©゙doubtnut

MATHS

BOOKS - TS EAMCET PREVIOUS YEAR PAPERS

AP EAMCET ENGINEERING ENTRANCE EXAM ONLINE QUESTION PAPER 2019 (SOLVED)

Mathematics

1. Let A and B be finite sets and P_{A} and P_{B} respectively denote their power sets. If P_{B} has 112 . elements more than those in P_{A} then the number of functions from A to B which are injective is
A. 224
B. 56
C. 120
D. 840

Answer: D

- Watch Video Solution

2. Let $D=\left\{x \in R: f(x)=\sqrt{\frac{x-|x|}{x-|x|}}\right.$ is difined $\}$
and C be the range of the real function
$g(x)=\frac{2 x}{4+x^{2}} \cdot$ then $D \cap C=$
A. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
B. $\left(0, \frac{1}{2}\right)$
C. R^{+}
D. $R^{+}-Z^{+}$

Answer: B

3. which of the following is divisible by $x^{2}-y^{2} \forall x \neq y$?
A. $x^{n}-y^{n}, \forall n \in N$
B. $x^{n}+y^{n}, \forall n \in N$
C. $\left(x^{n}-y^{n}\right)\left(x^{2 n+1}+y^{2 n+1}\right), \forall n \in N$
D. $\left(x^{n}-y^{n}\right)\left(x^{m}+y^{m}\right), \forall m, n \in N$

Answer: C

- View Text Solution

4. If $\mathrm{A}=\left|\begin{array}{lll}p & q & r \\ r & p & q \\ q & r & p\end{array}\right|$ and $A A^{T}=I \operatorname{then} p^{3}+q^{3}+r^{3}=$
A. ± 1
B. pqr
C. 3pqr
D. $3 p q r \pm 1$

- Watch Video Solution

5. Match the items of List-I with the items of List - II and choose the correct option.
List I List II
A. If A is a non singular matrix of order 3 I. null matrix and $|A|=a$, then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|=$
B. A is a non singular matrix of order 3 and II. a^{2} B is any matrix of order 3 such that
$A B=0$, then B is
C. $1 x x^{2}$ III. b
$\cos (a-b) y \cos a y \cos (a+b) y$
$\sin (a-b) y$ sinay $\sin (a+b) y$
does not depend on
D. A is a square matrix of order 3 and IV. a $B=A-A^{\top}$, then \mid B is

$$
\text { V. } 0
$$

A. $\begin{array}{llll}A & B & C & D \\ I I & I V & I I I & I\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}I I I & I & I V & V\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{lllll}I I & V & I I I & I\end{array}$
D. $\begin{array}{llll}A & B & C & D\end{array}$

II I IV V

Answer: D

- View Text Solution

6. The solution of the linear system of equations

$$
\left[\begin{array}{lll}
2 & 2 & 3 \\
7 & 1 & 1 \\
0 & 6 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 y+11 \\
6 z-1 \\
5 y+11
\end{array}\right]+\left[\begin{array}{l}
x \\
x \\
4 z
\end{array}\right]+\left[\begin{array}{l}
z \\
3 x \\
4 y
\end{array}\right] i s
$$

A. $x=4, y=-3, z=-2$
B. $x=2, y=1, z=1$
C. $x=1, y=-1, z=2$
D. $x=2, y=-4, z=3$

Answer: A

7. If $a b$, are the least and the greatest values respectively $\left|z_{1}+z_{2}\right|$, where $z_{1}=12+5 i$ and $\left|z_{2}\right|=9$, thena $^{2}+b^{2}=$
A. 468
B. 500
C. 250
D. 450

Answer: B

- Watch Video Solution

8. If a complex number z is such that
$(7+i)(z+\bar{z})-(4+i)(z-\bar{z})+116 i=0$, then $z \cdot \bar{z}=$
A. 400
B. 300
C. 200
D. 100

Answer: C

- Watch Video Solution

9. Let the point P pepresent $z=x+i y, x, y \in R$ in the argand plane .

Let the curves C_{1} and C_{2} be the loci of P satisfying the conditions
(i) $\frac{2 z+i}{z-2}$ is purely imaginary and
(ii) $\operatorname{Arg}\left(\frac{z+i}{z+1}\right)=\frac{\pi}{2}$ respectively. Then the point of intersection of the curves C_{1} and C_{2}, other than the origin, is
A. $(1,2)$
в. $\left(\frac{2}{7},-\frac{5}{7}\right)$
C. $(-3,4)$
D. $\left(\frac{5}{37},-\frac{30}{37}\right)$

Answer: D

10. If $z=\cos 6^{\circ}+i \sin 6^{\circ}$, then $\sum_{n=1}^{20}\left(z^{2 n-1}\right)=$
A. 0
B. -1
C. $\frac{-3}{4 \sin 6^{\circ}}$
D. $\frac{3}{4 \sin 6^{\circ}}$

Answer: D

- View Text Solution

11. If α, β are the real roots of $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always
A. two positive roots
B. two negative roots
C. one positive root and one negative root
D. two real roots

Answer: D

- Watch Video Solution

12. If $\frac{x-p}{x^{2}-3 x+2}$ takes all real values for $x \in R$ then the range of P is
A. $1 \leq P \leq 2$
B. $1<P<2$
C. $P<1$ or $P>2$
D. $P \geq 2$ or $P \leq 1$

Answer: A

13. $\left\{x \in R: \frac{\sqrt{6+x-x^{2}}}{2 x+5} \geq \frac{\sqrt{6+x-x^{2}}}{x-4}\right\}=$
A. $[-2,3]$
B. $(-\infty,-4] \cup\left[\frac{-5}{2},-1\right]$
C. $[-2,-1] \cup\{3\}$
D. $(-\infty,-4] \cup[-2,-1]$

Answer: C

- View Text Solution

14. Let θ be a an acute angle such that the equation $x^{3}+4 x^{2} \cos \theta+x \cot \theta=0$ has multiple roots. Then the value of θ (in radians) is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{8}$
C. $\frac{\pi}{12}$ or $\frac{5 \pi}{12}$
D. $\frac{\pi}{6}$ or $\frac{5 \pi}{12}$

Answer: C

- Watch Video Solution

15. six persons A, B, C, D, E and F are to be seated at a circular table facing towards the centre. Then the number of ways that can be done if A must have either E or F on his immediate right and E must have either F or D on his immediate right, is
A. 18
B. 30
C. 12
D. 24
16. Number of ways of forming a committee of 6 members out of 5 Indians. 5 Americans and 5 Australians such that there will be atleast one member from each county in the committee is
A. 3375
B. 4375
C. 3875
D. 4250

Answer: B

- View Text Solution

17. If 'a' the middle term in the expansion of $(2 x-3 y)^{8}$ and b, c are the middle terms in the expansion of $(3 x+4 y)^{7}$, then the value of $\frac{b+c}{a}$, when $\mathrm{x}=2$ and $\mathrm{y}=3$, is
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. 1
D. 2

Answer: D

D Watch Video Solution

18. The first negative coefficient in the terms occurring in the expansion of $(1+x)^{\frac{21}{5}}$ is
A. $\frac{-6160}{15625}$
B. $\frac{-416}{3125}$
C. $\frac{-616}{5^{7}}$
D. $\frac{-616}{5^{6}}$

Answer: C

19. When $|x|<\frac{1}{2}$, the coefficient of x^{4} in the expansion of $\frac{3 x^{2}-5 x+3}{(x-1)(2 x+1)(x+3)}$ is
A. $\frac{722}{27}$
B. $\frac{724}{27}$
C. $\frac{-722}{27}$
D. $\frac{-724}{27}$

Answer: C

- View Text Solution

20.

$x=a \sin ^{\alpha} \theta \cos ^{\alpha+1} \theta, y=a \sin ^{\alpha+1} \theta \cos ^{\alpha} \theta,\left(\theta \neq \frac{n \pi}{2}\right)$. If $\frac{\left(x^{2}+y^{2}\right)^{m}}{(x y)^{n}}$ is independent of θ, then the relation between $\alpha \mathrm{m}$ and n is
A. $2 m \alpha=n(2 \alpha+1)$
B. $m+n=\alpha$
C. $2 m \alpha=2 n \alpha+m$
D. $2 m=(2 n+1) \alpha$

Answer: A

- Watch Video Solution

21. Assertion (A) : If $\sqrt{4 \sin ^{4} \theta+\sin ^{2} 2 \theta}+4 \cos ^{2}\left(\frac{\pi}{4}-\frac{\theta}{2}\right)=2$, then θ lies in 3rd quadrant or 4th quadrant .

Reason: (R) $\sqrt{\sin ^{2} \theta}=\sin \theta$
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

- Watch Video Solution

22.

$$
x=\frac{\sin ^{3} \theta}{\cos ^{2} \theta} \text { and } y=\frac{\cos ^{3} \theta}{\sin ^{2} \theta}
$$

$\sin \theta+\cos \theta=\frac{1}{2}, \quad$ then $x+y=$
A. $\frac{48}{9}$
B. $\frac{34}{9}$
C. $\frac{65}{18}$
D. $\frac{79}{18}$

Answer: D

D Watch Video Solution

23. If $4\left(\sin 2 x \sin 4 x+\sin ^{2} x\right)=3$, then $\mathrm{x}=$
A. $\frac{2 n \pi}{3} \pm \frac{\pi}{9}, n \in Z$
B. $\frac{n \pi}{3} \pm \frac{\pi}{9}, n \in Z$
C. $\frac{n \pi}{3}+(-1)^{n} \frac{\pi}{9}, n \in Z$
D. $\frac{n \pi}{3}+(-1)^{n} \frac{2 \pi}{9}, n \in Z$

Answer: B

- Watch Video Solution

24. If $\sum_{k=1}^{n} \tan ^{-1}\left(\frac{1}{k^{2}+k+1}\right)=\tan ^{-1}(\theta)$, then $\theta=$
A. $\frac{n}{n+2}$
B. $\frac{n}{n+1}$
C. 1
D. $\frac{n}{n-1}$

Answer: A

25. $e^{\left(\sec h^{-1} \frac{1}{2}+\tan h^{-1} \frac{1}{2}+\sin h^{-1} \frac{1}{2}\right)}=$
A. $\frac{2+3 \sqrt{3}+3 \sqrt{5}+3 \sqrt{15}}{2}$
B. $\frac{3+2 \sqrt{3}+3 \sqrt{5}+2 \sqrt{15}}{2}$
C. $\frac{2=3 \sqrt{3}+4 \sqrt{5}+5 \sqrt{15}}{2}$
D. $\frac{2+3 \sqrt{3}-4 \sqrt{5}+5 \sqrt{15}}{2}$

Answer: B
26. In $\triangle A B C$ if a: $\mathrm{b}: \mathrm{c}=3: 5: 7$, then, $\cos \mathrm{A}+\cos \mathrm{B}=$
A. $\frac{13}{7}$
B. $\frac{11}{7}$
C. $\frac{12}{7}$
D. $\frac{10}{7}$

Answer: C

- Watch Video Solution

27. If $A B C D$ is a cyclic quadrilateral with $A B=6, B C=4, C D=5, D A=3$ and $\angle A B C=\theta$, then $\cos \theta=$
A. A $\frac{3}{13}$
B. B $\frac{18}{76}$
C. $\mathrm{C} \frac{16}{78}$
D. $\frac{78}{86}$

Answer: A

28. Let a triangle $A B C$ be inscribed in a circle of radius 2 units. If the 3 bisectors of the angles A, B and C are extended to cut the circle at A_{1}, B_{1} and C_{1} respectively, then the value of
$\left[\frac{A A_{1} \cos \frac{A}{2}+B B_{1} \cos \frac{B}{2}+C C_{1} \cos \frac{C}{2}}{\sin a+\sin B+\sin C}\right]^{2}=$
A. 4
B. 16
C. 25
D. 1

Answer: B

- View Text Solution

29. Let D and E be the midpoints of the sides $A C$ and $B C$ of a triangle $A B C$ respectively. If O is an interior point of the triangle $A B C$ such that $O A+$ $2 O B+30 C=0$, then the area (in sq units) of the triangle ODE is
A. 6
B. 5
C. $\frac{3}{4}$
D. 0

Answer: D

D View Text Solution

30. The vector equation of the plane passing through the points
$(1,-2,5),(0,-5,-1)$ and $(-3,5,0)$ is
A. $r=(1-\lambda-4 \mu) \hat{i}-(2+3 \lambda-7 \mu) \hat{j}+(5-6 \lambda-5 \mu) \hat{k}$
В. $r=(1+\lambda+4 \mu) \hat{i}-(2-3 \lambda+7 \mu) \hat{j}+(5-6 \lambda-5 \mu) \hat{k}$
C. $r=(1-\lambda+4 \mu) \hat{i}-(2+3 \lambda+7 \mu) \hat{j}+(5-6 \lambda+5 \mu) \hat{k}$
D. $r=(1+\lambda-4 \mu) \hat{i}+(2+3 \lambda-7 \mu) \hat{j}+(5+6 \lambda-5 \mu) \hat{k}$
31. The angle made by the vector $2 \hat{i}-\hat{j}+\hat{k}$ with the plane represented by $r \cdot(\hat{i}+\hat{j}+2 \hat{k})=7$ is
A. 30°
B. 60°
C. 45°
D. 75°

Answer: A

- Watch Video Solution

32. If a, b, c are non-zero , non-collinear vectors and $a \times b=b \times c=c \times a$, then $\mathrm{a}+\mathrm{b}+\mathrm{c}=$
B. 0
C. $3(a \times b)$
D. $3(b \times c)$

Answer: B

D Watch Video Solution

33. If $V=2 \hat{i}+\hat{j}-\hat{k}, W=\hat{i}+3 \hat{k}$ and U is a unit vector, then the maximum value of [$\mathrm{U} V \mathrm{~W}$] is
A. $\sqrt{57}$
B. $\sqrt{59}$
C. $\sqrt{60}$
D. $\sqrt{10}+\sqrt{6}$

Answer: B

34. Assertion (A) : If a, b are two non collinear vectors, then the vector component of b along the line perpendicular to a is $\frac{a \times(b \times a)}{|a|^{2}}$ Reason (R) : $a \times(b \times c)=(a . c) b-(a . B) c$ and vector component of b on c is $\left(b \cdot \frac{c}{|c|}\right) \frac{c}{|c|}$
A. Both (A) and (R) are true and (R) is the correct explanation of (A)
B. Both (A) and (R) are true but (R) is not the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true

Answer: A

- View Text Solution

$x_{i}(i=1,2, \ldots, 10)$ and $y_{i}(i=1, \ldots, 10)$ are respectively 'a' and 'b' . \bar{x}, \bar{y} are the means of these two sets of observation respectively. If $z_{i}=\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ and $\sum_{i=1}^{10} z_{i}=c$ then the standard deviations of the observation $=\left(x_{i}-y_{i}\right),(i=1,2, \ldots, 10)$ is
A. $\sqrt{a^{2}+b^{2}+\frac{c}{5}}$
B. $\sqrt{a^{2}+b^{2}-\frac{c}{5}}$
C. $\sqrt{a^{2}+b^{2}-\frac{c^{2}}{5}}$
D. $\sqrt{a^{2}+b^{2}+\frac{c^{2}}{5}}$

Answer: B

- View Text Solution

36. For a group of 100 students, the mean \bar{x}_{1} and the standard deviation σ_{1} of their marks were found to be 40 and 15 respectively. Later it was
observed that the scores 40 and 50 were misread as 30 and 60 respectively. If the mean and the standard deviation with the corrected observations of the scores, are \bar{x}_{2} and σ_{2} respectively, then
A. $\bar{x}=\bar{x}_{2}, \sigma_{1}=\sigma_{2}$
B. $\bar{x}_{1}=\bar{x}_{2}, \sigma_{1}<\sigma_{2}$
C. $\bar{x}_{1}=\bar{x}_{2}, \sigma_{1}>\sigma_{2}$
D. $\bar{x}_{1}>\bar{x}_{2}, \sigma_{1}=\sigma_{2}$

Answer: C

- Watch Video Solution

37. If two unbiased dice are rolled simultaneously unitl a sum of the number appered on these dice is either 7 or 11 , then the probability that 7 comes before 11 , is
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{5}{9}$
D. $\frac{5}{18}$

Answer: B

- Watch Video Solution

38. If A and B throw two dice 100 times each simultaneously, then the probability that both of them will get even number as the total at the same time in all the throws is
A. $\left(\frac{1}{6}\right)^{100}$
B. $\left(\frac{1}{4}\right)^{100}$
C. $\left(\frac{1}{2}\right)^{100}$
D. $\left(\frac{3}{4}\right)^{100}$

Answer: A

39. The probabilities of having a defective toy in three cartons, A , B, C are $\frac{1}{3}, \frac{1}{4}, \frac{2}{5}$ respectively. If a carton is selected at random and a toy drawn randomly from it is found to be defective, then probability that it is drawn from carton B is
A. $\frac{15}{47}$
B. $\frac{20}{47}$
C. $\frac{20}{59}$
D. $\frac{15}{59}$

Answer: D

- Watch Video Solution

40. A die is thrown twice. If getting a number greater than four on the die is considered a succes. Then the variance of the probability distribution of the number of successes is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{4}{9}$
D. $\frac{8}{9}$

Answer: C

- Watch Video Solution

41. If X is a poisson variate such that $2 P(X=1)=5 P(X=5)+(2 P(X=3)$, then the standard deviation of X is
A. 4
B. 2
C. $\frac{1}{2}$
D. $\sqrt{2}$

Watch Video Solution

42. If the sum of the distance from a variable point P to the given points
$A(1,0)$ and $B(0,1)$ is 2 , then the locus of P is
A. $3 x^{2}+3 y^{2}-4 x-4 y=0$
B. $16 x^{2}+7 y^{2}-64 x-48 y=0$
C. $3 x^{2}=2 x y+3 y^{2}-4 x-4 y=0$
D. $16 x^{2}+38 x y+7 y^{2}-64 x-48 y=0$

Answer: C

- View Text Solution

43. If the equation of a curve C is transformed to $9 x^{2}+25 y^{2}=225$ be the rotation of the coordinate axes about the origin through an angle $\frac{\pi}{4}$ in the positive direction then the equation of the curve C , before the transformation is
A. $17 x^{2}+16 x y+17 y^{2}=225$
B. $17 x^{2}+23 y^{2}=391$
C. $17 x^{2}-16 x y+17 y^{2}=225$
D. $23 x^{2}+17 y^{2}=391$

Answer: C

- Watch Video Solution

44. A straight line $4 x+y-1=0$ through the point $A(2,7)$ meets the line $B C$ whose equation is $3 x-4 y+1$ at the point B. Then the equation of the line $A C$ such that $A B=A C$, is
A. $89 x-52 y-162=0$
B. $52 x+89 y+519=0$
C. $4 x-y-15=0$
D. $4 x+3 y+13=0$

- View Text Solution

45. In a $\triangle A B C, 2 x+3 y+1=0, x+2 y-2=0 \quad$ are \quad the perpendicular bisectors of its sides $A B$ a nd $A C$ respectively and if $A=$ $(3,2)$, then the equation of the side $B C$ is
A. $x+y-3=0$
B. $x-y-3=0$
C. $2 x-y-2=0$
D. $2 x+y-2=0$

Answer: B

- View Text Solution

46. If the perpendicular bisector of the line segment joining $A(\alpha, 3)$ and $\mathrm{B}(2,-1)$ has y -intercept 1 , then $\alpha=$
A. 0
B. ± 1
C. ± 2
D. ± 3

Answer: C

- Watch Video Solution

47. the number of values of a for which the pair of lines represented by $3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are at right angles to each other , is
A. 2
B. 1
C. infinitely many
D. 0

Answer: A

- Watch Video Solution

48. If the pair of lines joining the origin and the points of intersection of the line ax $+\mathrm{by}=1$ and the curve $x^{2}+y^{2}-x-y-1=0$ are at right angles, then the locus of he point (a, b) is a circle of radius
A. 2
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{5}{2}}$
D. $\frac{\sqrt{5}}{2}$

Answer: C

49. If the lines $x+2 y-5=0$ and $2 x-3 y+4=0$ lie along diameters of a circle of area is 9π then the equation of the circle is
A. $x^{2}+y^{2}-2 x-4 y-4=0$
B. $x^{2}+y^{2}+2 x-4 y-4=0$
C. $x^{2}+y^{2}+2 x+4 y-4=0$
D. $x^{2}+y^{2}-2 x+4 y-4=0$

Answer: A

- Watch Video Solution

50. Given that $a>2 b>0$ and that the line $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to the circles $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$. Then the positive value of m is
A. $\frac{2 b}{a-2 b}$
B. $\frac{b}{a-2 b}$
C. $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
D. $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$

Answer: D

(D) Watch Video Solution

51. Two circles each of radius 5 units touch each other at $(1,2)$ and $4 x+3 y$ $=10$ is their common tangent. The equation of that circle among the two given circles, such that some portion of it lies in every quadrant is
A. $x^{2}+y^{2}+6 x+2 y+15=0$
B. $x^{2}+y^{2}+2 x+6 y-15=0$
C. $x^{2}+y^{2}+6 x+2 y-15=0$
D. $x^{2}+y^{2}-6 x+2 y-15=0$

Answer: C

52. If the angle between the circles $x^{2}+y^{2}+4 x-5=0$ and $x^{2}+y^{2}+2 \lambda y-4=0$ is $\frac{\pi}{3}, \quad$ then $\lambda=$
A. $\pm \sqrt{5}$
B. ± 2
C. $\pm \sqrt{3}$
D. $\pm \sqrt{6}$

Answer: A

- Watch Video Solution

53. The equation of a circle passing through the points of intersection of the circles
$x^{2}+y^{2}-4 x-6 y-12=0$
$x^{2}+y^{2}+6 x+4 y-12=0$ and having radius $\sqrt{13}$ is
A. $x^{2}+y^{2}-2 x-12=0$
B. $x^{2}+y^{2}+2 y-12=0$
C. $x 6(2)+y^{2}-2 y-13=0$
D. $x^{2}+y^{2}+2 x-12=0$

Answer: D

D View Text Solution

54. The normal at a point on the parabola $y^{2}=4 x$ passes through $(5,0)$. If two more normals to this parabola also pass through $(5,0)$, then centroid of the triangle formed by the feet of these three normal is
A. $\left(\frac{1}{2}, \frac{1}{2}\right)$
B. $(2,0)$
C. $(5,0)$
D. $(0,2)$

D Watch Video Solution

55. The equation of the normal to the parabola $y^{2}=4 x$ which is perpendicular to $x+3 y+1=0$ is
A. $3 x-y=33$
B. $3 x-y+33=0$
C. $3 x+y=33$
D. $3 x+y+33=0$

Answer: A

- Watch Video Solution

56. Let P be any point on the ellipse $7 x^{2}+16 y^{2}=112$, S be a focus, L be the corresponding directrix and PM be the perbendicular distance
from P directrix L. Then $\frac{S P}{P M}$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

Watch Video Solution

57. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the ends of latus rectum. The area of the quadrilateral formed, is
A. 27
B. $\frac{15}{4}$
C. $\frac{13}{2}$
D. 45

- Watch Video Solution

58. A hyperbola with centre at $(0,0)$ has its transverse axis along X - axis whose length is 12 if (8,2) is a point on the hyperbola , then its eccentricity is
A. $\frac{8}{7}$
B. $\frac{2 \sqrt{2}}{\sqrt{7}}$
C. $\frac{3}{\sqrt{7}}$
D. $\frac{9}{7}$

Answer: B

- Watch Video Solution

59. In a triangle $A B C$, if the mid-points of sides $A B, B C, C A$ are $(3,0,0)$, $(0,4,0),(0,0,5)$ respectively, then $A B^{2}+B C^{2}+C A^{2}=$
A. 50
B. 200
C. 300
D. 400

Answer: D

- View Text Solution

60. The angle between a line with direction ratios $2,2,1$ and the line joining the points $(3,1,4)$ and $(7,2,12)$ is
A. $\cos ^{-1}\left(\frac{2}{3}\right)$
B. $\cos ^{-1}\left(\frac{3}{4}\right)$
C. $\tan ^{-1}\left(\frac{-2}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{3}\right)$

Answer: A

- Watch Video Solution

61. The equation of the plane in normal form which passes through the points $(-2,1,3),(1,1,1)$ and (2,3,4) is
A. $\left(\frac{2}{3}\right) x+\left(-\frac{2}{3}\right) y+\left(\frac{1}{3}\right) x=\frac{1}{3}$
в. $\left(-\frac{2}{3}\right) x+\left(\frac{2}{3}\right) y+\left(-\frac{1}{3}\right) x=\frac{1}{3}$
C. $\left(-\frac{2}{3}\right) x+\left(\frac{2}{3}\right) y+\left(-\frac{1}{3}\right) x=\frac{1}{3}$
D. $\left(\frac{4}{\sqrt{173}}\right) x+\left(\frac{-11}{\sqrt{173}}\right) y+\left(\frac{6}{\sqrt{173}}\right) x=\frac{1}{\sqrt{173}}$

Answer: C

- View Text Solution

62. If $\alpha=\lim _{x \rightarrow 0} \frac{x \cdot 2^{x}-x}{1-\cos x}$ and $\beta=\lim _{x \rightarrow 0} \frac{x \cdot 2^{x}-x}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}$ then
A. $\alpha=5 \beta$
B. $\alpha=2 \beta$
C. $\beta=2 \alpha^{2}$
D. $\beta=\frac{1}{6} \alpha$

Answer: B

- View Text Solution

63. $\lim _{n \rightarrow \infty}\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots+(n\right.$ terms $\left.)\right)=$
A. $\frac{1}{12}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. 0

D Watch Video Solution

64. $\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+a x+b}-x\right](a<0<b)$
A. depends on both a nad b
B. depends only on b
C. depends only on a
D. does not depend on a and b

Answer: C

- View Text Solution

65. If α and β are such that the function $\mathrm{f}(\mathrm{x})$
defined by $f(x)= \begin{cases}\alpha x^{2}-\beta, & \text { for }|x|<1 \\ \frac{-1}{|X|}, & \text { for }|x| \geq 1\end{cases}$
is differentiable everywhere, then the ordered pair $(\alpha, \beta)=$
A. $\left(-\frac{1}{2},-\frac{3}{2}\right)$
B. $\left(\frac{1}{2},-\frac{3}{2}\right)$
C. $\left(\frac{1}{2}, \frac{3}{2}\right)$
D. $\left(-\frac{1}{2}, \frac{3}{2}\right)$

Answer: C

- Watch Video Solution

66. If $\mathrm{y}=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)$ then $\frac{d y}{d x}=$
A. $\frac{-1}{2}$
B. $\frac{1}{1+x}$
C. $\frac{1}{1-x}$
D. 1

- Watch Video Solution

67.

$a \neq b, x \neq n \pi n \in Z$ and $y^{2}=a^{2} \cos ^{2} x+b^{2} \sin ^{2} x, \quad$ then $\frac{d^{2} y}{d x^{2}}+y=$
A. $\left(\frac{a b}{y}\right)^{2}$
B. $\frac{1}{y}\left(\frac{a b}{y}\right)^{2}$
C. $\frac{(a b)^{2}}{y}$
D. $\frac{a b}{y^{3}}$

Answer: B

- View Text Solution

68. If $2 y=3 x-1$ is a tangent drawn to the curve $y^{2}=a x^{3}+b$ at (1.1)
where a, b are constatns then $(\mathrm{a}, \mathrm{b})=$
A. $(1,0)$
B. $(0,1)$
C. $(1,-1)$
D. $(-1,1)$

Answer: A

- Watch Video Solution

69. A ladder of 5 meters long rests against a vertical wall with the lower end on the horizontal ground.
. The lower end of the ladder is pulled along the ground away from the wali at the rate $3 \mathrm{~m} / \mathrm{sec}$. The height of the upper end (in meters) while it is descending at the rate of $4 \mathrm{~m} / \mathrm{sec}$, is
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

70. Suppose $f^{\prime \prime}(x)$ exists for all real x. if $f(2)=2, f(3)=5$ and $f(4)=10$, then which one among the following statements is definitely true?
A. $f^{\prime \prime}(x)<1$ for some $x \in(2,4)$
B. $f^{\prime \prime}(x)>1$ for some $x \in(2,4)$
C. $f^{\prime \prime}(x)=1$ for some $x \in(2,4)$
D. $f^{\prime \prime}(x)=0$ for some $x \in(2,4)$

Answer: B

- View Text Solution

71. If p and q are respectively the global maximum and global minimum of the function $\mathrm{f}(\mathrm{x})=x^{2} e^{2 x}$ on the interval $[-2,2]$, then $p e^{-4}+q e^{4}=$
A. 0
B. $4 e^{8}$
C. 4
D. $4 e^{8}+1$

Answer: C

(D) Watch Video Solution

72. $\int \frac{x+\sin x}{1+\cos x} d x=$
A. $\log _{e}(1+\cos x)+c$
B. $x \frac{\sin ^{2}(x)}{2}+c$
C. $\tan \frac{x}{2}+c$
D. $x \tan \frac{x}{2}+c$

Answer: D

- Watch Video Solution

73. $\int x^{2}\left[\sqrt{2}\left(\frac{\pi}{4}+x\right)+e^{x}\right] d x=$
A.

$$
\left(x^{2}+2 x-2\right) \sin x+\left(-x^{2}+2 x+2\right) \cos x+\left(x^{2}-2 x+2\right) e^{x}+c
$$

B.

$$
\left(-x^{2}+2 x+2\right) \sin x+\left(x^{2}+2 x-2\right) \cos x+\left(x^{2}-2 x+2\right) e^{x}+c
$$

C.

$$
\left(x^{2}+2 x+2\right) \sin x+\left(-x^{2}-2 x-2\right) \cos x+\left(x^{2}-2 x+2\right) e^{x}+c
$$

D.

$$
\left(x^{2}-2 x-2\right) \sin x+\left(-x^{2}+2 x-2\right) \cos x+\left(x^{2}-2 x+2\right) e^{x}+c
$$

- View Text Solution

74. $\int \frac{d x}{(x-1)^{2}\left(x^{2}+1\right)}=$
A. $\log _{e} \sqrt{x+1}+\frac{1}{2} \log _{e} \sqrt{x^{2}+1}-\frac{1}{x+1}+c$
B. $\log _{e} \sqrt{x+1}-\frac{1}{2} \log _{e} \sqrt{x^{2}+1}-\frac{1}{2(x+1)}+c$
C. $\frac{1}{2} \log _{e} \sqrt{x+1}-\frac{1}{4} \log _{e} \sqrt{x^{2}+1}+\frac{1}{2(x-1)}+c$
D. $\frac{1}{4} \log _{e} \sqrt{x+1}+\frac{1}{2} \log _{e} \sqrt{x^{2}+1}+\frac{1}{x+1}+c$

Answer: B

- View Text Solution

75.

$n \geq 2, \quad$ if $\quad I_{n}=\int(\sin x+\cos x)^{n} d x$ then $n I_{n}-2(n-I) I_{n-2}=$
A. $(\sin x+\cos x)^{n+1}(\sin x-\cos x)+c$
B. $(\sin x+\cos x)^{n}(\sin x-\cos x)+c$
C. $(\sin x+\cos x)^{n-1}(\sin x-\cos x)+c$
D. $(\sin x-\cos x)^{n-1}(\sin x+\cos x)+c$

Answer: C

D View Text Solution

76. $\lim _{n \rightarrow \infty} \frac{\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}}{n^{3 / 2}}=$
A. 0
B. $\frac{2}{3}$
C. 1
D. $\frac{3}{2}$

Answer: B

77. $\int_{0}^{\infty} e^{-x} \sin ^{6} x d x=$
A. $\frac{24}{85}$
B. $\frac{124}{285}$
C. $\frac{136}{529}$
D. $\frac{144}{629}$

Answer: D

- View Text Solution

78. The area (in sq. units) bounded by the curve $y=x^{2}+2 x+1$ and the tangent to it at $(1,4)$ and the y-axis is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{7}{3}$

Answer: A

- View Text Solution

79. The differential equation formed by eliminating a and b from the equation $y=e^{x}(\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x})$ is
A. $2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$
B. $2 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0$
C. $2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0$
D. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$

Answer: D

- View Text Solution

80. If $y=A(x) e^{-\int p d x}$ is a solution of $\frac{d y}{d x}+P(x) y=Q(x)$, then $\mathrm{A}^{\prime}(\mathrm{x})=$
A. $e^{\int p d x}$
B. $Q(x) e^{-\int p d x}$
C. $\int Q(x) e^{\int p d x} d x$
D. $Q(x) e^{\int p d x}$

Answer: D

- View Text Solution

