+a_{3} z=0, a_{4} x+a_{5} y+a_{6} z=0, a_{7} x+a_{8} y+a_{9} z=0
$$

has infinite number of solutions
C. $B\left[\begin{array}{cc}a_{1} & i a_{2} \\ i a_{2} & a_{1}\end{array}\right]$ is nonsingular
D. none of these

Answer: A::B::C

- Watch Video Solution

10. If α, β, γ are three real numbers and $A=\left[\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos (\alpha-\gamma) \\ \cos (\beta-\alpha) & 1 & \cos (\beta-\gamma) \\ \cos (\gamma-\alpha) & \cos (\gamma-\beta) & 1\end{array}\right]$, then which of following is/are true? a. A is singular b. A is symmetric c. A is orthogonal d. A is not invertible
A. A is singular
B. A is symmetric
C. A is orthogonal
D. A is not invertible

Answer: A::B::D

- Watch Video Solution

11. If D_{1} and D_{2} are two 3×3 diagonal matrices, then which of the following is/are true ?
A. $D_{1} D_{2}$ is a diagonal matrix
B. $D_{1} D_{2}=D_{2} D_{1}$
C. $D_{1}^{2}+D_{2}^{2}$ is a diagonal matrix
D. none of these

Answer:

- Watch Video Solution

12. Let A be the 2×2 matrix given by $A=\left[a_{\mathrm{ij}}\right]$ where $a_{\mathrm{ij}} \in\{0,1,2,3,4\}$ such theta $a_{11}+a_{12}+a_{21}+a_{22}=4$ then which of the following statement(s) is/are true ?
A. Number of matrices A such that the trace of A equal to 4 , is 5
B. Number of matrices A, such that A is invertible is 18
C. Absolute difference between maximum value and minimum value of $\operatorname{det}(\mathrm{A})$ is 8
D. Number of matrices A such that A is either symmetric (or) skew symmetric and det (A) is divisible by 2 , is 5 .

Answer:

D Watch Video Solution

13.

$S=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ and $A=\left[\begin{array}{lll}b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b\end{array}\right](a, b, c \neq 0)$, then $S A S^{-1}$ is a. symmetric matrix b. diagonal matrix c. invertible matrix d. singular matrix
A. symmetric matrix
B. diagonal matrix
C. invertible matrix
D. singular matrix

Answer:

14. P is a non-singular matrix and A, B are two matrices such that $B=P^{-1} A P$. The true statements among the following are
A. A is invertible iff B is invertib,e
B. $B^{n}=P^{-1} A^{n} P \forall n \in N$
C. $\forall \lambda \in R, B-\lambda I=P^{-1}(A-\lambda I) P$
D. A and B are both singular matrices

Answer:

- Watch Video Solution

15. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$. Then $\quad A^{2}-4 A-5 I_{3}=O \quad$ b.
$A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$ c. A^{3} is not invertible d. A^{2} is invertible
A. $A^{2}-4 A-5 I_{3}=O$
B. $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
C. A^{3} is not invertible
D. A^{2} is invertible

Answer:

- Watch Video Solution

16. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then which is true a. $A^{3}-A^{2}=A-I$ b. det.
$\left(A^{100}-I\right)=0$ c. $A^{200}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 100 & 1 & 0 \\ 100 & 0 & 1\end{array}\right]$ d. $A^{100}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1\end{array}\right]$
A. $A^{3}-A^{2}=A-I$
B. det. $\left(A^{100}-I\right)=0$
C. $A^{200}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 100 & 1 & 0 \\ 100 & 0 & 1\end{array}\right]$
D. $A^{100}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1\end{array}\right]$

Answer:

17. If Ais symmetric and B is skew-symmetric matrix, then which of the following is/are CORRECT ?
A. $A B A^{T}$ is skew-symmetric matrix
B. $A B^{T}+B A^{T}$ is symmetric matrix
C. $(A+B)(A-B)$ is skew-symmetric
D. $(A+I)(B-I)$ is symmetric

Answer:

- Watch Video Solution

18. If $A=\left(\left(a_{i j}\right)\right)_{n \times n}$ and f is a function, we define $f(A)=\left(\left(f\left(a_{i j}\right)\right)\right)_{n \times n}$, Let $A=\left[\begin{array}{cc}\pi / 2-\theta & \theta \\ -\theta & \pi / 2-\theta\end{array}\right]$. Then
a. $\sin A$ is invertible b. $\sin A=\cos A$ c. $\sin A$ is orthogonal
d. $\sin (2 A)=2 A \sin A \cos A$
A. $\sin A$ is invertible
B. $\sin A=\cos A$
C. $\sin A$ is orthogonal
D. $\sin (2 A)=2 \sin A \cos A$

Answer:

- Watch Video Solution

19. If A is a matrix such that $A^{2}+A+2 I=O$; the which of the following is/are true? (a) A is non-singular (b) A is symmetric (c) A cannot be skew-symmetric (d) $A^{-1}=-\frac{1}{2}(A+I)$
A. A is nonsingular
B. A is symmetric
C. A cannot be skew-symmetric
D. $A^{-1}=-\frac{1}{2}(A+I)$

Answer:

20. If $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then the trace of the matrix $\operatorname{Adj}(\operatorname{Adj} A)$ is
A. $\operatorname{adj}(\operatorname{adj} A)=A$
B. $|\operatorname{adj}(\operatorname{adj} A)|=1$
C. $|\operatorname{adj} \mathrm{A}|=1$
D. none of these

Answer: B

21. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then
A. $a=\cos 2 \theta$
B. $a=1$
C. $b=\sin 2 \theta$
D. $b=-1$

Answer:

- Watch Video Solution

22. If $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1 / 3\end{array}\right]$, then :
A. $|A|=-1$
B. $\operatorname{adj} A=\left[\begin{array}{ccc}-1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1 / 3\end{array}\right]$
C. $A=\left[\begin{array}{ccc}1 & 1 / 3 & 7 \\ 0 & 1 / 3 & 1 \\ 0 & 0 & -3\end{array}\right]$
D. $A=\left[\begin{array}{ccc}1 & -1 / 3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer:
23. If A is an invertible matrix, then $(a d j \dot{A})^{-1}$ is equal to a. $a d j A^{-1}$ b. $\frac{A}{d}$ c. A d. $(\operatorname{det} A) A$
$\operatorname{det} A$
A. adj. $\left(A^{-1}\right)$
B. $\frac{A}{\operatorname{det} . \mathrm{A}}$
C. A
D. (det. A) A

Answer:

- Watch Video Solution

24. If A and B are two invertible matrices of the same order, then adj (AB) is equal to
A. $\operatorname{adj}(B) \operatorname{adj}(A)$
B. $|B||A| B^{-1} A^{-1}$
C. $|B||A| A^{-1} B^{-1}$
D. $|A||B|(A B)^{-1}$

Answer:

- Watch Video Solution

25. If A, B, and C are three square matrices of the same order, then
$A B=A C \Rightarrow B=C$. Then
A. $|A| \neq 0$
B. A is invertible
C. A may be orthogonal
D. A is symmetric

Answer:

26. If A and B are two non singular matrices and both are symmetric and commute each other, then
A. $A^{-1} B$
B. $A B^{-1}$
C. $A^{-1} B^{-1}$
D. none of these

Answer:

- Watch Video Solution

27. If A and B are square matrices of order 3 such that $A^{3}=8 B^{3}=8 I$ and det. $\quad(A B-A-2 B+2 I) \neq 0$, then identify the correct statement(s), where I is identity matrix of order 3 .
A. $A^{2}+2 A+4 I=O$
B. $A^{2}+2 A+4 I \neq O$
C. $B^{2}+B+I=O$
D. $B^{2}+B+I \neq O$

Answer: $\mathrm{A}^{\wedge}(2)+2 \mathrm{~A}+4 \mathrm{I}=\mathbf{O}$ and $\mathrm{B}^{\wedge}(2)+\mathrm{B}+\mathrm{I}=\mathbf{0}$

- Watch Video Solution

28. Let A, B be two matrices different from identify matrix such that $A B=B A$ and $A^{n}-B^{n}$ is invertible for some positive integer n . If $A^{n}-B^{n}=A^{n+1}-B^{n+1}=A^{n+1}-B^{n+2}$, then
A. $I-A$ is non-singular
B. $I-B$ is non-singular
C. $I-A$ is singular
D. $I-B$ is singular

Answer:

29. Let A and B be square matrices of the same order such that $A^{2}=I$ and $B^{2}=I$, then which of the following is CORRECT ?
A. IF A and B are inverse to each other, then $A=B$.
B. If $A B=B A$, then there exists matrix $C=\frac{A B+B A}{2}$ such that $C^{2}=C$.
C. If $A B=B A$, then there exists matrix $D=A B-B A$ such that $D^{n}=O$ for some $n \in N$.
D. If $A B=B A$ then $(A+B)^{5}=16(A+B)$.

Answer:

- Watch Video Solution

30. Let B is an invertible square matrix and B is the adjoint of matrix A such that $A B=B^{T}$. Then
A. A is an identity matrix
B. B is symmetric matrix
C. A is a skew-symmetric matrix
D. B is skew symmetic matrix

Answer: A

- Watch Video Solution

31. First row of a matrix A is $[1,3,2]$. If
$\operatorname{adj} A=\left[\begin{array}{ccc}-2 & 4 & \alpha \\ -1 & 2 & 1 \\ 3 \alpha & -5 & -2\end{array}\right]$, then $\operatorname{det}(\mathrm{A})$ is
A. -2
B. -1
C. 0
D. 1

- Watch Video Solution

32. Let A be a square matrix of order 3 satisfies the relation $A^{3}-6 A^{2}+7 A-8 I=O$ and $B=A-2 I$. Also, det. $A=8$, then
A. det. (adj. $\quad\left(I-2 A^{-1}\right)=\frac{25}{16}$
B. $\operatorname{adj} .\left(\left(\frac{B}{2}\right)^{-1}\right)=\frac{B}{10}$
C. det. (adj. $\left.\quad\left(I-2 A^{-1}\right)\right)=\frac{75}{32}$
D. $\operatorname{adj} .\left(\left(\frac{B}{2}\right)^{-1}\right)=\frac{2 B}{5}$

Answer:

D Watch Video Solution

33. Which of the following matrices have eigen values as 1 and -1 ? (a)
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
A. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer:

- Watch Video Solution

34. Let MandN be two 3×3 non singular skew-symmetric matrices such that $M N=N M$. If P^{T} denote the transpose of P, then $M^{2} N^{2}\left(M^{T} N^{-1}\right)^{T}$ is equal to M^{2} b. $-N^{2}$ c. $-M^{2}$ d. $M N$
A. M^{2}
B. $-N^{2}$
C. $-M^{2}$
D. $M N$

Answer: C

D Watch Video Solution

35. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$. Then $p^{2} \neq O$, when $=\mathrm{a} .57 \mathrm{~b} .55 \mathrm{c} .58 \mathrm{~d}$.

56
A. 57
B. 55
C. 58
D. 56

Answer: B::C::D

36. For 3×3 matrices M and N, which of the following statement (s) is (are) NOT correct ?

Statement - : $N^{T} M N$ is symmetricor skew-symmetric, according as M is symmetric or skew-symmetric.

Statement - II : MN-NM is skew-symmetric for all symmetric matrices MandN.

Statement - III : $M N$ is symmetric for all symmetric matrices Mand N.
Statement - IV : $(\operatorname{adjM})(a d j N)=a d j(M N)$ for all invertible matrices MandN.
A. $N^{T} M N$ is symmetric or skew-symmetric, according as M is symmetric or skew-symmetric
B. $M N-N M$ is skewOsymmetric for all symmetric matrices M and N
C. MN is symmetric for all symmetric matrices M and N
D. $(\operatorname{adj} M)(\operatorname{adj} N)=\operatorname{adj}(M N)$ for all inveriblr matrices M and N.

Answer: C::D

37. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if
a. The first column of M is the transpose of the second row of M
b. The second row of M is the transpose of the first column of M
c. M is a diagonal matrix with non-zero entries in the main diagonal
d. The product of entries in the main diagonal of M is not the square of an integer
A. the first column of M is the transpose of the second row of M
B. the second row of M is the transpose of the column of M
C. M is a diagonal matrix with non-zero entries in the main diagonal
D. the product of entries in the main diagonal of M is not the square of an integer

Answer: C::D

38. Let m and N be two 3×3 matrices such that $M N=N M$. Further if $M \neq N^{2}$ and $M^{2}=N^{4}$ then which of the following are correct.
A. determinant of $\left(M^{2}+M n^{2}\right)$ is 0
B. there is a 3×3 non-zero matrix U such that $\left(M^{2}+M N^{2}\right) U$ is the zero matrix
C. determinant of $\left(M^{2}+M N^{2}\right) \geq 1$
D. for a 3×3 matrix U, is the zero matrix

Answer: A::B

- Watch Video Solution

39. Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
A. $Y^{3} Z^{4}-Z^{4} Y^{3}$
B. $X^{44}+Y^{44}$
C. $X^{4} Z^{3}-Z^{3} X^{4}$
D. $X^{23}+Y^{23}$

Answer: C::D

- Watch Video Solution

40. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and I is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $\alpha=0, k=8$
B. $4 \alpha-k+8=0$
C. $\operatorname{det}(P \operatorname{adj}(Q))=2^{9}$
D. $\operatorname{det}(Q \operatorname{adj}(P))=2^{13}$

- Watch Video Solution

41. Which of the following is(are) NOT of the square of a 3×3 matrix with real enteries?
A. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
C. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer: A:C

- Watch Video Solution

42. Let S be the set of all column matrices $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that $b_{1}, b_{2}, b_{2} \in R$ and the system of equations (in real variables)
$-x+2 y+5 z=b_{1}$
$2 x-4 y+3 z=b_{2}$
$x-2 y+2 z=b_{3}$
has at least one solution. The, which of the following system (s) (in real variables) has (have) at least one solution for each $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in S$?
A. $x+2 y+3 z=b_{1}, 4 y+5 z=b_{2}$ and $x+2 y+6 z=b_{3}$
B. $x+y+3 z=b_{1}, 5 x+2 y+6 z=b_{2}$ and $-2 x-y-3 z=b_{3}$
C. $x+2 y-5 z=b_{1}, 2 x-4 y+10 z=b_{2}$ and $x-2 y+5 z=b_{3}$
D. $x+2 y+5 z=b_{1}, 2 x+3 z=b_{2}$ and $x+4 y-5 z=b_{3}$

Answer: A:C:D

- Watch Video Solution

43. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then
A. $A^{3}-A^{2}=A-I$
B. $\operatorname{Det}\left(A^{2010}-I\right)=0$
C. $A^{50}=\left[\begin{array}{lll}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]$
D. $A^{50}=\left[\begin{array}{lll}1 & 1 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]$

Answer: A::B::C

Watch Video Solution

44. If the elements of a matrix A are real positive and distinct such that $\operatorname{det}\left(A+A^{T}\right)^{T}=0$ then
A. $\operatorname{det} A>0$
B. $\operatorname{det} A \geq 0$
C. $\operatorname{det}\left(A-A^{T}\right)>0$
D. $\operatorname{det}\left(A . A^{T}\right)>0$

Answer: A::C::D

- Watch Video Solution

45. If $A=\left[\begin{array}{lll}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ and X is a non zero column matrix such that $A X=\lambda X$, where λ is a scalar, then values of λ can be
A. 3
B. 6
C. 12
D. 15

Answer: A::D

46. If A, B are two square matrices of same order such that $A+B=A B$ and I is identity matrix of order same as that of A, B, then
A. $A B=B A$
B. $|A-I|=0$
C. $|B-I| \neq 0$
D. $|A-B|=0$

Answer: A:C

- Watch Video Solution

47. If A is a non-singular matrix of order $n \times n$ such that $3 A B A^{-1}+A=2 A^{-1} B A$, then
A. A and B both are identity matrices
B. $|A+B|=0$
C. $\left|A B A^{-1}-A^{-1} B A\right|=0$
D. $A+B$ is not a singular matrix

Answer: B::C

- Watch Video Solution

48. If the matrix A and B are of 3×3 and $(I-A B)$ is invertible, then which of the following statement is/are correct ?
A. $I-B A$ is not invertible
B. $I-B A$ is invertible
C. $I-B A$ has for its inverse $I+B(I-A B)^{-1} A$
D. $I-B A$ has for its inverse $I+A(I-B A)^{-1} B$

Answer: B::C

- Watch Video Solution

49. If A is a square matrix such that $A \cdot(\operatorname{Adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then
A. $|A|=4$
B. $|\operatorname{adj} A|=16$
C. $\frac{|\operatorname{adj}(\operatorname{adj} A)|}{|\operatorname{adj} A|}=16$
D. $|\operatorname{adj} 2 A|=128$

Answer: A::B::C

- Watch Video Solution

Linked Comprehension Type

1. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$A^{2}-(a+d) A+(a d-b c) I$ is equal to
A. I
B. O
C. $-I$
D. none of these

Answer: B

- Watch Video Solution

2. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$\operatorname{tr}(\mathrm{A})$ is equal to
A. 1
B. 0
C. -1
D. none of these

Answer: B

3. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$(I+A)^{100}=$
A. 100 A
B. $100(I+A)$
C. $100 I+A$
D. $I+100 A$

Answer: D

- Watch Video Solution

4. If A and B are two square matrices of order 3×3 which satify $A B=A$ and $B A=B$, then

Which of the following is true?
A. If matrix A is singular, then matrix B is nonsingular.
B. If matrix A is nonsingular, then materix B is singular.
C. If matrix A is singular, then matrix B is also singular.
D. Cannot say anything.

Answer: C

- Watch Video Solution

5. if A and B are two matrices of order 3×3 so that $A B=A$ and $B A=B$ then $(A+B)^{7}=$
A. $7(A+B)$
B. 7. $I_{3 \times 3}$
C. $64(A+B)$
D. $128 I$

Answer: C

6. If A and B are two square matrices of order 3×3 which satify $A B=A$ and $B A=B$, then
$(A+I)^{5}$ is equal to (where I is idensity matric)
A. $I+60 I$
B. $I+16 A$
C. $I+31 A$
D. none of these

Answer: C

- Watch Video Solution

7. Consider an arbitarary 3×3 non-singular matrix $A\left[a_{\mathrm{ij}}\right]$. A maxtrix $B=\left[b_{\mathrm{ij}}\right]$ is formed such that b_{ij} is the sum of all the elements except a_{ij} in the ith row of A . Answer the following questions:

If there exists a matrix X with constant elemts such that $A X=B^{\prime}$, then X is
A. skew-symmetric
B. null matrix
C. diagonal matrix
D. none of these

Answer: D

- Watch Video Solution

8. Let $A=\left[a_{\mathrm{ij}}\right]$ be 3×3 matrix and $B=\left[b_{\mathrm{ij}}\right]$ be 3×3 matrix such that b_{ij} is the sum of the elements of $i^{\text {th }}$ row of A except a_{ij}. If $\operatorname{det},(A)=19$, then the value of det. (B) is \qquad .
A. $|A|$
B. $|A| / 2$
C. $2|A|$
D. none of these

- Watch Video Solution

9. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.

Further consider a matrix $\underset{3 \times 3}{\cup}$ with its column as $\cup_{1}, \cup_{2}, \cup_{3}$ such that
$A^{50} \cup_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} \cup_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} \cup_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
Trace of A^{50} equals
A. 0
B. 1
C. -1
D. 25

D Watch Video Solution

10. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.

Further consider a matrix $\underset{3 \times 3}{\cup}$ with its column as $\cup_{1}, \cup_{2}, \cup_{3}$ such that
$A^{50} \cup_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} \cup_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} \cup_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
Trace of A^{50} equals
A. 0
B. 1
C. 2
D. 3

- Watch Video Solution

11. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.

Further consider a matrix $\underset{3 \times 3}{\cup}$ with its column as $\cup_{1}, \cup_{2}, \cup_{3}$ such that
$A^{50} \cup_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} \cup_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} \cup_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :

The value of $|\cup|$ equals
A. 0
B. 1
C. 2
D. -1

- Watch Video Solution

12. Let for $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, there be three row matrices R_{1}, R_{2} and R_{3}, satifying the relations, $R_{1} A=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right], R_{2} A=\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and $R_{3} A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]$. If B is square matrix of order 3 with rows R_{1}, R_{2} and R_{3} in order, then

The value of det. $\left(2 A^{100} B^{3}-A^{99} B^{4}\right)$ is
A. -2
B. -1
C. 2
D. -27

Answer: D

13. Let for $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, there be three row matrices R_{1}, R_{2} and R_{3}, satifying the relations, $R_{1} A=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right], R_{2} A=\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and $R_{3} A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]$. If B is square matrix of order 3 with rows R_{1}, R_{2} and R_{3} in order, then

The value of det. (B) is
A. -27
B. -9
C. -3
D. 9

Answer: A

Watch Video Solution

14. A and B are square matrices such that det. $(A)=1, B B^{T}=I$, det $(B)>0$, and $\mathrm{A}(\operatorname{adj} . \mathrm{A}+\operatorname{adj} . \mathrm{B})=\mathrm{B}$.

The value of $\operatorname{det}(A+B)$ is
A. -2
B. -1
C. 0
D. 1

Answer: D

- Watch Video Solution

15. A and B are square matrices such that det. $(A)=1, B B^{T}=I$, det $(B)>0, \mathrm{~B}+\mathrm{A}=\mathrm{B}^{\wedge}(2)$ and $\mathrm{A}(\operatorname{adj} . \mathrm{A}+\operatorname{adj} \cdot \mathrm{B})=\mathrm{B}$.
$A B^{-1}=$
A. $B^{-1} A$
B. $A B^{-1}$
C. $A^{T} B^{-1}$
D. $B^{T} A^{-1}$

Answer: A

- Watch Video Solution

16. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A . Which of the following matrices is NOT left inverse of matrix $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$?
A. $\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
B. $\left[\begin{array}{ccc}2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
C. $\left[\begin{array}{lll}-\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
D. $\left[\begin{array}{ccc}0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$

Answer: C

- Watch Video Solution

17. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A . Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of A.

For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{ccc}x & y & x \\ u & v & w\end{array}\right]$
and solve $A R=I_{3}$, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
x & y & z \\
u & v & w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Longrightarrow x-u=1 \quad y-v=0 \quad z-w=0 \\
& x+u=0 \quad y+v=1 \quad z+w=0 \\
& 2 x+3 u=0 \quad 2 y+3 v=0 \quad 2 z+3 w=1
\end{aligned}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A .

The number of right inverses for the matrix $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & -1 & 1\end{array}\right]$ is
A. 0
B. 1
C. 2
D. infinite

Answer: D

- Watch Video Solution

18. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A . Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of A.

For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{ccc}x & y & x \\ u & v & w\end{array}\right]$
and solve $A R=I_{3}$, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ccc}
x & y & z \\
u & v & w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Longrightarrow x-u=1 \quad y-v=0 \quad z-w=0 \\
& x+u=0 \quad y+v=1 \quad z+w=0 \\
& 2 x+3 u=0 \quad 2 y+3 v=0 \quad 2 z+3 w=1
\end{aligned}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A .

For which of the following matrices, the number of left inverses is greater than the number of right inverses?
A. $\left[\begin{array}{ccc}1 & 2 & 4 \\ -3 & 2 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 4 \\ 2 & -3 \\ 2 & -3\end{array}\right]$
D. $\left[\begin{array}{ll}3 & 3 \\ 1 & 1 \\ 4 & 4\end{array}\right]$

Answer: C

- Watch Video Solution

19. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is
A. 12
B. 6
C. 9
D. 3

Answer: A

- Watch Video Solution

20. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
is inconsistent is
A. less than 4
B. at least 4 but less than 7
C. at least 7 but less than 10
D. at leat 10

D Watch Video Solution

21. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
is inconsistent is
A. 0
B. more than 2
C. 2
D. 1

Answer: B

22. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices :
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is
A. $(p-1)^{2}$
B. $2(p-1)$
C. $(p-1)^{2}+1$
D. $2 p-1$

Answer: D

- Watch Video Solution

23. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices :
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is
A. $(p-1)\left(p^{2}-p+1\right)$
B. $p^{3}-(p-1)^{2}$
C. $(p-1)^{2}$
D. $(p-1)\left(p^{2}-2\right)$

Answer: C

- Watch Video Solution

24. Let p be an odd prime number and T_{p}, be the following set of 2×2 matrices $\quad T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots \ldots p-1\}\right\} \quad$ The number of A in T_{p}, such that A is either symmetric or skew-symmetric or both, and $\operatorname{det}(A)$ divisible by p is
A. $2 p-1$
B. $p^{3}-5 p$
C. $3 p-4$
D. $p^{3}-p^{2}$

D Watch Video Solution

25. Let a, b, and c be three real numbers satistying
$[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ If the point $P(a, b, c)$ with reference to (E), lies on the plane $2 x+y+z=1$, the the value of $7 a+b+c$ is (A) 0 (B)

12 (C) 7 (D) 6
A. 0
B. 12
C. 7
D. 6

Answer: D

26. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let ω be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0 . I f a=2$ with b nd c satisfying (E) then the vlaue of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3
A. -2
B. 2
C. 3
D. -3

Answer: A

- Watch Video Solution

27. Let a, b, and c be three real numbers satistying
$[a, b, c]\left[\begin{array}{ccc}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let $\mathrm{b}=6$, with a and c satisfying (E). If alpha
and beta are the roots of the quadratic equation $a x^{2}+b x+c=0$ then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) oo
A. 6
B. 7
C. $\frac{6}{7}$
D. ∞

Answer: B

- Watch Video Solution

Matrix Type

1. Match the following lists :

List I	List II
a. $(I-A)^{n}$ is if A is idempotent	p. $2^{n-1}(I-A)$
b. $(I-A)^{n}$ is if A is involuntary	q. $I-n A$
c. $(I-A)^{n}$ is if A is nilpotent of index 2	r. A
d. If A is orthogonal, then $\left(A^{T}\right)^{-1}$	s. $I-A$

- Watch Video Solution

2. Match the following lists :

List I	List II		
a. If A is an idempotent matrix and I is an identity matrix of the same order, then the value of n, such that $(A+I)^{n}=I+127$ is	p. 9		
b. If $(I-A)^{-1}=I+A+A^{2}+\cdots+A^{7}$, then $A^{n}=O$, where n is	q. 10		
c. If A is matrix such that $a_{i j}=(i+j)(i-j)$,	r. 7		
then A is singular if order of matrix is		\quad s. $8 ~ 子$	d. If a nonsingular matrix A is symmetric,
:---			
show that A^{-1} is also symmetric, then			
order of A can be			

3. Match the following lists :

List I $(A, B, C$ are matrices)	List II
a. If $\|A\|=2$, then $\left\|2 A^{-1}\right\|=($ where A is of order 3)	p. 1
b. If $\|A\|=1 / 8$, then $\|\operatorname{adj}(\operatorname{adj}(2 \mathrm{~A}))\|=($ where A is of order 3)	q. 4
c. If $(A+B)^{2}=A^{2}+B^{2}$, and $\|A\|=2$, then $\|B\|=($ where A and B are of odd order)	r. 24
d. $\left\|A_{2 \times 2}\right\|=2,\left\|B_{3 \times 3}\right\|=3$ and $\left\|C_{4 \times 4}\right\|=4$, then $\|A B C\|$ is equal to	s. 0
t. does not exist	

- Watch Video Solution

4. Consider a matrix $A=\left[a_{\mathrm{ij}}\right]$ of order 3×3 such that $a_{\mathrm{ij}}=(k)^{i+j}$ where $k \in I$.

Match List I with List II and select the correct answer using the codes
given below the lists.

List I	List II
a. A is singular if	p. $k \in\{0\}$
b. A is null matrix if	q. $k \in \phi$
c. A is skew-symmetric which is not null matrix if	r. $k \in I$
d. $A^{2}=3 A$ if	s. $k \in\{-1,0,1\}$

A. $\begin{array}{llll}a & b & c & d \\ r & p & s & q \\ a & b & c & d \\ s & p & q & r \\ \text { C. } \\ a & b & c & d \\ r & p & q & s \\ a & b & c & d \\ q & p & r & s\end{array}$

Answer: C

- Watch Video Solution

5. Match the following lists :

A. $\begin{array}{llll}a & b & c & d \\ s & r & q & p \\ a & b & c & d \\ s & p & q & r \\ a & b & c & d \\ q & p & s & r \\ a & b & c & d \\ s & q & r & p\end{array}$

Answer: C

Numerical Value Type

1. $A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right] \operatorname{and}\left(A^{8}+A^{6}+A^{4}+A^{2}+I\right) V=\left[\begin{array}{c}0 \\ 11\end{array}\right]$ (whereIis the 2×2 identity matrix), then the product of all elements of matrix V is
\qquad -

- Watch Video Solution

2. If $[a b c 1-a]$ is an idempotent matrix and $f(x)=x-^{2}=b c=1 / 4$, then the value of $1 / f(a)$ is \qquad .

- Watch Video Solution

3. Let x be the solution set of equation $A^{x}=I ;$ where $A+[01-14-343-34]$ andI is the corresponding unit matrix and $x \subseteq N$, then the minimum value of $\sum\left(\cos ^{x} \theta+\sin ^{x} \theta\right), \theta \in R$.

- Watch Video Solution

4. $A=[1 \tan x-\tan x 1] \operatorname{and} f(x)$ is defined as $f(x)=\operatorname{det} A^{T} A^{-1}$ en the value of $(f(f(f(f f(x))))$ is $(n \geq 2)$ \qquad .

- Watch Video Solution

5. The equation $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & k\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ has a solution for (x, y, z) besides $(0,0,0)$. Then the value of k is \qquad .

- Watch Video Solution

6. If A is an idempotent matrix satisfying, $(I-0.4 A)^{-1}=I-\alpha A$, where I is the unit matrix of the same order as that of A, then th value of $|9 \alpha|$ is equal to \qquad .
$A=\left[\begin{array}{c}3 x^{2} \\ 1 \\ 6 x\end{array}\right], B=\left[\begin{array}{lll}a & b & c\end{array}\right]$, and $C=\left[\begin{array}{ccc}(x+2)^{2} & 5 x^{2} & 2 x \\ 5 x^{2} & 2 x & (x+2)^{2} \\ 2 x & (x+2)^{2} & 5 x^{2}\end{array}\right]$
be three given matrices, where a, b, c, and $x \in R$. Given that $f(x)=a x^{2}+b x+c$, then the value of $f(I)$ is \qquad .

- Watch Video Solution

8. Let A be the set of all 3×3 skew-symmetri matrices whose entries are either $-1,0$, or 1 . If there are exactly three $0 s$ three 1 s , and there (-1) ' s, then the number of such matrices is \qquad .

- Watch Video Solution

9. Let $A=\left[a_{\mathrm{ij}}\right]_{3 \times 3}$ be a matrix such that $A A^{T}=4 I$ and $a_{\mathrm{ij}}+2 c_{\mathrm{ij}}=0$, where C_{ij} is the cofactor of a_{ij} and I is the unit matrix of order 3 .

$$
\left|\begin{array}{ccc}
a_{11}+4 & a_{12} & a_{13} \\
a_{21} & a_{22}+4 & a_{23} \\
a_{31} & a_{32} & a_{33}+4
\end{array}\right|+5 \lambda\left|\begin{array}{ccc}
a_{11}+1 & a_{12} & a_{13} \\
a_{21} & a_{22}+1 & a_{23} \\
a_{31} & a_{32} & a_{33}+1
\end{array}\right|=0
$$

then the value of λ is

- Watch Video Solution

10. Let S be the set which contains all possible vaues fo I, m, n, p, q, r for which $A=\left[I^{2}-3 p 00 m^{2}-8 q r 0 n^{2}-15\right]$ be non-singular idempotent matrix. Then the sum of all the elements of the set S is \qquad .

D Watch Video Solution

11. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and trace $(A)=12$, then find $|A|$

- Watch Video Solution

12. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(a d j A^{-1}\right)^{-1}\right|$ is \qquad .

- Watch Video Solution

13. If A and B are two matrices of order 3 such that $A B=O$ and $A^{2}+B=I$, then $\operatorname{tr} .\left(A^{2}+B^{2}\right)$ is equal to \qquad .

- Watch Video Solution

14. If a, b, and c are integers, then number of matrices $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ which are possible such that $A A^{T}=I$ is \qquad .

- Watch Video Solution

15. Let $A=\left[a_{\mathrm{ij}}\right]$ be 3×3 matrix and $B=\left[b_{\mathrm{ij}}\right]$ be 3×3 matrix such that b_{ij} is the sum of the elements of $i^{\text {th }}$ row of A except a_{ij}. If $\operatorname{det},(A)=19$,
then the value of det. (B) is \qquad .

- Watch Video Solution

16. A square matrix M of order 3 satisfies $M^{2}=I-M$, where I is an identity matrix of order 3. If $M^{n}=5 I-8 M$, then n is equal to \qquad .

- Watch Video Solution

17. Let $A=\left[a_{\mathrm{ij}}\right]_{3 \times 3}, B=\left[b_{\mathrm{ij}}\right]_{3 \times 3}$ and $C=\left[c_{\mathrm{ij}}\right]_{3 \times 3}$ be any three matrices, where $b_{\mathrm{ij}}=3^{i-j} a_{\mathrm{ij}}$ and $c_{\mathrm{ij}}=4^{i-j} b_{\mathrm{ij}}$. If det. $A=2$, then det. $(B C)$ is equal to \qquad .

- Watch Video Solution

18. If A is a square matrix of order 2×2 such that $|A|=27$, then sum of the infinite series $|A|+\left|\frac{1}{2} A\right|+\left|\frac{1}{4} A\right|+\left|\frac{1}{8} A\right|+\ldots$ is equal to
19. If A is a aquare matrix of order 2 and det. $A=10$, then $\left((t r . A)^{2}-\operatorname{tr} .\left(A^{2}\right)\right)$ is equal to \qquad .

- Watch Video Solution

20. Let A and B are two square matrices of order 3 such that $\operatorname{det} .(A)=3$ and det. $(B)=2$, then the value of det. $\left(\left(\operatorname{adj} .\left(B^{-1} A^{-1}\right)\right)^{-1}\right)$ is equal to \qquad .

- Watch Video Solution

21. Let P, Q and R be invertible matrices of order 3 such $A=P Q^{-1}, B=Q R^{-1}$ and $C=R P^{-1}$. Then the value of det. $(A B C+B C A+C A B)$ is equal to \qquad .

- Watch Video Solution

22. If $A=\left[\begin{array}{lll}1 & x & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix B and det. $(B)=4$, then the value of x is \qquad .

- Watch Video Solution

23. A, B and C are three square matrices of order 3 such that $A=$ diag (x, y, z), det $(B)=4$ and $\operatorname{det}(C)=2$, where $x, y, z \in I^{+}$. If det $(\operatorname{adj}(\operatorname{adj}(A B C)))=2^{16} \times 3^{8} \times 7^{4}$, then the number of distinct possible matrices A is \qquad .

- Watch Video Solution

24. Let $A=\left[a_{\mathrm{ij}}\right]$ be a matrix of order 2 where $a_{\mathrm{ij}} \in\{-1,0,1\}$ and adj. $A=-A$. If det. $(A)=-1$, then the number of such matrices is \qquad .

- Watch Video Solution

25. Let K be a positive real number and $A=[2 k-12 \sqrt{k} 2 \sqrt{k} 2 \sqrt{k} 1-2 k-2 \sqrt{k} 2 k-1]$ andB $=[02 k-1 \sqrt{k} 1-2 k$. If $\operatorname{det}(a d j A)+\operatorname{det}(a d j B)=10^{6}$, then $[k]$ is equal to. [Note: $a d j M$ denotes the adjoint of a square matix M and $[k]$ denotes the largest integer less than or equal to $K]$.

- Watch Video Solution

26. Let M be a 3×3 matrix satisfying
$M[010]=[-123], M[1-10]=[11-1]$, and $M[111]=[0012] \quad$ Then the sum of the diagonal entries of M is \qquad .

- Watch Video Solution

27.

let
$z=\frac{-1+\sqrt{3 i}}{2}$, where $i=\sqrt{-1}$ and $\left.r, s \varepsilon P 1,2,3\right\}$. Let $P=\left[\begin{array}{c}(-z)^{r} \\ z^{2 s}\end{array}\right.$
and I be the idenfity matrix or order 2 . Then the total number of ordered pairs (r, s) or which $P^{2}=-I$ is

- Watch Video Solution

Archives Single Correct Answer Type

1. Let A be a 2×2 matrix

Statement $1 \mathbf{1} \operatorname{adj}(\operatorname{adj} A)=A$
Statement-2 $|a d j A|=|A|$
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct
explanation for statement 1.
C. Statement 1 is true, statement 2 is false.
D. Statement 1 is false, statement 2 is true.

Answer: B

- Watch Video Solution

2. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 , is:- (1) 5 (2) 6 (3) at least 7 (4) less than 4
A. 5
B. 6
C. at least 7
D. less than 4

Answer: C

- Watch Video Solution

3. Let A be a 2×2 matrix with non-zero entries and let $A^{\wedge} 2=I$, where i is a 2×2 identity matrix, $\operatorname{Tr}(\mathrm{A}) \mathrm{i}=$ sum of diagonal elements of A and $|A|=$
determinant of matrix A . Statement 1: $\operatorname{Tr}(\mathrm{A})=0$ Statement 2: $|A|=1$
A. Statement 1 is false, statement 2 is true.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
D. Statement 1 is true, statement 2 is false.

Answer: D

- Watch Video Solution

4. Let A and B two symmetric matrices of order 3 .

Statement $1: A(B A)$ and $(A B) A$ are symmetric matrices.
Statement 2 : $A B$ is symmetric matrix if matrix multiplication of A with B is commutative.
A. Statement 1 is false, statement 2 is true.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1.
D. Statement 1 is true, statement 2 is false.

Answer: C

- Watch Video Solution

5. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
A. $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
B. $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
C. $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
D. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$

Answer: D

Watch Video Solution
6. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to
(1) $2(2) 1$ (3) $0(4) 1$
A. -2
B. 1
C. 0
D. -1

Answer: C

7. If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then α is equal to
A. 4
B. 11
C. 5
D. 0

Answer: B

- Watch Video Solution

8. If A is an 3×3 non-singular matrix such that $A A^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$, then BB' equals (1) $I+B$ (2) I (3) B^{-1} (4) $\left(B^{-1}\right)^{\prime}$
A. $I+B$
B. I
C. B^{-1}
D. $\left(B^{-1}\right)^{\prime}$

Answer: B

- Watch Video Solution

9. If $A=[12221-2 a 2 b]$ is a matrix satisfying the equation $\forall^{T}=9 I$, where I is 3×3 identity matrix, then the ordered pair (a,b) is equal to :
(1) $(2,-1)$
(2) $(-2,1)$
$(3)(2,1)(4)(-2,-1)$
A. $(2,-1)$
B. $(-2,1)$
C. $(2,1)$
D. $(-2,-1)$

Answer: D

10. If $A=[5 a-b 32]$ and A adj $A=\forall^{T}$, then $5 a+b$ is equal to:
A. 5
B. 4
C. 13
D. -1

Answer: A

- Watch Video Solution

11. if $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$ then $\left(3 A^{2}+12 A\right)=$?
A. $\left[\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right]$
B. $\left[\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right]$
C. $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
D. $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$

Answer: C

- Watch Video Solution

Jee Advanced Single Correct Answer Type

1. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left|\begin{array}{l}x \\ y \\ z\end{array}\right|=\left|\begin{array}{l}1 \\ 0 \\ 0\end{array}\right|$ has exactly two distinct solution is a. 0 b. $2^{9}-1$ c. 168 d. 2
A. 0
B. $2^{9}-1$
C. 168
D. 2
2. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \omega 1\right]$, where each of $a, b, a n d c$ is either ω or ω^{2}. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8
A. 2
B. 6
C. 4
D. 8

Answer: A

- Watch Video Solution

3. Let $P=\left[a_{i j}\right]$ be a 3×3 matrix and let
$Q=\left[b_{i j}\right], w h e r e b_{i j}=2^{i+j} a_{i j} f$ or $1 \leq i, j \leq 3$. If the determinant of
P is 2 , then the determinant of the matrix Q is 2^{10}
b. 2^{11} c. 2^{12}
d. 2^{13}
A. 2^{10}
B. 2^{11}
C. 2^{12}
D. 2^{13}

Answer: D

- Watch Video Solution

4. Let $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$ and $Q=\left[q_{i j}\right]$ be two 3×3 matrices such that
$Q-P^{5}=I_{3}$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to
A. 52
B. 103
C. 201
D. 205

Answer: B

D Watch Video Solution

5. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $M^{T} M i s 5 ?$
A. 126
B. 198
C. 135
D. 162

Answer: B

- Watch Video Solution

1. If $A=\left[\begin{array}{lll}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$, then $(A+B)^{2}=$
A. A
B. B
C. I
D. $A^{2}+B^{2}$

Answer: D

- Watch Video Solution

2. If the value of $\prod_{k=1}^{50}\left[\begin{array}{ll}1 & 2 k-1 \\ 0 & 1\end{array}\right]$ is equal to $\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]$ then r is equal to
A. 62500
B. 2500
C. 1250
D. 12500

Answer: B

- Watch Video Solution

3. A square matrix P satisfies $P^{2}=I-P$, where I is identity matrix. If $P^{n}=5 I-8 P$, then n is :
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

4. A and B are two square matrices such that $A^{2} B=B A$ and if $(A B)^{10}=A^{k} B^{10}$, then k is
A. 1001
B. 1023
C. 1042
D. none of these

Answer: B

- Watch Video Solution

5. If matrix $A=\left[a_{i j}\right]_{3 \times}$, matrix $B=\left[b_{i j}\right]_{3 \times 3}$, where $a_{i j}+a_{j i}=0$ and $b_{i j}-b_{j i}=0 \forall i, j$, then $A^{4} \cdot B^{3}$ is
A. Singular
B. Zero matrix
C. Symmetric
D. Skew-Symmetric matrix

Watch Video Solution

6. If $A\left(\begin{array}{lll}1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3\end{array}\right)=\left(\begin{array}{lll}3 & -1 & 5 \\ 1 & 3 & 4 \\ +4 & -8 & 6\end{array}\right)$, then $A=$
A. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$
B. $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
c. $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$
D. $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$

Answer: D

- Watch Video Solution

7. Let $A=\left[\begin{array}{lll}-5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}x \\ y \\ 2\end{array}\right]$.If $A B$ is a scalar multiple of
B, then the value of $x+y$ is
A. -1
B. -2
C. 1
D. 2

Answer: B

- Watch Video Solution

8. $A=\left[\begin{array}{ll}a & b \\ b & -a\end{array}\right]$ and $M A=A^{2 m}, m \in N$ for some matrix M, then which one of the following is correct ?
A. $M=\left[\begin{array}{ll}a^{2 m} & b^{2 m} \\ b^{2 m} & -a^{2 m}\end{array}\right]$
B. $M=\left(a^{2}+b^{2}\right)^{m}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C. $M=\left(a^{m}+b^{m}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $M=\left(a^{2}+b^{2}\right)^{m-1}\left[\begin{array}{ll}a & b \\ b & -a\end{array}\right]$
9. If $A=\left[a_{i j}\right]_{m \times n}$ and $a_{i j}=\left(i^{2}+j^{2}-i j\right)(j-i), n$ odd, then which of the following is not the value of $\operatorname{Tr}(A)$
A. 0
B. $|A|$
C. $2|A|$
D. none of these

Answer: D

- Watch Video Solution

10. $\quad|A-B| \neq 0, \quad A^{4}=B^{4}, \quad C^{3} A=C^{3} B, \quad B^{3} A=A^{3} B$, then $\left|A^{3}+B^{3}+C^{3}\right|=$
A. 0
B. 1
C. $3|A|^{3}$
D. 6

Answer: A

- Watch Video Solution

11. If $A B+B A=0$, then which of the following is equivalent to $A^{3}-B^{3}$
A. $(A-B)\left(A^{2}+A B+B^{2}\right)$
B. $(A-B)\left(A^{2}-A B-B^{2}\right)$
C. $(A+B)\left(A^{2}-A B-B^{2}\right)$
D. $(A+B)\left(A^{2}+A B-B^{2}\right)$

Answer: C

12. A, B, C are three matrices of the same order such that any two are symmetric and the $3^{\text {rd }}$ one is skew symmetric. If $X=A B C+C B A$ and $Y=A B C-C B A$, then $(X Y)^{T}$ is
A. symmetric
B. skew symmetric
C. $I-X Y$
D. $-Y X$

Answer: D

- Watch Video Solution

13. If A and P are different matrices of order n satisfying $A^{3}=P^{3}$ and $A^{2} P=P^{2} A$ (where $|A-P| \neq 0$) then $\left|A^{2}+P^{2}\right|$ is equal to
A. n
B. 0
C. $|A||P|$
D. $|A+P|$

Answer: B

- Watch Video Solution

14. Let A, B are square matrices of same order satisfying $A B=A$ and $B A=B$ then $\left(A^{2010}+B^{2010}\right)^{2011}$ equals.
A. $A+B$
B. $2010(A+B)$
C. $2011(A+B)$
D. $2^{2011}(A+B)$

Answer: D

15. The number of 2×2 matrices A, that are there with the elements as real numbers satisfying $A+A^{T}=I$ and $A A^{T}=I$ is
A. zero
B. one
C. two
D. infinite

Answer: C

- Watch Video Solution

16. If the orthogonal square matrices A and B of same size satisfy $\operatorname{det} A+\operatorname{det} B=0$ then the value of $\operatorname{det}(A+B)$
A. -1
B. 1
C. 0
D. none of these

Answer: C

- Watch Video Solution

17. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], C=A B A^{T}$, then $A^{T} C^{n} A, n \in I^{+}$equals to
A. $\left[\begin{array}{ll}-n & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}1 & -n \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}0 & 1 \\ 1 & -n\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ -n & 1\end{array}\right]$

Answer: D

18. Let A be a 3×3 matrix given by $A=\left(a_{i j}\right)_{3 \times 3}$. If for every column vector X satisfies $X^{\prime} A X=0$ and $a_{12}=2008, a_{13}=2010$ and $a_{23}=-2012$. Then the value of $a_{21}+a_{31}+a_{32}=$
A. -6
B. 2006
C. -2006
D. 0

Answer: C

- Watch Video Solution

19. Let A and B be two non-singular matrices such that $A \neq I, B^{2}=I$ and $A B=B A^{2}$, where I is the identity matrix, the least value of k such that ${ }^{`} A^{\wedge}(k)=11$ is
A. 31
B. 32
C. 64
D. 63

Answer: D

- Watch Video Solution

20. Let A be a 2×3 matrix, whereas B be a 3×2 amtrix. If $\operatorname{det} .(A B)=4$, then the value of $\operatorname{det} .(B A)$ is
A. -4
B. 2
C. -2
D. 0

Answer: D

21. Let A be a square matrix of order 3 so that sum of elements of each row is 1 . Then the sum elements of matrix A^{2} is
A. 1
B. 3
C. 0
D. 6

Answer: B

- Watch Video Solution

22. A and B be 3×3 matrices such that $A B+A+B=0$, then
A. $(A+B)^{2}=A^{2}+2 A B+B^{2}$
B. $|A|=|B|$
C. $A^{2}=B^{2}$
D. none of these

Answer: A

- Watch Video Solution

23. If $(A+B)^{2}=A^{2}+B^{2}$ and $|A| \neq 0$, then $|B|=$ (where A and B are matrices of odd order)
A. 2
B. -2
C. 1
D. 0

Answer: D

- Watch Video Solution

24. If A is a square matrix of order 3 such that $|A|=5$, then $|\operatorname{Adj}(4 A)|=$
A. $5^{3} \times 4^{2}$
B. $5^{2} \times 4^{3}$
C. $5^{2} \times 16^{3}$
D. $5^{3} \times 16^{2}$

Answer: C

- Watch Video Solution

25. If A and B are two non singular matrices and both are symmetric and commute each other, then
A. Both $A^{-1} B$ and $A^{-1} B^{-1}$ are symmetric.
B. $A^{-1} B$ is symmetric but $A^{-1} B^{-1}$ is not symmetric.
C. $A^{-1} B^{-1}$ is symmetric but $A^{-1} B$ is not symmetric.
D. Neither $A^{-1} B$ nor $A^{-1} B^{-1}$ are symmetric

Answer: A

- Watch Video Solution

26. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
A. 1
B. 2
C. 4
D. 8

Answer: C
27. Let matrix $A=\left[\begin{array}{lll}x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$, where $x, y, z \in N$. If $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))|=4^{8} \cdot 5^{16}$, then the number of such (x, y, z) are
A. 28
B. 36
C. 45
D. 55

Answer: B

- Watch Video Solution

28. A be a square matrix of order 2 with $|A| \neq 0$ such that $|A+|A| \operatorname{adj}(A)|=0$, where $\operatorname{adj}(A)$ is a adjoint of matrix A, then the value of $|A-|A| \operatorname{adj}(A)|$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

29. If A is a skew symmetric matrix, then $B=(I-A)(I+A)^{-1}$ is (where I is an identity matrix of same order as of A)
A. idempotent matrix
B. symmetric matrix
C. orthogonal matrix
D. none of these

Answer: C

30. If $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then the trace of the matrix $\operatorname{Adj}(\operatorname{Adj} A)$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

31. If $A=\left[\begin{array}{lll}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$ and $B=(a d j A)$ and $C=5 A$, then find the value of $\frac{|a d j B|}{|C|}$
A. 25
B. 2
C. 1
D. 5

Answer: C

- Watch Video Solution

32. Let A and B be two non-singular square matrices such that $B \neq I$ and $A B^{2}=B A$. If $A^{3}-B^{-1} A^{3} B^{n}$, then value of n is
A. 4
B. 5
C. 8
D. 7

Answer: C

33. If A is an idempotent matrix satisfying $(I-0.4 A)^{-1}=I-\alpha A$ where I is the unit matrix of the same order as that of A then the value of α is
A. $-1 / 3$
B. $1 / 3$
C. $-2 / 3$
D. $2 / 3$

Answer: C

- Watch Video Solution

34. If A and B are two non-singular matrices which commute, then $\left(A(A+B)^{-1} B\right)^{-1}(A B)=$
A. $A+B$
B. $A^{-1}+B^{-1}$
C. $A^{-1}+B$
D. none of these

Answer: A

- Watch Video Solution

