©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - TS EAMCET PREVIOUS YEAR PAPERS

AP EAMCET SOLVED PAPER 2019

Mathematics

1. $\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{2 \pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{4 \pi}{8}$
$+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{6 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}=$
A. A $\frac{3}{2}$
B. B $\frac{5}{2}$
C. C 3
D. $\frac{7}{2}$

Answer: C

Watch Video Solution

2. If $x: y:=\tan \left(\frac{\pi}{15}+\alpha\right): \tan \left(\frac{\pi}{15}+\beta\right)$:
$\tan \left(\frac{\pi}{15}+\gamma\right)$, then $\frac{z+x}{z-x} \sin ^{2}(\gamma-\alpha)+\frac{x+y}{x-y}$
$\sin ^{2}(\alpha-\beta)+\frac{y+x}{y-z} \sin ^{2}(\beta-\gamma)=$
A. $\sin ^{2} \theta$
B. $\cos ^{2} \theta$
C. 0
D. 1

Answer: C

- View Text Solution

3. Let [x] denote the largest integer $\leq x$. If the number of solutions of $\cos ^{2} \theta$ is k, then for
$x \in\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$ the value of $k^{\tan ^{2} x}$
A. is equal to 1
B. lies in between 2^{1} and 2^{3}
C. is equal to zero
D. lies in between $\frac{1}{2^{3}}$ and $\frac{1}{2}$

Answer: C

- View Text Solution

4. If α and β are the least and the greatest values of $f(x)=\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$ for all $x \in \mathrm{R}$ respectively, then $8(\alpha+\beta)=$
A. A π^{2}
B. B $11 \pi^{2}$
C. C $9 \pi^{2}$
D. D $25 \pi^{2}$

- Watch Video Solution

5. If $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then $\log \sec \mathrm{x}=$
A. $2 \operatorname{cosech}^{-1}\left(\cot ^{2} \frac{x}{2}-1\right)$
B. $2 \operatorname{cosech}^{-1}\left(\cot ^{2} \frac{x}{2}+1\right)$
C. $2 \operatorname{coth}^{-1}\left(\operatorname{cosec}^{2} \frac{x}{2}-1\right)$
D. $2 \operatorname{coth}^{-1}\left(\operatorname{cosec}^{2} \frac{x}{2}+1\right)$

Answer: C

- View Text Solution

6. The area (in square units) of $\Delta A B C$ if
$\angle A=75^{\circ}, \angle B=45^{\circ}$ and $a=2(\sqrt{3}+1)$ is
A. 6
B. $2 \sqrt{3}$
C. $6-2 \sqrt{3}$
D. $6+2 \sqrt{3}$

Answer: D

D Watch Video Solution

7. In $\triangle A B C$, if $3 a=b+c$, then $\cot \frac{B}{2} \cdot \cot \frac{C}{2}=$
A. 1
B. 2
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: B

8. In a $\triangle A B C$, if $\frac{2 r_{2} r_{3}}{r_{2}-r_{1}}=r_{3}-r_{1}$ then
$\frac{r_{1}\left(r_{2}+r_{3}\right)}{\sqrt{r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}}}=$
A. $\frac{a^{2}+b^{2}+c^{2}}{\Delta^{2}}$
B. b-c
C. $\frac{1}{2 R}$
D. 2 R

Answer: D

- View Text Solution

9. If $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k}$ and $4 \hat{i}+5 \hat{j}+\lambda \hat{k}$ are respectively the position vectors of four coplanar points P, Q, R and S, then $\lambda=$
A. $\frac{46}{17}$
B. $-\frac{46}{17}$
C. $\frac{146}{17}$
D. $-\frac{146}{17}$

Answer: D

- Watch Video Solution

10. If $O A=2 \hat{i}+2 \hat{j}+\hat{k}, O B=2 \hat{i}+4 \hat{j}+4 \hat{k}$ and the length of the internal bisector of $\angle B O A$ of triangle $A O B$ is k, then $9 k^{2}=$
A. A 225
B. B 136
C. C 712
D. D 20

Answer: B

11. If $a+x b+y c=0$, $a \times b+b \times c+c \times a=6(b \times c)$ then the locus of the point (x, y) is
A. $x^{2}+y^{2}=1$
B. $x+y-5=0$
C. $2 x+6 y=5$
D. $x+y+6=0$

Answer: B

- View Text Solution

12. Let $A=(\alpha, 1,2 \alpha), B=(3,1,2)$ and $C=4 \hat{i}-\hat{j}+3 \hat{k}$.
$A B \times C=6 \hat{i}+9 \hat{j}-5 \hat{k}$, then $\alpha^{2}+\alpha+5=$
A. 11
B. 7
C. 9
D. 5

Answer: B

- Watch Video Solution

13. The shortest distance between the skew lines
$r=(6 \hat{i}+2 \hat{j}+2 \hat{k})+t(\hat{i}-2 \hat{j}+2 \hat{k})$ and
$r=(-4 \hat{i}-\hat{k})+s(3 \hat{i}-2 \hat{j}-2 \hat{k})$ is
A. 9
B. $\frac{40}{7}$
C. 108
D. 120

Answer: A
14. If a makes an acute angle with $b, r \cdot a=0$ and $r \times b=c \times b$, then r =
A. $a \times c-b$
B. $c \times a$
C. $c-\left(\frac{c \cdot a}{b \cdot a}\right) b$
D. $c+\left(\frac{c \cdot a}{b \cdot a}\right) b$

Answer: C

- View Text Solution

15. For a data consisting of 15 observations $x_{i}, i=1,2,3, \ldots, 15$ the following results are obtained : $\sum_{i=1}^{15} x_{i}=170, \sum_{i=1}^{15} x_{i}^{2}=2830$. If one of the observation namely 20 was found wrong and was replaced by its correct value 30 , then the corrected variance is
A. 80
B. 78
C. 76
D. 75

Answer: B

- Watch Video Solution

16. A and B each select one number at random from the distinct numbers
$1,2,3, \ldots ., n$ and the probability that the number selected by a is less than the number selected by B is `(1009)/(2019). Now the probability that the number selected by B is the number immediately next to the number selected by A is
A. $\frac{2018}{2019}$
B. $\frac{2018}{(2010)^{2}}$
C. $\frac{2000}{(2019)}$
D. $\frac{2000}{(2019)^{2}}$

Answer: B

- View Text Solution

17. There are 3 bags A, B and C. Bag A contains 2 white and 3 black balls, bag B contains 4
white and 2 black balls and Bag C contains 3
white and 2 black balls. If a ball is drawn at random from a randomly chosen bag, then the probability that the ball drawn is black, is
A. A $\frac{2}{3}$
B. B $\frac{4}{9}$
C. C $\frac{5}{9}$
D. $\mathrm{D} \frac{1}{9}$

Answer: B

18. If a random variable X has the probability distrbution given by
$P(X=0)=2 C^{3}$,
$P(X=2)=5 C-10 C^{2}$ and $P(X=4)=4 C-1$,
then the variance of that distribution is
A. $\frac{68}{9}$
B. $\frac{22}{9}$
C. $\frac{612}{81}$
D. $\frac{128}{81}$

Answer: D

- View Text Solution

19. A box contains 30 toys of same size in which 10 toys are white and all the remaining toys are blue. A toy is drawn at random from the box and it
is replacecd in the box after noting down its colour. If 5 toys are drawn in this way, then the probability of getting atmost 2 white toys is
A. A $\left(\frac{6}{9}\right)^{2}$
в. в $\left(\frac{8}{9}\right)^{2}$
C. C $\left(\frac{7}{9}\right)^{2}$
D. D $\left(\frac{2}{3}\right)^{2}$

Answer: B

Watch Video Solution

20. The locus of the point of intersection of the lines $x \sin \theta+(1-\cos \theta) y=a \sin \theta$ and $x \sin \theta-(1+\cos \theta) y+a \sin \theta=0$ is
A. straight line
B. circle
C. parabola
D. hyperbola

Answer: B

- Watch Video Solution

21. A line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle θ keeping the origin fixed, this line L has the intercepts p and q. Then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $a^{2}+p^{2}=b^{2}+q^{2}$
C. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$

Answer: D

- Watch Video Solution

22. If O is the origin and A and B are points on the line $3 x-4 y+25=0$ such that $O A=O B=13$, Then the area of $\triangle O A B$ (In sq units) is
A. 30
B. 120
C. 60
D. 65

Answer: C

(D) Watch Video Solution

23. If $P(\alpha, \beta)$ be a point on the line $3 x+y=0$ such that the point P and the point $\mathrm{Q}(1,1)$ lie on either side of the line $3 x=4 y+8$ then
A. $\alpha>\frac{8}{15}, \beta<\frac{-8}{5}$
B. $\alpha<\frac{8}{15}, \beta<\frac{-8}{5}$
C. $\alpha>\frac{8}{15}, \beta>\frac{-8}{5}$
D. $\alpha<\frac{8}{15}, \beta>\frac{-8}{5}$

Answer: A

- Watch Video Solution

24. Two vertices of a triangle are ($5,-1$) and ($-2,3$). If the orthocentre of the triangle is the origin, find the third vertex.
A. $(4,7)$
B. $\left(-2, \frac{-7}{2}\right)$
C. $(-4,-7)$
D. $(-2,3)$

Answer: C

- Watch Video Solution

25. The distance from the origin to the orthocentre of the triangle fromed by the lines $x+y-1=0$ and $6 x^{2}-13 x y+5 y^{2}=0$ is
A. $\frac{11 \sqrt{2}}{2}$
B. 13
C. 11
D. $(11 \sqrt{2})$

Answer: D

- View Text Solution

26. The combined equation of two lines L and L_{1} is $2 x^{2}+a x y+3 y^{2}=0$ and the combined equation of two lines L and L_{2} is $2 x^{2}+b x y-3 y^{2}=0$. If L_{1} and L_{2} are perpendicular, then $a^{2}+b^{2}=$
A. 26
B. 29
C. 13
D. 85

Answer: A

- View Text Solution

27. The power of the point $B(-1,1)$ with respect to the circle $S \equiv x^{2}+y^{2}-2 x-4 y+3=0$ is p. If the length of the tangent drawn from B to the circles $S=0$ is t, then the point $(2,3)$ with respect to circle $S^{\prime}=0$ having centre at $\left(p, t^{2}\right)$ and passing through the origin.
A. lies inside the circle $S^{\prime}=0$
B. lies outside the circle $S^{\prime}=0$
C. lies on the circle $S^{\prime}=0$
D. is the centre of the circle $S^{\prime}=0$

D Watch Video Solution

28. If tangents are drawn to the circle $x^{2}+y^{2}=12$ at the points where it intersects the circle $x^{2}+y^{2}-5 x+3 y-2=0$ then the coordinates of the points of intersection of those tangents are
A. $\left(-6, \frac{18}{5}\right)$
B. $\left(6, \frac{18}{5}\right)$
C. $\left(-6, \frac{-18}{5}\right)$
D. $\left(6, \frac{-18}{5}\right)$

Answer: D

- Watch Video Solution

29. If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles $x^{2}+y^{2}-14 x+6 y+33=0$ and $x^{2}+y^{2}+30 x-2 y+1=0$ are T and D respectively, then the centre of the circle having TD as diameter is
A. $\left(\frac{39}{2}, \frac{-7}{4}\right)$
B. $\left(\frac{39}{4}, \frac{7}{2}\right)$
C. $\left(\frac{39}{4}, \frac{-7}{2}\right)$
D. $\left(\frac{39}{2}, \frac{-7}{2}\right)$

Answer: C

- Watch Video Solution

30. If the circles $x^{2}+y^{2}+2 \lambda x+2=0$ and
$x^{2}+y^{2}+4 y+2=0$ touch each other, then $\lambda=$
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: B

- Watch Video Solution

31. The equation of the circle whose diameter is the common chord of the circles
$x^{2}+y^{2}+2 x+3 y+1=0$ and
$x^{2}+y^{2}+4 x+3 y+2=0$ is
A. $2 x^{2}+2 y^{2}+x+3 y+2=0$
B. $2 x^{2}+2 y^{2}+2 x+6 y+1=0$
C. $2 x^{2}+2 y^{2}+4 x-3 y-1=0$
D. $x^{2}+y^{2}+2 x+6 y-2=0$

Answer: B

- Watch Video Solution

32. If the forcus of a parabola divides a focal chord of the parabola into segments of lengths 5,3 units, then the length of the latusrectum of that parabola is
A. $\frac{15}{4}$
B. 20
C. $\frac{25}{2}$
D. $\frac{15}{2}$

Answer: D

33. The angle between the tangents drawn to the parabola $y^{2}=4 x$ from the point $(1,4)$ is
A. A $\frac{\pi}{4}$
B. B $\frac{\pi}{3}$
C. $\mathrm{C} \frac{2 \pi}{5}$
D. D $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

34. If the tangent drawn to the parabola $y^{2}=4 x$ at $\left(t^{2}, 2 t\right)$ is the normal to the ellipse $4 x^{2}+5 y^{2}=20$ at $(\sqrt{5} \cos \theta, 2 \sin \theta)$, then
A. $5 t^{4}+4 t^{2}=1$
B. $\frac{5}{t^{4}}+\frac{100}{t^{2}}=1$
C. $t=\sin \theta$
D. $\cos \theta=t+1$

Answer: A

- View Text Solution

35. If the tangents drawn from a point P to the ellipse $4 x^{2}+9 y^{2}-24 x+36 y=0$ are perpendicular, then the locus of P is
A. $x^{2}+y^{2}-6 x+4 y+13=0$
B. $x^{2}+y^{2}-6 x+4 y-13=0$
C. $x^{2}+y^{2}+6 x-4 y-13=0$
D. $x^{2}+y^{2}=26$

Answer: B

- View Text Solution

36. The locus of the mid-points of the chords of the circle $x^{2}+y^{2}=16$ which are the tangents to the hyperbola $9 x^{2}-16 y^{2}=144$ is
A. $3 x^{2}-4 y^{2}=16\left(x^{2}+y^{2}\right)$
B. $4 x^{2}-3 y^{2}=9\left(x^{2}+y^{2}\right)$
C. $16 x^{2}-9 y^{2}=\left(x^{2}+y^{2}\right)^{2}$
D. $16 x^{2}-9 y^{2}=4\left(x^{2}+y^{2}\right)$

Answer: C

- Watch Video Solution

37. A $(3,2,-1), B(4,1,1), C(6,2,5)$ are three points. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are three points which divide $B C, C A, A B$ respectively in the same ratio $2: 1$ then the centroid of $\triangle D E F$ is
A. $\left(\frac{13}{3}, \frac{5}{3}, \frac{5}{3}\right)$
B. $(13,5,5)$
C. $(4,2,1)$
D. $\left(\frac{11}{3}, \frac{4}{3}, \frac{1}{3}\right)$

Answer: A

- Watch Video Solution

38. If $A=(1,8,4), B=(2,-3,1)$, then the direction cosines of a normal to the plane AOB is
A. A $\frac{2}{\sqrt{78}}, \frac{5}{\sqrt{78}}, \frac{-7}{\sqrt{78}}$
в. в $\frac{2 \sqrt{10}}{9}, \frac{7 \sqrt{10}}{90}, \frac{-19 \sqrt{10}}{90}$
C. С $\frac{4}{\sqrt{218}}, \frac{9}{\sqrt{218}}, \frac{-11}{\sqrt{218}}$
D. D $\frac{2}{11}, \frac{6}{11}, \frac{-9}{11}$

Answer: B

- Watch Video Solution

39. The lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect if K equals
A. $\frac{2}{9}$
B. $-\frac{2}{9}$
C. $\frac{9}{2}$
D. 0

Answer: C

- Watch Video Solution

40. $\lim _{x \rightarrow 0} \frac{x^{2}(\tan 2 x-2 \tan x)^{2}}{(1-\cos 2 x)^{4}}=$
A. 4
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

D View Text Solution

41. $\lim _{x \rightarrow \infty}\left(\frac{6 x^{2}-\cos 3 x}{x^{2}+5}-\frac{5 x^{3}+3}{\sqrt{x^{6}+2}}\right)=$
A. 11
B. 0
C. -1
D. 1

Answer: A

- View Text Solution

42. The number of discontinuities in R for the function $f(x)=\frac{x-1}{x^{3}+6 x^{2}+11 x+6}$ is
A. 3
B. 2
C. 1
D. 0

Answer: A

- Watch Video Solution

43. $\frac{d}{d x}\left(\log \left(\sqrt{x+\sqrt{x^{2}+a^{2}}}\right)\right)=$
A. $\sqrt{x^{2}+a^{2}}$
B. $\frac{1}{\sqrt{x^{2}+a^{2}}}$
C. $\frac{1}{2 \sqrt{x^{2}+a^{2}}}$
D. $\frac{1}{2\left(x+\sqrt{x^{2}+a^{2}}\right)}$

Answer: C

44. $f(x)=\cot ^{-1}\left(\frac{x^{x}-x^{-x}}{2}\right)$ then $f^{1}(1)=$
A. $-\log 2$
B. $\log 2$
C. 1
D. -1

Answer: D

- Watch Video Solution

45.

If
a. $\neq 0, x=a(t+\sin t)$ and $y=a(1-\cos t)$
then
$\frac{d^{2} y}{d x^{2}}$ at $t=\frac{2 \pi}{3}$ is
A. $\frac{4}{a}$
B. $\frac{1}{4 a}$
C. $4 a$
D. $\frac{a}{4}$

Answer: A

- Watch Video Solution

46. The number of tangent to the curve $y^{2}(x-a)=x^{2}(x+a)(a>0)$ that are parallel to the X -axis is
A. infinitely many
B. 0
C. 1
D. 2

Answer: B

- View Text Solution

47. If $f(x)=(2 k+1) x-3-k e^{-x}+2 e^{x}$ is monotonically increasing for all $x \in R$ then the least value of k is
A. 1
B. 0
C. $-\frac{1}{2}$
D. -1

Answer: B

- View Text Solution

48. if the function $f(x)=a x^{3}+b x^{2}+11 x-6$ satisfies the conditions of Rolle's theorem in $[1,3]$ and $f\left(2+\frac{1}{\sqrt{3}}\right)=0$ then $a+b=$ A. -5
B. -3
C. 4

D. 7

Answer: A

- View Text Solution

49. For $a>0$, if the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$ attains its maximum value at p and minimum value at q such that $p^{2}-q$ then
$a=$
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

50. If $\int \cos x \cdot \cos 2 x \cdot \cos 5 x d x$
$=A \sin 2 x+B \sin 4 x+C \sin 6 x+D \sin 8 x+k$
(where k is the arbitrary constant of integration), then $\frac{1}{B}+\frac{1}{C}=$
A. $\frac{1}{A}-\frac{1}{D}$
B. $\frac{1}{A}+\frac{1}{D}$
C. 1
D. 0

Answer: B

- View Text Solution

51. If $\int e^{x}\left(\frac{x+2}{x+4}\right)^{2} d x=f(x)$ arbitrary constant, then $f(x)=$
A. $\frac{x e^{x}}{x+4}$
B. $\frac{e^{x}}{x+4}$
C. $x \frac{e^{x}}{(x+4)^{2}}$
D. $\frac{e^{x}}{(x+4)^{2}}$

Answer: A

- View Text Solution

52. Evalute the following integrals
$\int \frac{d x}{\sin x+\sin 2 x}$
A. $\frac{1}{2} \log _{e}|1+\cos x|+\frac{1}{6} \log _{e}|1-\cos x|-\frac{2}{3} \log _{e}|1+2 \cos x|+c$
B. $\frac{1}{2} \log _{e}|1+\cos x|-\frac{2}{3} \log _{e}|1-\cos x|+\frac{1}{2} \log _{e}|1+2 \cos x|+c$
C. $\frac{1}{2} \log _{e}|1+\sin x|-\frac{1}{3} \log _{e}|1-\sin x|-\frac{1}{3} \log _{e}|1+\cos x|+c$
D. $\frac{1}{2} \log _{e}|1-\sin x|+\frac{1}{2} \log _{e}|1+\cos x|-\frac{2}{3} \log _{e}|1-2 \cos x|+c$

Answer: A

- Watch Video Solution

53. In $I_{n}=\int \frac{\sin n x}{\sin x} d x$ for $n=1,2,3, \ldots$, then $I_{6}=$
A. $\frac{3}{5} \sin 3 x+\frac{8}{5} \sin ^{5} x-\sin x+c$
B. $\frac{2}{5} \sin 5 x-\frac{5}{3} \sin ^{3} x-2 \sin x+c$
C. $\frac{2}{3} \sin 5 x-\frac{8}{3} \sin ^{5} x+4 \sin x+c$
D. $\frac{2}{5} \sin 5 x-\frac{8}{5} \sin ^{3} x+4 \sin x+c$

Answer: D

D View Text Solution

54. If $\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{x^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \ldots\left(1+\frac{n^{2}}{n^{2}}\right)\right]^{1 / n}=k$, then $\log \mathrm{k}=$
A. $\log 4+\frac{\pi}{2}-1$
B. $\log 2+\frac{\pi}{2}+1$
C. $\log 2+\frac{\pi}{2}-2$
D. $\log 2+\frac{\pi}{2}-1$

Answer: C

D View Text Solution

55. $\int_{0}^{\pi / 2} \frac{\sin ^{3} x \cos x d x}{\sin ^{4} x+\cos ^{4} x}=$
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{8}$

Answer: D

- View Text Solution

56. The curve $y=a x^{2}+b x$ passes through the point $(1,2)$ and lies above the X - axis for $0 \leq x \leq 8$. If the are enclosed by this curve, the X axis and the line $x=6$ is 108 square units, then $2 b-a=$
A. 2
B. 0
C. 1
D. -1

Answer: B

- View Text Solution

57. The differential equation of all parabolas whose axes are parallel to Y axis is
A. $\frac{d^{3} y}{d x^{3}}=0$
B. $\frac{d^{2} y}{d x^{2}}=0$
C. $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
D. $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
58. The solution of the equation $\frac{d y}{d x}=2 y \tan x=\sin x$ satisfying $y=0$ when $x=\frac{\pi}{3}$ ' is
A. $y=2 \sin ^{2} x+\cos x-2$
B. $y=2 \sin ^{2} x-\cos x-2$
C. $y=2 \cos ^{2} x-\sin x+2$
D. $y=2 \cos x-\sin ^{2} x-1$

Answer: A

- View Text Solution

59. Let f be a function such that $f(x y)=\frac{f(x)}{y}$ for all positive real numbers x, y. If $f(20)=15$, then $f(50)=$
A. $\frac{75}{2}$
B. 12
C. 6
D. 75

Answer: C

- Watch Video Solution

60. If $f: A \rightarrow B$ is a function defined by $f(x)=\frac{x^{2}-x}{x^{2}+2 x}$, then which one of the following is true?
A. $A=R-\{0,-2\}, B=R$ and $f(x)$ is decreasing function
B. $\mathrm{A}=\mathrm{R}-\{-2\}, \mathrm{B}=\mathrm{R}-\{1\}$ and $f^{-1}(x)$ is decreasing function
$\mathrm{C} . \mathrm{A}=\mathrm{R}-\{0,-2\}, \mathrm{B}=\mathrm{R}-\{1\}$ and $f^{-1}(x)$ is increasing function
D. Both $\mathrm{f}(\mathrm{x})$ and $f^{-1}(x)$ are increasing functions

Answer: C

61. The statement " $n^{5}-5 n^{3}+4 n$ is divisible by 120 " is true for
A. $\mathrm{n}=1$ only
B. $\mathrm{n}=10$ only
C. $\mathrm{n}=100$ only
D. All positive integer values of n

Answer: D

- View Text Solution

62. Let $A=\left[\begin{array}{ll}7 & 5 \\ 4 & 8\end{array}\right], B=\left[\begin{array}{ll}4 & 3 \\ 7 & 5\end{array}\right]$ and $C=\left[\begin{array}{ll}-5 & 3 \\ 7 & -4\end{array}\right]$

IF $\operatorname{Tr}(\mathrm{S})$ denotes the trace of a square matrix S then
$\sum_{k=0}^{\infty} \frac{1}{3^{k}} \operatorname{Tr}\left\{A(B C)^{k}\right\}=$
A. $\frac{45}{2}$
B. 36
C. $\frac{81}{2}$
D. 9

Answer: A

- View Text Solution

63. If the inverse of the matrix $A=\left[\begin{array}{lll}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]$ is B , then $B^{T}=$
A. $\frac{1}{136}\left[\begin{array}{lll}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]$
B. $\frac{1}{136}\left[\begin{array}{lll}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]$
C. $\frac{1}{136}\left[\begin{array}{lll}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]$
D. $\frac{1}{136}\left[\begin{array}{lll}9 & 1 & 26 \\ -38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]$

Answer: A

64. If $x=\alpha, y=\beta, z=\gamma$ is the solution of the system of equations $x+y+z=4,2 x-y+3 z=9,3 x+y+2 z=8, \quad$ then $4 \alpha+2 \beta+3 \gamma$
A. 0
B. 1
C. 12
D. 19

Answer: C

- View Text Solution

65. $\left(\frac{2}{i+\sqrt{3}}\right)^{100}+\left(\frac{2}{i-\sqrt{3}}\right)^{100}=$
A. 2
B. 1
C. -1
D. -2

Answer: C

- Watch Video Solution

66. If $a=3+4 i, z_{1}$ and z_{2} are two complex numbers such that $\left|z_{1}\right|=3$ and $\left|z_{2}-a\right|=2$, then the maximum value of $\left|z_{1}-z_{2}\right|$ is
A. 5
B. 10
C. 15
D. 20

Answer: B

67. If α is the real root and β, γ are the complex roots of the equation $x^{3}+3 x^{2}+3 x+28=0$, then $2 \alpha+3 \beta+3 \gamma=$
A. -5
B. 0
C. 5
D. -23

Answer: A

- Watch Video Solution

68. Given that $\alpha, \beta, \gamma, \delta$ are in a geometric progression. If α, β are the roots of $x^{2}-x+p=0$ and γ, δ are the roots of $x^{2}-4 x+q=0$, where p and q are integers, then the ordered pair $(\mathrm{p}, \mathrm{q})=$
A. $(2,32)$
B. $(2,-32)$
C. $(-2,32)$
D. $(-2,-32)$

Answer: D

- View Text Solution

69. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the sets of all values of x , for which $x^{2}-5 x-14$ is positive, $-6 x^{2}+2 x-3$ is negative and $4 x-5 x^{2}+2$ is negative respectively, then $A \cap B \cap C=$
A. $(-2,7)$
B. ϕ
C. $\left(\frac{2-\sqrt{14}}{5}, \frac{2+\sqrt{14}}{5}\right)$
D. R

Answer: C

70. The complex solution set of the inequation $\sqrt{x^{2}-3 x+2}>(3-x)$ is
A. $\left(\frac{7}{3}, 3\right]$
B. $(3, \infty)$
C. $(-\infty, 1] \cup[2, \infty)$
D. $\left(\frac{7}{3}, \infty\right)$

Answer: D

- Watch Video Solution

71. Solve the equation $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$.
A. 2
B. $\frac{5}{2}$
C. 3
D. $\frac{7}{2}$

Answer: C

- Watch Video Solution

72. I. The number of all ten digited numbers that can be formed with all the distinct digits and which ar divisble by 4 is 15×81.
II. The number of positive integers that can be formed by using the digits $0,1,2,3,4,5$ without any repetition is 630 .
A. Only I is true
B. Only II is true
C. Both I and II are true
D. Both I and II are false

Answer: B

73. A man has 5 male and 4 female relatives. His wife has 4 male and 5 female relatives. The number of ways in which they can invite 5 male and 5 female relatives so that 5 of them are man's relatives and remaining 5 are his wife's relatives
A. A 5426
B. B 5226
C. C 5526
D. D 5626

Answer: D

- Watch Video Solution

74. If the coefficients of $r^{t h},(r+1)^{t h}$ and $(r+2)^{t h}$ terms in the expansion of $(1+x)^{14}$ are in an arithmetic progression, then $\mathrm{r}=$
B. 5 or 9
C. 8 or 6
D. 7

Answer: B

D View Text Solution

75. If $x=\frac{5}{(2!) \cdot 3}+\frac{5.7}{(3!) \cdot 3^{2}}+\frac{5.7 .9}{(4!) \cdot 3^{3}}+\ldots$.
then find the value of $x^{2}+4 x$.
A. 17
B. 23
C. 27
D. 39

Answer: B

76. If the periods of the functions $\sin (a x+b)$ and $\tan (c x+d)$ are respectively $\frac{4}{7}$ and $\frac{2}{5}$, then $\sin (|a|+|c|)+\cos (|a|-|c|)=$
A. -1
B. 0
C. 1
D. 2

Answer: A

- Watch Video Solution

77. The smallest positive value of x (in degress) for whiich $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \cdot \tan x \tan \left(x-50^{\circ}\right)$ is
A. 25°
B. $82 \frac{1}{2^{\circ}}$
C. 55°
D. 30°

Answer: D

- Watch Video Solution

78. For $\alpha \neq 0, \quad$ if $\cos (\theta+\alpha), \cos \theta$ and $\cos (\theta-\alpha)$ are in harmonic progression, then $\sec ^{2} \theta \cdot \cos ^{2} \frac{\alpha}{2}=$
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

79. If $\cos 2 \theta+\alpha \sin \theta=2 \alpha-7$ has a solution, then
A. $\alpha \in[-2,4]$
B. $\alpha \in[-6,-2]$
C. $\alpha \in[6,8]$
D. $\alpha \in[2,6]$

Answer: D

80. If $\mathrm{x}=\mathrm{a}$ is a solution of the equation $\sin ^{-1} \frac{x}{3}+\sin ^{-1} \frac{2 x}{3}=\sin ^{-1} x$, then the roots of the equation $x^{2}-a x-1=0$ are
A. ± 1
B. $\frac{1}{2}, 1$
C. $\pm \frac{1}{2}$
D. $-\frac{1}{2}, 1$

D View Text Solution

81. The set of all real values of x for which
$f(x)=\log _{e} \sqrt{\frac{1+x}{1-x}}+\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\operatorname{coth}^{-1} x+\log _{e}\left(\frac{1+\sqrt{1}}{x}\right.$
is defined is
A. ϕ
B. $(0,1)$
C. $(-1,1)$
D. $(0,1]$

Answer: B

D View Text Solution

82. If $A=60^{\circ}$ then $\frac{1}{a+b}+\frac{1}{a+c}=$
A. $\frac{3(1+b-c)}{a+b+c}$
B. $\frac{2}{a+b+c}$
C. $\frac{3}{a+b+c}$
D. $\frac{a+b+c}{3 a^{2}}$

Answer: C

- Watch Video Solution

83. In a $\triangle A B C, 8 R^{3} \sum \sin ^{3} A \cos (B-C)=$
A. abc
B. 4 abc
C. $3 R \Delta$
D. $12 R \Delta$

Answer: D

84. In a $\triangle A B C$, if $a: b: c=4: 5: 6$, then the ratio of the radius of the circumcircle to the radius of the incircle is
A. $13: 7$
B. 15: 7
C. 16:7
D. 17: 9

Answer: C

- Watch Video Solution

85. a, b, c are three mutually perpendicular unit vectors in the right handed system. If the points P, Q, R with position vectors $2 a+5 b-4 c, a+4 b-3 c$ and $k a+7 b-6 c$ respectively lie on a line, then the ratio in which the point P divides $Q R$ is
A. $1: 2$
B. $-1: 3$
C. $3: 1$
D. $-1: 2$

Answer: A

- View Text Solution

86. Let π be the plane passing through the points $\hat{i}, \hat{j}, \hat{i}+\hat{j}+\hat{k}$ and L be the line passing through the point $\hat{i}+2 \hat{j}+3 \hat{k}$ and parallel to the vector $\hat{i}-\hat{j}+\hat{k}$. If $P(\alpha, \beta, \gamma)$ is the point of intersection of the plane π and line L, then $\sqrt{\left(\alpha^{2}+\beta^{2}\right) \gamma^{2}}=$
A. 0
B. 1
C. 6
D. $\sqrt{14}$

- View Text Solution

87. If $a=\hat{i}-\hat{j}-\hat{k}, b=2 \hat{i}-3 \hat{j}+\hat{k}$ and p_{1}, p_{2} are the orthogonal projection vectors of a on b and b on a respectively, then $\left(p_{1}+p_{2}\right) \cdot\left(p_{1}-p_{2}\right)=$
A. $-\frac{46}{21}$
B. $\frac{25}{7}$
C. $\frac{44}{7}$
D. $-\frac{88}{21}$

Answer: D

88. Let a, b, c be three non-coplanar vectors and $a^{\prime}=\frac{b \times c}{[a b c]}, b^{\prime}=\frac{c \times a}{[a b c]}, c^{\prime}=\frac{a \times b}{[a b c]}$. The length of the altitude of the parallelopiped formed by a $a^{\prime}, b^{\prime}, c^{\prime}$ as coterminous edges, with respect to the base having a^{\prime} and c^{\prime} as its adjacent sides is
A. $|a|$
B. $\frac{1}{|b|}$
C. $|c|$
D. $\frac{1}{|a \times c|}$

Answer: B

- View Text Solution

89. Let a, b, c be three non-coplanar vectors. Let $S_{i}(i=1,2,3,4,5,6)$ denonte the six scalar triple products formed by all possible permutations of a, b, c. If $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$ are randomly chosen distinct numbers from 1 to 6 and if $x=\frac{S_{i}}{S_{j}}+\frac{S_{k}}{S_{l}}, y=\frac{S_{i}}{S_{j}}-\frac{S_{k}}{S_{l}}$, then $x^{2}+y^{2}=$
A. 1
B. 4
C. 8
D. 2

Answer: B

- View Text Solution

90.

$a=\hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}+3 \hat{j}-2 \hat{k}, c=2 \hat{i}+\hat{j}-\hat{k}$ and $d=\hat{i}+\hat{j}+\hat{k}$,
then the volume (in cubic units) of the tetrahedron having
$(a \times b) \times c, b, d$ as its coterminuous edges is
A. $\frac{15}{2}$
B. 90
C. $\frac{21}{2}$
D. $\frac{66}{5}$

Answer: C

D View Text Solution

91. The mean deviation of the data $3,5,11,13,17,19,23,29$ about its arithmetic mean is
A. A. 8.5
B. B. 8
C. C. 7.2
D. D. 7

Answer: D

- Watch Video Solution

92. If the weights of 10 persons (in kgs) are observed as : 45, 49, 55, 50, $41,44,60,58,53,55$, then the variance of their weights is
A. A 51
B. B 42.8
C. C 39.4
D. D 35.6

Answer: D

- Watch Video Solution

93. If two dice are rolled at a time, then the probability of getting an odd number on the first die or a total of 7 on both dice is
A. $\frac{5}{9}$
B. $\frac{2}{3}$
C. $\frac{1}{12}$
D. $\frac{7}{12}$
94. If A and B are two events of a random experiment such that $P(\bar{A})=0.3, P(B)=0.4$ and $P(A \cap \bar{B})=0.5, \quad$ then $P(A \cup B)+P($
A. 0.95
B. 1.15
C. 1.25
D. 0.25

Answer: B

- Watch Video Solution

95. A speaks truth in 4 out of 5 times. A die is tossed. If A reports that there is 4 on the die, then the probability that there was 4 on the die, is
A. $\frac{2}{3}$
B. $\frac{4}{9}$
C. $\frac{1}{3}$
D. $\frac{2}{9}$

Answer: B

- Watch Video Solution

96. Let $\mathrm{S}=\{1,2,3, \ldots ., 50\}$ and A_{k} be the set of multiples of k in S for $k \in N$. IF x_{k} is a number chosen from A_{k}, then match the items of List-I with the items of List-II.

A.	$P\left(x_{3}<30\right)$	I.
B.	$P\left(15<x_{4} \leq 36\right)$	II.
$\frac{2}{3}$		
C.	$P\left(x_{7}>35\right)$	III. $\frac{2}{7}$
D.	$P\left(x_{11}>11\right)$	IV. $\frac{1}{4}$
		V. $\frac{3}{4}$
	VI. $\frac{9}{16}$	

The correct match is
A. ABCD

VI I IV V
B. A B C D

III I VI V
C. ABCD

II V I IV
D. A B C D

VI I III V

Answer: D

- View Text Solution

97. If X is a Poisson variate such that $P(X=2)=9 P(X=4)$, then the mean and variance of X are
A. $(1,2)$
B. $(1,1)$
C. $(2,1)$
D. $(2,2)$

Answer: B

98. Let P be the point $(4,1)$ and Q be its image in the line $y=x$. If Q is translated through a distance 2 units along the negative Y-axis to reach the point R, then the co-ordinates of R are
A. $(-1,2)$
B. $(1,-2)$
C. (-1, -2)
D. $(1,2)$

Answer: D

- Watch Video Solution

99. The normal form of the line $x+y+1=0$ is
A. $x \cos \left(45^{\circ}\right)+y \sin \left(135^{\circ}\right)=\frac{1}{\sqrt{2}}$
B. $x \cos \left(45^{\circ}\right)+y \sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
C. $x \cos \left(225^{\circ}\right)+y \sin \left(225^{\circ}\right)=\frac{1}{\sqrt{2}}$
D. $x \cos \left(45^{\circ}\right)+y \sin \left(45^{\circ}\right)=-\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

100. The vetices of a triangle are $O(0,0), B(-3,-1), C(-1,-3)$. The equation of the line parallel to $B C$ and intersecting the sides $O B$ and $O C$ whose perpendicular distance from O is $1 / 2$ is
A. $x+y+\sqrt{2}=0$
B. $2 x+2 y-\sqrt{2}=0$
C. $2 x+2 y+\sqrt{2}=0$
D. $2 x-2 y+\sqrt{2}=0$

Answer: B

- Watch Video Solution

101. A variable line passing through a fixed point (α, β) intersects the coordinate axes at A and B. If O is the origin, then the locus of the centroid of the $\triangle O A B$ is
A. $\beta x+\alpha y=3 x y$
B. $\alpha x+\beta y=3 x y$
C. $\alpha x-\beta y=3 x y$
D. $\beta x-\alpha y=3 x y$

Answer: A

- Watch Video Solution

102. If A is the orthocentre of the triangle formed by $2 x^{2}-y^{2}=0, x+y-1=0$ and B is the centroid of the triangle formed by $2 x^{2}-5 x y+2 y^{2}=0,7 x-2 y-12=0$, then the distance between A and B is
A. $\sqrt{5}$
B. 1
C. 5
D. $\sqrt{2}$

Answer: A

- View Text Solution

103. The distance between the pair of lines represented by
$x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$, is
A. 1
B. 2
C. $\sqrt{2}$
D. 4

Answer: B

104. The number of integers α, for which a chord of the circle $x^{2}+y^{2}=75$ is bisected at $(8, \alpha)$ and that the slope of the chord is an integer, is
A. 10
B. 8
C. 4
D. 3

Answer: B

- View Text Solution

105. If the line $x-6 y-12=0$ meets the circle $S \equiv x^{2}+y^{2}-4 x+8 y+6=0$ at A and B , then the point of intersection of the tangents at A and B to $S=0$ is
A. $(1,2)$
B. $(2,1)$
C. $(-1,2)$
D. $(2,-1)$

Answer: A

- View Text Solution

106. A circle of radius 5 units passes through $A(-5,0)$ and $B(5,0)$. If $P(5 \cos \alpha, 5(\sin \alpha), Q(5 \cos \beta, 5 \sin \beta)$ are two points on this circle such that $\alpha-\beta=\frac{\pi}{2}$, then the locus of the point of intersection of the line $A P$ and $B Q$ is
A. $x^{2}+y^{2}-10 x-25=0$
B. $x^{2}+y^{2}+10 x-25=0$
C. $x^{2}+y^{2}+10 y-25=0$
D. $x^{2}+y^{2}-10 y-25=0$

Answer: D

D View Text Solution

107. The condition that the circles which passes through the points
$(0, a),(0,-a)$ and touch the line $y=m x+c$ will cut orthogonally is
A. $a^{2}+m^{2}$
B. $a^{2}(1+m)^{2}$
C. $a^{2}\left(1+m^{2}\right)$
D. $a^{2}\left(1+2 m^{2}\right)$

Answer: B

- Watch Video Solution

108.

For the
system
of circles given
by
$\left(x^{2}+y^{2}+2 g x\right)+\lambda\left(x^{2}+y^{2}+2 f y+l\right)=0, \quad$ where $g \neq 0, f \neq 0$ and
is a parameter, if the line joining the points circles of the system subtends a right angle at the origin, then $\frac{k}{f^{2}=}$
A. -1
B. 1
C. 2
D. $\frac{1}{2}$

Answer: C

- View Text Solution

109. For the parabola $y^{2}+2 x+2 y-3=0$, match the items in List-I with those from List-II.

List I		List II
A. Vertex	I.	$2 x-5=0$
B. Focus	II.	$\left(\frac{3}{2},-1\right)$
C. Equation of the Directrix	III.	$x-2=0$
D. Equation of the Axis	IV.	$y+1=0$
	V.	$(2,-1)$
	VI.	$\left(2, \frac{3}{2}\right)$

The correct match is
A. ABCD

V VI I III
B. A B C D

V II IIV
C. A B C D

VI V IV I
D. ABCD

- Watch Video Solution

110. The area (in sq units) of the triangle formed by the normal to the parabola $y^{2}=16 x$ whose slope is $\frac{1}{2}$ with the co-ordinates axes is
A. $\frac{9}{4}$
B. $\frac{27}{4}$
C. $\frac{54}{4}$
D. $\frac{81}{4}$

Answer: D

- View Text Solution

111. If the major axis of an ellipse lies on the Y-axis, its minor axis lies on the X-axis and the length of its latusrectum is equal to $\frac{2}{3}$ of its minor
axis, then the eccentricity of that ellipse is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{5}}{3}$

Answer: D

- Watch Video Solution

112. If $y=x+c$ is a normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1, \quad$ then $c^{2}=$
A. A $\frac{128}{17}$
B. B $\frac{17}{128}$
C. C 34
D. D 225

Watch Video Solution

113. The area (in sq units) of the quadrilateral formed by the four common tangents drawn to the two hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1(a>b)$ is
A. $a^{2}-b^{2}$
B. $2\left(a^{2}-b^{2}\right)$
C. $\frac{a^{2}-b^{2}}{\sqrt{2}}$
D. $\frac{a^{2}-b^{2}}{2}$

Answer: B

- View Text Solution

114. The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $(1,-2,-2)$ and $(0,2,1)$ are
A. A $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
в. В $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
C. C $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
D. D $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$

Answer: C

- Watch Video Solution

115. The number of lines passing through $(0,0,0)$ and making an angle of 45° with each of the three co-ordinate axes is
A. 0
B. 2
C. 4
D. 8
116. The equation of the plane which passes through the point $(2,5,-8)$ and perpendicular to each of the planes $2 x-3 y+4 z+1=0$ and $4 x+y-2 z+6=0$ is
A. $x+10 y+7 z+4=0$
B. $x+2 y+2 z+4=0$
C. $3 x+2 y+2 z=0$
D. $x+10 y+7 z-4=0$

Answer: A

- View Text Solution

117. $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2}-\cos x}=$
A. 0
B. 1
C. 2
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

118. The integer ' n ' is for which $L t_{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non zero numberis
A. 4
B. 3
C. 2
D. 1

Answer: B

119. If $f(x)=\int_{-1}^{x}|t| d t, x \geq 1$, then
A. f is continuous at $\mathrm{x}=0$ but f^{\prime} is not continuous
B. both f and f^{\prime} are continuous for all $x>-1$
C. f is continuous for $x>-1$ but f^{\prime} is not continuous
D. f and f^{\prime} are differentiable at $\mathrm{x}=0$

Answer: A

- View Text Solution

120. If $x=\sinh ^{-1}\left[\log (1+\sqrt{y}]\right.$, then $\frac{d y}{d x}=$
A. $2(y+\sqrt{y}) \sinh x$
B. $2(y+\sqrt{y}) \sqrt{1-(\log (1+\sqrt{y}))^{2}}$
C. $2(y+\sqrt{y})(\cosh x$
D. $2(y+\sqrt{y}) \log (1+\sqrt{y})$

Answer: C

- View Text Solution

121. If $f(x)=\frac{(7 x+1) \sin x}{e^{x} \log x}$ and $f^{\prime}(x)=f(x) g(x)$, then $g^{\prime}(x)=$
A. $\frac{1}{x^{2} \log x}+\frac{1}{(x \log x)^{2}}-\operatorname{cosec}^{2} x-\frac{49}{(7 x+1)^{2}}$
B. $\frac{1}{x^{2} \log x}+\frac{1}{\log x}-\cos e c^{2} x-\frac{49}{(7 x+1)^{2}}$
C. $\frac{1}{(x \log x)^{2}}+\frac{1}{\log x}-\operatorname{cosec} 2 x-\frac{49}{(7 x+1)^{2}}$
D. $\frac{1}{x^{\square}}\left(x^{2} \log x\right) x+\frac{1}{(x \log x)^{2}}+\operatorname{cosec} x+\frac{49}{(7 x+1)^{2}}$

Answer: A

- View Text Solution

122. If $f(x)=\left|\begin{array}{lll}\cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|$ then $\int_{0}^{\pi / 2} f(x) d x=$
A. $\cos 3 x$
B. $\cos (\pi+3 x)$
C. $\sin 3 x$
D. $\sin (\pi+3 x)$

Answer: B

- Watch Video Solution

123. The angle between the curves $y^{2}=8(x+4)$ and $y^{2}=24(4-x)$ is
A. $\tan ^{-1}\left(\frac{1}{6}\right)$
B. $\tan ^{-1}(3)$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

124. The function $f(x)=x^{1 / x}$ for $x>0$, is
A. increasing in $(1, \infty)$
B. decrea $\sin g \in(1, \text { infty })^{`}$
C. increasing in $(1, \theta)$ and decreasing in (θ, ∞)
D. decreasing in $(1, \theta)$ and increasing in (θ, ∞)

Answer: C

- View Text Solution

125. Let $f:\left[0, \frac{1}{2}\right] \rightarrow R$ be given by $f(x)=x(x-1)(x-2)$. The value ' c ', when Lagrange's mean-value theorem is applied for $f(x)$, is
A. $\frac{\sqrt{21}}{6}$
B. $\frac{1}{6}$
C. $1-\frac{\sqrt{21}}{6}$
D. $1 \pm \frac{\sqrt{21}}{6}$

Answer: D

D View Text Solution

126. If a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ having slope $\frac{1}{3}$ is a normal to the circle $x^{2}+y^{2}+2 x+2 y+1=0$, then the maximum value of $a b$ is
A. $\frac{2}{3}$
B. 9
C. $\frac{4}{9}$
D. $\frac{1}{3}$

Answer: A

- View Text Solution

127. $\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x+2 \sin ^{4} x} \mathrm{dx}=$
A. $-\frac{1}{2} \sin 2 x+c$
B. $-\sin 2 x+c$
C. $\frac{1}{2} \sin 2 x+c$
D. $\sin 2 x+c$

Answer: A
128. $\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x=\frac{x^{p}}{q\left(x^{5}+x^{3}+1\right)^{r}}+c$, then $p-q-r=$
A. $\frac{x^{8}}{)}\left(1+x^{3}+x^{5}\right)^{2}+c$
B. $\frac{x^{10}}{\left(1+x^{3}+x^{5}\right)^{2}}+c$
C. $\frac{x^{10}}{2\left(1+x^{3}+x^{5}\right)^{2}}$
D. $\frac{x^{8}}{2\left(1+x^{3}+x^{5}\right)^{2}}+c$

Answer: C

- Watch Video Solution

129. $\int \frac{x^{2}+\cos ^{2} x}{\left(1+x^{2}\right) \sin ^{2} x} d x=$
A. $\cot x+\tan ^{-1} x+c$
B. $\cot x-\tan ^{-1} x+c$
C. $-\cot x+\tan ^{-1} x+c$
D. $-\cot x-\tan ^{-1} x+c$

D View Text Solution

130.

$I_{n}=\int \sin ^{n} x d x$, for $n=1,2,3 \ldots$ then $8 I_{8}+7\left(I_{7}-I_{6}\right)-6 I_{5}=$
A. $-\sin ^{6} x \cos x(1+\sin x)+c$
B. $\sin ^{8} x \cos x+\sin ^{5} x \cos x+c$
C. $-\sin ^{7} x \cos x(1-\sin x)+c$
D. $-\cos ^{7} x \sin x(1+\cos x)+c$

Answer: A

D View Text Solution

131. $\lim _{n \rightarrow \infty} \frac{1+32+243+\ldots+n^{5}}{n^{6}}=$
A. $\frac{1}{5}$
B. $\frac{1}{11}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

132. Let $a>1$ and $b>1$. If $\mathrm{f}(\mathrm{t})$ is a periodic function of period T and $\int_{0}^{\infty} a^{-b i} f(t) d t=k \int_{0}^{T} a^{-b t} f(t) d t$ then $\mathrm{k}=$
A. $\frac{a^{b T}}{T+1}$
B. $\frac{a^{-b T}}{a^{-b T}+1}$
C. $\frac{a^{b T}}{b^{a T}+1}$
D. $\frac{a^{b T}}{a^{b T}-1}$

- View Text Solution

133. The area (in sq units) enclosed by the curves $y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is
A. $4+2 \sqrt{2}$
B. $4-2 \sqrt{2}$
C. $2+2 \sqrt{3}$
D. $6-3 \sqrt{2}$

Answer: B

- View Text Solution

134. The degree and order respectively of the differential equation of the family of the curves respresented by $y=\sqrt{c(x+\sqrt{c})}$ are (Here, C is a parameter)
A. A 1,3
B. B 2, 3
C. C 3, 1
D. D 2,2

Answer: C

- Watch Video Solution

135. The solution of the differential equation $\frac{x+y-1}{x+y-2} \frac{d y}{d x}=\frac{x+y+1}{x+y+2}$, given that $\mathrm{y}=1$ when $\mathrm{x}=1$, is
A. $2(y-x)+\log \left|\frac{(x+y)^{2}-2}{2}\right|=0$
В. $\log \left|\frac{(x+y)^{2}-2}{2}\right|=(x-y)^{2}$
С. $\log \left|\frac{(x-y)^{2}+2}{2}\right|+2(y-x)=0$
D. $(x-y)+\log \left|\frac{(x+y)^{2}-2}{2}\right|=0$
