

MATHS

BOOKS - TS EAMCET PREVIOUS YEAR PAPERS

AP EAMCET SOLVED PAPER 2019

1.
$$\sin^4 \frac{\pi}{8} + \sin^4 \frac{2\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{4\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{6\pi}{8} + \sin^4 \frac{7\pi}{8} =$$

A. A. $\frac{3}{2}$
B. B. $\frac{5}{2}$
C. C. 3
D. D. $\frac{7}{2}$

Answer: C

2. If
$$x: y: = \tan\left(\frac{\pi}{15} + \alpha\right): \tan\left(\frac{\pi}{15} + \beta\right):$$

 $\tan\left(\frac{\pi}{15} + \gamma\right), \quad \text{then} \quad \frac{z+x}{z-x}\sin^2(\gamma - \alpha) + \frac{x+y}{x-y}$
 $\sin^2(\alpha - \beta) + \frac{y+x}{y-z}\sin^2(\beta - \gamma) =$

A. $\sin^2 heta$

 $B.\cos^2\theta$

C. 0

D. 1

Answer: C

View Text Solution

3. Let [x] denote the largest integer $\leq x$. If the number of solutions of

 $\cos^2 heta$ is k, then for

$$x \in \left[rac{\pi}{4}, rac{\pi}{3}
ight]$$
 the value of $k^{ an^2 x}$

A. is equal to 1

B. lies in between 2^1 and 2^3

C. is equal to zero

D. lies in between
$$\frac{1}{2^3}$$
 and $\frac{1}{2}$

Answer: C

View Text Solution

4. If lpha and eta are the least and the greatest values of $f(x)=\left(\sin^{-1}x
ight)^2+\left(\cos^{-1}x
ight)^2$ for all

 $x \in \;$ R respectively, then 8(lpha + eta) =

A. A π^2

B. B $11\pi^2$

C. C $9\pi^2$

D. D $25\pi^2$

Answer: B

5. If
$$x\in \left(rac{-\pi}{2},rac{\pi}{2}
ight),\,$$
 then log sec x =

A. 2
$$\operatorname{cosech}^{-1}\left(\cot^2\frac{x}{2}-1\right)$$

B. 2 cosech⁻¹
$$\left(\cot^2 \frac{x}{2} + 1 \right)$$

C. 2
$$\operatorname{coth}^{-1}\left(\operatorname{cosec}^{2}\frac{x}{2}-1\right)$$

D.2
$$\operatorname{coth}^{-1}\left(\operatorname{cosec}^2\frac{x}{2}+1\right)$$

Answer: C

View Text Solution

6. The area (in square units) of ΔABC if

 $igtriangle A = 75^\circ, igtriangle B = 45^\circ ~~ ext{and}~~ a = 2ig(\sqrt{3}+1ig)$ is

A. 6

 $\mathrm{B.}\,2\sqrt{3}$

 $\mathsf{C.}\,6-2\sqrt{3}$

D. $6+2\sqrt{3}$

Answer: D

Watch Video Solution

7. In
$$\triangle ABC$$
, if $3a = b + c$, then $\cot \frac{B}{2}$. $\cot \frac{C}{2}$ =

A. 1

B. 2

C.
$$\frac{1}{3}$$

D. $\frac{1}{2}$

Answer: B

8. In a
$$\Delta ABC$$
, if $\frac{2r_2r_3}{r_2 - r_1} = r_3 - r_1$ then
 $\frac{r_1(r_2 + r_3)}{\sqrt{r_1r_2 + r_2r_3 + r_3r_1}} =$
A. $\frac{a^2 + b^2 + c^2}{\Delta^2}$
B. b - c
C. $\frac{1}{2R}$
D. 2R

Answer: D

View Text Solution

9. If $3\hat{i} - 2\hat{j} - \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$, $-\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ are respectively the position vectors of four coplanar points P, Q, R and S, then $\lambda =$

A.
$$\frac{46}{17}$$

B.
$$-\frac{46}{17}$$

C. $\frac{146}{17}$
D. $-\frac{146}{17}$

Answer: D

Watch Video Solution

10. If $OA=2\hat{i}+2\hat{j}+\hat{k}, OB=2\hat{i}+4\hat{j}+4\hat{k}$ and the length of the internal bisector of igta BOA of triangle AOB is k, then $9k^2=$

A. A 225

B. B 136

C. C 712

D. D 20

Answer: B

11. If
$$a + xb + yc = 0$$
,
 $a \times b + b \times c + c \times a = 6(b \times c)$ then the locus of the point (x, y) is
A. $x^2 + y^2 = 1$
B. $x + y - 5 = 0$
C. $2x + 6y = 5$
D. $x + y + 6 = 0$

Answer: B

View Text Solution

12. Let
$$A = (\alpha, 1, 2\alpha), B = (3, 1, 2)$$
 and $C = 4\hat{i} - \hat{j} + 3\hat{k}$. If $AB \times C = 6\hat{i} + 9\hat{j} - 5\hat{k}$, then $\alpha^2 + \alpha + 5 =$

A. 11

B. 7

C. 9

D. 5

Answer: B

13. The shortest distance between the skew lines

$$r=\left(6\hat{i}+2\hat{j}+2\hat{k}
ight)+tig(\hat{i}-2\hat{j}+2\hat{k}ig)$$
 and $r=\left(-4\hat{i}-\hat{k}
ight)+sig(3\hat{i}-2\hat{j}-2\hat{k}ig)$ is

A. 9

- $\mathsf{B.}\,\frac{40}{7}$
- C. 108

D. 120

Answer: A

14. If a makes an acute angle with $b, r \cdot a = 0 \; ext{and} \; r imes b = c imes b$, then r

A.
$$a imes c-b$$

B. $c imes a$
C. $c-\Big(rac{c\cdot a}{b\cdot a}\Big)b$
D. $c+\Big(rac{c\cdot a}{b\cdot a}\Big)b$

Answer: C

=

View Text Solution

15. For a data consisting of 15 observations x_i , i = 1, 2, 3, ..., 15 the following results are obtained : $\sum_{i=1}^{15} x_i = 170$, $\sum_{i=1}^{15} x_i^2 = 2830$. If one of the observation namely 20 was found wrong and was replaced by its correct value 30, then the corrected variance is

A. 80	
B. 78	
C. 76	

Answer: B

D.75

16. A and B each select one number at random from the distinct numbers 1, 2, 3,, n and the probability that the number selected by a is less than the number selected by B is `(1009)/(2019). Now the probability that the number selected by B is the number immediately next to the number selected by A is

A.
$$\frac{2018}{2019}$$

B. $\frac{2018}{(2010)^2}$
C. $\frac{2000}{(2019)}$

D.
$$\frac{2000}{(2019)^2}$$

Answer: B

17. There are 3 bags A , B and C. Bag A contains 2 white and 3 black balls, bag B contains 4 white and 2 black balls and Bag C contains 3 white and 2 black balls. If a ball is drawn at random from a randomly

chosen bag, then the probability that the ball drawn is black, is

A. A
$$\frac{2}{3}$$

B. B $\frac{4}{9}$
C. C $\frac{5}{9}$
D. D $\frac{1}{9}$

Answer: B

18. If a random variable X has the probability distrbution given by $P(X = 0) = 2C^3$, $P(X = 2) = 5C - 10C^2$ and P(X = 4) = 4C - 1,

then the variance of that distribution is

A.
$$\frac{68}{9}$$

B. $\frac{22}{9}$
C. $\frac{612}{81}$
D. $\frac{128}{81}$

Answer: D

19. A box contains 30 toys of same size in which 10 toys are white and all

the remaining toys are blue. A toy is drawn at random from the box and it

is replaceed in the box after noting down its colour. If 5 toys are drawn in this way, then the probability of getting atmost 2 white toys is

A. A
$$\left(\frac{6}{9}\right)^2$$

B. B $\left(\frac{8}{9}\right)^2$
C. C $\left(\frac{7}{9}\right)^2$
D. D $\left(\frac{2}{3}\right)^2$

Answer: B

20. The locus of the point of intersection of the lines $x \sin \theta + (1 - \cos \theta)y = a \sin \theta$ and $x \sin \theta - (1 + \cos \theta)y + a \sin \theta = 0$ is

A. straight line

B. circle

C. parabola

D. hyperbola

Answer: B

21. A line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle θ keeping the origin fixed, this line L has the intercepts p and q. Then

A.
$$a^2 + b^2 = p^2 + q^2$$

B. $a^2 + p^2 = b^2 + q^2$
C. $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
D. $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$

Answer: D

22. If O is the origin and A and B are points on the line 3x-4y+25=0 such that OA=OB=13, Then the area of ΔOAB (In sq units) is

A. 30

B. 120

C. 60

D. 65

Answer: C

Watch Video Solution

23. If P(lpha, eta) be a point on the line 3x+y=0 such that the point P and the point Q(1, 1) lie on either side of the line 3x=4y+8 then

$$\begin{split} \mathbf{A}.\, \alpha &> \frac{8}{15}, \beta < \frac{-8}{5}\\ \mathbf{B}.\, \alpha &< \frac{8}{15}, \beta < \frac{-8}{5}\\ \mathbf{C}.\, \alpha &> \frac{8}{15}, \beta > \frac{-8}{5} \end{split}$$

$$\mathsf{D}.\,\alpha<\frac{8}{15},\beta>\frac{-8}{5}$$

Answer: A

24. Two vertices of a triangle are (5,-1) and (-2,3). If the orthocentre of the triangle is the origin, find the third vertex.

A.
$$(4, 7)$$

B. $\left(-2, \frac{-7}{2}\right)$
C. $(-4, -7)$
D. $(-2, 3)$

Answer: C

25. The distance from the origin to the orthocentre of the triangle fromed by the lines x + y - 1 = 0 and $6x^2 - 13xy + 5y^2 = 0$ is

A.
$$\frac{11\sqrt{2}}{2}$$

B. 13

C. 11

D. $(11\sqrt{2})$

Answer: D

View Text Solution

26. The combined equation of two lines L and L_1 is $2x^2 + axy + 3y^2 = 0$ and the combined equation of two lines L and L_2 is $2x^2 + bxy - 3y^2 = 0$. If L_1 and L_2 are perpendicular, then $a^2 + b^2 =$ B. 29

C. 13

D. 85

Answer: A

View Text Solution

27. The power of the point B(-1,1) with respect to the circle $S \equiv x^2 + y^2 - 2x - 4y + 3 = 0$ is p. If the length of the tangent drawn from B to the circles S = 0 is t, then the point (2, 3) with respect to circle S' = 0 having centre at (p, t^2) and passing through the origin.

A. lies inside the circle S'=0

B. lies outside the circle S'=0

C. lies on the circle S'=0

D. is the centre of the circle $S^{\,\prime}\,=\,0$

Answer: A

28. If tangents are drawn to the circle $x^2 + y^2 = 12$ at the points where it intersects the circle $x^2 + y^2 - 5x + 3y - 2 = 0$ then the coordinates of the points of intersection of those tangents are

A.
$$\left(-6, \frac{18}{5}\right)$$

B. $\left(6, \frac{18}{5}\right)$
C. $\left(-6, \frac{-18}{5}\right)$
D. $\left(6, \frac{-18}{5}\right)$

Answer: D

29. If the point of intersection of the pair of the transverse common tangents and that of the pair of direct common tangents drawn to the circles $x^2 + y^2 - 14x + 6y + 33 = 0$ and $x^2 + y^2 + 30x - 2y + 1 = 0$ are T and D respectively, then the centre of the circle having TD as diameter is

A.
$$\left(\frac{39}{2}, \frac{-7}{4}\right)$$

B. $\left(\frac{39}{4}, \frac{7}{2}\right)$
C. $\left(\frac{39}{4}, \frac{-7}{2}\right)$
D. $\left(\frac{39}{2}, \frac{-7}{2}\right)$

Answer: C

30. If the circles $x^2 + y^2 + 2\lambda x + 2 = 0$ and

 $x^2+y^2+4y+2=0$ touch each other, then $\lambda=$

A. ± 1

 ${\sf B}.\pm 2$

 $\mathsf{C}.\pm 3$

D. ± 4

Answer: B

Watch Video Solution

31. The equation of the circle whose diameter is the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is A. $2x^2 + 2y^2 + x + 3y + 2 = 0$ B. $2x^2 + 2y^2 + x + 3y + 1 = 0$ C. $2x^2 + 2y^2 + 4x - 3y - 1 = 0$

D. $x^2 + y^2 + 2x + 6y - 2 = 0$

Answer: B

32. If the forcus of a parabola divides a focal chord of the parabola into segments of lengths 5, 3 units, then the length of the latusrectum of that parabola is

A. $\frac{15}{4}$ B. 20 C. $\frac{25}{2}$ D. $\frac{15}{2}$

Answer: D

View Text Solution

33. The angle between the tangents drawn to the parabola $y^2 = 4x$ from

the point (1, 4) is

A. A
$$\frac{\pi}{4}$$

B. B $\frac{\pi}{3}$
C. C $\frac{2\pi}{5}$
D. D $\frac{\pi}{6}$

Answer: B

Watch Video Solution

34. If the tangent drawn to the parabola $y^2=4x$ at $\left(t^2,2t\right)$ is the normal to the ellipse $4x^2+5y^2=20$ at $\left(\sqrt{5}\cos\theta,2\sin\theta
ight),\,$ then

A.
$$5t^4 + 4t^2 = 1$$

B. $\frac{5}{t^4} + \frac{100}{t^2} = 1$
C. $t = \sin \theta$

D. $\cos \theta = t + 1$

Answer: A

View Text Solution

35. If the tangents drawn from a point P to the ellipse $4x^2 + 9y^2 - 24x + 36y = 0$ are perpendicular, then the locus of P is

A.
$$x^2 + y^2 - 6x + 4y + 13 = 0$$

B. $x^2 + y^2 - 6x + 4y - 13 = 0$
C. $x^2 + y^2 + 6x - 4y - 13 = 0$
D. $x^2 + y^2 = 26$

Answer: B

View Text Solution

36. The locus of the mid-points of the chords of the circle $x^2 + y^2 = 16$ which are the tangents to the hyperbola $9x^2 - 16y^2 = 144$ is

A.
$$3x^2 - 4y^2 = 16(x^2 + y^2)$$

B. $4x^2 - 3y^2 = 9(x^2 + y^2)$
C. $16x^2 - 9y^2 = (x^2 + y^2)^2$
D. $16x^2 - 9y^2 = 4(x^2 + y^2)$

Answer: C

Watch Video Solution

37. A (3, 2, -1), B(4, 1, 1), C(6, 2, 5) are three points. If D, E, F are three points which divide BC, CA, AB respectively in the same ratio 2:1 then the centroid of ΔDEF is

A. $\left(\frac{13}{3}, \frac{5}{3}, \frac{5}{3}\right)$ B. (13, 5, 5)

C.
$$(4, 2, 1)$$

D. $\left(\frac{11}{3}, \frac{4}{3}, \frac{1}{3}\right)$

Answer: A

Watch Video Solution

38. If
$$A = (1, 8, 4), B = (2, -3, 1)$$
, then the direction cosines of a

normal to the plane AOB is

A. A
$$\frac{2}{\sqrt{78}}, \frac{5}{\sqrt{78}}, \frac{-7}{\sqrt{78}}$$

B. B $\frac{2\sqrt{10}}{9}, \frac{7\sqrt{10}}{90}, \frac{-19\sqrt{10}}{90}$
C. C $\frac{4}{\sqrt{218}}, \frac{9}{\sqrt{218}}, \frac{-11}{\sqrt{218}}$
D. D $\frac{2}{11}, \frac{6}{11}, \frac{-9}{11}$

Answer: B

39. The lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$

intersect if K equals

A.
$$\frac{2}{9}$$

B. $-\frac{2}{9}$
C. $\frac{9}{2}$
D. 0

Answer: C

40.
$$\lim_{x \to 0} \frac{x^2(\tan 2x - 2\tan x)^2}{(1 - \cos 2x)^4} =$$

A. 4
B. 2
C. $\frac{1}{2}$

D.
$$-\frac{1}{4}$$

Answer: D

41.
$$\lim_{x \to \infty} \left(\frac{6x^2 - \cos 3x}{x^2 + 5} - \frac{5x^3 + 3}{\sqrt{x^6 + 2}} \right) =$$

A. 11
B. 0
C. -1

Answer: A

D. 1

View Text Solution

42. The number of discontinuities in R for the function $f(x)=rac{x-1}{x^3+6x^2+11x+6}$ is

A. 3		
B. 2		
C. 1		
D. 0		

Answer: A

Watch Video Solution

$$\begin{aligned} \textbf{43.} & \frac{d}{dx} \left(\log \! \left(\sqrt{x + \sqrt{x^2 + a^2}} \right) \right) = \\ & \textbf{A.} \sqrt{x^2 + a^2} \\ & \textbf{B.} \frac{1}{\sqrt{x^2 + a^2}} \\ & \textbf{C.} \frac{1}{2\sqrt{x^2 + a^2}} \\ & \textbf{D.} \frac{1}{2\left(x + \sqrt{x^2 + a^2}\right)} \end{aligned}$$

Answer: C

44.
$$f(x)=\cot^{-1}igg(rac{x^x-x^{-x}}{2}igg)$$
 then $f^1(1)=$

A. $-\log 2$

 $\mathsf{B}.\log 2$

C. 1

D. - 1

Answer: D

45. If
$$a. \neq 0, x = a(t + \sin t)$$
 and $y = a(1 - \cos t)$ then
 $\frac{d^2y}{dx^2}$ at $t = \frac{2\pi}{3}$ is
A. $\frac{4}{a}$
B. $\frac{1}{4a}$

C.4a

 $\mathsf{D}.\,\frac{a}{4}$

Answer: A

Watch Video Solution

46. The number of tangent to the curve $y^2(x-a)=x^2(x+a)(a>0)$

that are parallel to the X - axis is

A. infinitely many

B. 0

C. 1

D. 2

Answer: B

View Text Solution

47. If $f(x) = (2k+1)x - 3 - ke^{-x} + 2e^x$ is monotonically increasing

for all $x \in R$ then the least value of k is

A. 1 B. 0 C. $-\frac{1}{2}$ D. -1

Answer: B

View Text Solution

48. if the function $f(x) = ax^3 + bx^2 + 11x - 6$ satisfies the conditions of Rolle's theorem in [1, 3] and $f\left(2 + \frac{1}{\sqrt{3}}\right) = 0$ then a + b =

A. - 5

 $\mathsf{B.}-3$

C. 4

Answer: A

View Text Solution

49. For a>0, if the function $f(x)=2x^3-9ax^2+12a^2x+1$ attains its maximum value at p and minimum value at q such that p^2-q then a=

- A. $\frac{1}{2}$ B. 1
- C. 2

D. 4

Answer: C

50. If $\int \cos x \cdot \cos 2x \cdot \cos 5x dx$ = $A \sin 2x + B \sin 4x + C \sin 6x + D \sin 8x + k$

(where k is the arbitrary constant of integration), then $rac{1}{B}+rac{1}{C}=$

A.
$$\frac{1}{A} - \frac{1}{D}$$

B. $\frac{1}{A} + \frac{1}{D}$
C. 1

D. 0

Answer: B

View Text Solution

51. If
$$\int e^x \left(\frac{x+2}{x+4}\right)^2 dx = f(x)$$
 arbitrary constant, then $f(x) =$
A. $\frac{xe^x}{x+4}$
B. $\frac{e^x}{x+4}$
C. $x \frac{e^x}{(x+4)^2}$

D.
$$rac{e^x}{\left(x+4
ight)^2}$$

Answer: A

52. Evalute the following integrals

 $\int \frac{dx}{\sin x + \sin 2x}$

$$\begin{aligned} &\mathsf{A}.\,\frac{1}{2}\mathrm{log}_{e}|1+\cos x|+\frac{1}{6}\mathrm{log}_{e}|1-\cos x|-\frac{2}{3}\mathrm{log}_{e}|1+2\cos x|+c\\ &\mathsf{B}.\,\frac{1}{2}\mathrm{log}_{e}|1+\cos x|-\frac{2}{3}\mathrm{log}_{e}|1-\cos x|+\frac{1}{2}\mathrm{log}_{e}|1+2\cos x|+c\\ &\mathsf{C}.\,\frac{1}{2}\mathrm{log}_{e}|1+\sin x|-\frac{1}{3}\mathrm{log}_{e}|1-\sin x|-\frac{1}{3}\mathrm{log}_{e}|1+\cos x|+c\\ &\mathsf{D}.\,\frac{1}{2}\mathrm{log}_{e}|1-\sin x|+\frac{1}{2}\mathrm{log}_{e}|1+\cos x|-\frac{2}{3}\mathrm{log}_{e}|1-2\cos x|+c \end{aligned}$$

Answer: A

53. In
$$I_n = \int \frac{\sin nx}{\sin x} dx$$
 for $n = 1, 2, 3, ...,$ then $I_6 =$
A. $\frac{3}{5} \sin 3x + \frac{8}{5} \sin^5 x - \sin x + c$
B. $\frac{2}{5} \sin 5x - \frac{5}{3} \sin^3 x - 2 \sin x + c$
C. $\frac{2}{3} \sin 5x - \frac{8}{3} \sin^5 x + 4 \sin x + c$
D. $\frac{2}{5} \sin 5x - \frac{8}{5} \sin^3 x + 4 \sin x + c$

Answer: D

View Text Solution

54. If
$$\lim_{n \to \infty} \left[\left(1 + \frac{1}{x^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right) \right]^{1/n} = k$$
, then log k =
A. $\log 4 + \frac{\pi}{2} - 1$
B. $\log 2 + \frac{\pi}{2} + 1$
C. $\log 2 + \frac{\pi}{2} - 2$
D. $\log 2 + \frac{\pi}{2} - 1$

Answer: C

55.
$$\int_{0}^{\pi/2} \frac{\sin^{3} x \cos x dx}{\sin^{4} x + \cos^{4} x} =$$
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{8}$

Answer: D

View Text Solution

56. The curve $y = ax^2 + bx$ passes through the point (1, 2) and lies above the X- axis for $0 \le x \le 8$. If the are enclosed by this curve, the X axis and the line x = 6 is 108 square units, then 2b - a =

A. 2

B. 0

C. 1

 $\mathsf{D}.-1$

Answer: B

View Text Solution

57. The differential equation of all parabolas whose axes are parallel to Y -

axis is

A.
$$\frac{d^3y}{dx^3} = 0$$

B.
$$\frac{d^2y}{dx^2} = 0$$

C.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

D.
$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

Answer: A

58. The solution of the equation $\frac{dy}{dx} = 2y \tan x = \sin x$ satisfying y = 0 when $x = \frac{\pi}{3}$ ' is

A.
$$y=2\sin^2x+\cos x-2$$

$$\mathsf{B}.\,y=2\sin^2x-\cos x-2$$

$$\mathsf{C}.\, y = 2\cos^2 x - \sin x + 2$$

D.
$$y=2\cos x-\sin^2 x-1$$

Answer: A

View Text Solution

59. Let f be a function such that $f(xy) = \frac{f(x)}{y}$ for all positive real numbers x, y. If f(20) = 15, then f(50) =

A.
$$\frac{75}{2}$$

B. 12

C. 6

D. 75

Answer: C

Watch Video Solution

60. If f: A o B is a function defined by $f(x) = rac{x^2 - x}{x^2 + 2x}$, then which one of the following is true?

A. A = R - $\{0, -2\}$, B = R and f(x) is decreasing function

B. A = R - {-2}, B = R - {1} and $f^{-1}(x)$ is decreasing function

C. A = R - {0, -2}, B = R - {1} and $f^{-1}(x)$ is increasing function

D. Both f(x) and $f^{-1}(x)$ are increasing functions

Answer: C

View Text Solution

61. The statement " $n^5 - 5n^3 + 4n$ is divisible by 120" is true for

A. n = 1 only

B. n = 10 only

C. n = 100 only

D. All positive integer values of n

Answer: D

View Text Solution

62. Let
$$A = \begin{bmatrix} 7 & 5 \\ 4 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ 7 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$

IF Tr(S) denotes the trace of a square matrix S then

$$\sum_{k=0}^{\infty}rac{1}{3^k}Tr\Big\{A(BC)^k\Big\}=0$$

A.
$$\frac{45}{2}$$

B. 36

C.
$$\frac{81}{2}$$

D. 9

Answer: A

View Text Solution

63. If the inverse of the matrix
$$A = \begin{bmatrix} 3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7 \end{bmatrix}$$
 is B, then $B^T = \begin{bmatrix} A & \frac{1}{136} \begin{bmatrix} 9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11 \end{bmatrix}$
B. $\frac{1}{136} \begin{bmatrix} 9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11 \end{bmatrix}$
C. $\frac{1}{136} \begin{bmatrix} 9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26 \end{bmatrix}$
D. $\frac{1}{136} \begin{bmatrix} 9 & 1 & 26 \\ -38 & 26 & -4 \\ 37 & -11 & -14 \end{bmatrix}$

Answer: A

Watch Video Solution

64. If $x=lpha, y=eta, z=\gamma$ is the solution of the system of equations					
$x+y+z=4, 2x-y+3z=9, 3x+y+2z=8, ext{ then } 4lpha+2eta+3\gamma=0$					
A. 0					
B. 1					
C 12					
C. 12					
D. 19					

Answer: C

View Text Solution

65.
$$\left(rac{2}{i+\sqrt{3}}
ight)^{100} + \left(rac{2}{i-\sqrt{3}}
ight)^{100} =$$

A. 2

B. 1

C. -1

D. -2

Answer: C

66. If $a=3+4i, z_1$ and z_2 are two complex numbers such that $|z_1|=3$ and $|z_2-a|=2$, then the maximum value of $|z_1-z_2|$ is

A. 5

B. 10

C. 15

D. 20

Answer: B

View Text Solution

67. If α is the real root and β , γ are the complex roots of the equation $x^3 + 3x^2 + 3x + 28 = 0$, then $2\alpha + 3\beta + 3\gamma =$ A. -5 B. 0 C. 5

D. -23

Answer: A

Watch Video Solution

68. Given that α , β , γ , δ are in a geometric progression. If α , β are the roots of $x^2 - x + p = 0$ and γ , δ are the roots of $x^2 - 4x + q = 0$, where p and q are integers, then the ordered pair (p, q) =

A. (2, 32)

B. (2, -32)

C. (-2, 32)

D. (-2, -32)

Answer: D

View Text Solution

69. If A, B, C are the sets of all values of x, for which $x^2 - 5x - 14$ is positive, $-6x^2 + 2x - 3$ is negative and $4x - 5x^2 + 2$ is negative respectively, then $A \cap B \cap C =$

A. (-2, 7)

 $\mathsf{B.}\,\phi$

C.
$$\left(\frac{2-\sqrt{14}}{5}, \frac{2+\sqrt{14}}{5}\right)$$

D. R

Answer: C

70. The complex solution set of the inequation $\sqrt{x^2-3x+2} > (3-x)$

is

A.
$$\left(rac{7}{3},3
ight]$$

B. $(3,\infty)$
C. $(-\infty,1]\cup[2,\infty)$
D. $\left(rac{7}{3},\infty
ight)$

Answer: D

71. Solve the equation
$$6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$$
.

A. 2

$$\mathsf{B}.\ \frac{5}{2}$$

C. 3

Answer: C

72. I. The number of all ten digited numbers that can be formed with all the distinct digits and which ar divisble by 4 is 15 imes81.

II. The number of positive integers that can be formed by using the digits

0, 1, 2, 3, 4, 5 without any repetition is 630.

A. Only I is true

B. Only II is true

C. Both I and II are true

D. Both I and II are false

Answer: B

View Text Solution

73. A man has 5 male and 4 female relatives. His wife has 4 male and 5 female relatives. The number of ways in which they can invite 5 male and 5 female relatives so that 5 of them are man's relatives and remaining 5 are his wife's relatives

A. A 5426

B. B 5226

C. C 5526

D. D 5626

Answer: D

Watch Video Solution

74. If the coefficients of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in an arithmetic progression, then r =

A. 4 or 10

B. 5 or 9

C. 8 or 6

D. 7

Answer: B

View Text Solution

75. If
$$x = \frac{5}{(2!).3} + \frac{5.7}{(3!).3^2} + \frac{5.7.9}{(4!).3^3} + \dots$$

then find the value of $x^2 + 4x$.

A. 17

B. 23

C. 27

D. 39

Answer: B

Watch Video Solution

76. If the periods of the functions sin(ax+b) and tan(cx+d) are respectively

$$\frac{4}{7} \text{ and } \frac{2}{5}, \text{ then } \sin(|a| + |c|) + \cos(|a| - |c|) =$$
A. -1
B. 0
C. 1
D. 2

Answer: A

77. The smallest positive value of x (in degress) for which $\tan(x+100^\circ) = \tan(x+50^\circ)$. $\tan x \tan(x-50^\circ)$ is

A. $25^{\,\circ}$

$$\mathsf{B.82}\frac{1}{2^\circ}$$

C. 55°

D. $30^{\,\circ}$

Answer: D

78. For $\alpha \neq 0$, if $\cos(\theta + \alpha), \cos \theta$ and $\cos(\theta - \alpha)$ are in harmonic progression, then $\sec^2 \theta \cdot \cos^2 \frac{\alpha}{2} =$

A. 2

B. 1

C.
$$\frac{1}{2}$$

D. $\frac{1}{4}$

Answer: C

Watch Video Solution

79. If $\cos 2 heta + lpha \sin heta = 2lpha - 7$ has a solution, then

A. $lpha\in [\,-2,4]$ B. $lpha\in [\,-6,\,-2]$ C. $lpha\in [6,8]$ D. $lpha\in [2,6]$

Answer: D

Watch Video Solution

80. If x = a is a solution of the equation $\sin^{-1}\frac{x}{3} + \sin^{-1}\frac{2x}{3} = \sin^{-1}x$,

then the roots of the equation $x^2-ax-1=0$ are

A. ± 1 B. $\frac{1}{2}$, 1 C. $\pm \frac{1}{2}$ D. $-\frac{1}{2}$, 1

Answer: A

81. The set of all real values of x for which
$$f(x) = \log_e \sqrt{\frac{1+x}{1-x}} + \log_e \left(\frac{1+\sqrt{1-x^2}}{x}\right) + \coth^{-1} x + \log_e \left(\frac{1+\sqrt{1-x^2}}{x}\right)$$

is defined is

A. ϕ

B. (0, 1)

C. (-1, 1)

D. (0, 1]

Answer: B

View Text Solution

82. If
$$A=60^\circ$$
 then $rac{1}{a+b}+rac{1}{a+c}=$

A.
$$\frac{3(1+b-c)}{a+b+c}$$
B.
$$\frac{2}{a+b+c}$$
C.
$$\frac{3}{a+b+c}$$
D.
$$\frac{a+b+c}{3a^2}$$

Answer: C

Watch Video Solution

83. In a
$$\Delta ABC, 8R^3 \sum \sin^3 A \cos(B-C) =$$

A. abc

B. 4abc

C. $3R\Delta$

D. $12R\Delta$

Answer: D

View Text Solution

84. In a $\triangle ABC$, if a:b:c=4:5:6, then the ratio of the radius of the circumcircle to the radius of the incircle is

A. 13: 7

B. 15:7

C. 16:7

D. 17:9

Answer: C

Watch Video Solution

85. a, b, c are three mutually perpendicular unit vectors in the right handed system. If the points P, Q, R with position vectors 2a + 5b - 4c, a + 4b - 3c and ka + 7b - 6c respectively lie on a line, then the ratio in which the point P divides QR is

A. 1:2

B. - 1:3

C. 3:1

 $\mathsf{D.}-1\!:\!2$

Answer: A

View Text Solution

86. Let π be the plane passing through the points $\hat{i}, \hat{j}, \hat{i} + \hat{j} + \hat{k}$ and L be the line passing through the point $\hat{i} + 2\hat{j} + 3\hat{k}$ and parallel to the vector $\hat{i} - \hat{j} + \hat{k}$. If $P(\alpha, \beta, \gamma)$ is the point of intersection of the plane π and line L, then $\sqrt{(\alpha^2 + \beta^2)\gamma^2} =$

A. 0

B. 1

C. 6

D. $\sqrt{14}$

Answer: C

87. If
$$a = \hat{i} - \hat{j} - \hat{k}$$
, $b = 2\hat{i} - 3\hat{j} + \hat{k}$ and p_1, p_2 are the orthogonal projection vectors of a on b and b on a respectively, then
 $(p_1 + p_2) \cdot (p_1 - p_2) =$
A. $-\frac{46}{21}$
B. $\frac{25}{7}$
C. $\frac{44}{7}$
D. $-\frac{88}{21}$

Answer: D

View Text Solution

88. Let a, b, c be three non-coplanar vectors and $a' = \frac{b \times c}{[abc]}, b' = \frac{c \times a}{[abc]}, c' = \frac{a \times b}{[abc]}$. The length of the altitude of the parallelopiped formed by a a', b', c' as coterminous edges, with respect to the base having a' and c' as its adjacent sides is

A. |a|B. $\frac{1}{|b|}$ C. |c|

D.
$$rac{1}{|a imes c|}$$

Answer: B

View Text Solution

89. Let a, b, c be three non-coplanar vectors. Let S_i (i = 1, 2, 3, 4, 5, 6) denonte the six scalar triple products formed by all possible permutations of a, b, c. If i, j, k, I are randomly chosen distinct numbers from 1 to 6 and if $x = \frac{S_i}{S_i} + \frac{S_k}{S_l}, y = \frac{S_i}{S_i} - \frac{S_k}{S_l}$, then $x^2 + y^2 =$

Answer: B

D. 2

View Text Solution

90. If $a = \hat{i} - 2\hat{j} + \hat{k}, b = \hat{i} + 3\hat{j} - 2\hat{k}, c = 2\hat{i} + \hat{j} - \hat{k}$ and $d = \hat{i} + \hat{j} + \hat{k}$, then the volume (in cubic units) of the tetrahedron having $(a \times b) \times c, b, d$ as its coterminuous edges is

A.
$$\frac{1}{2}$$

B. 90
C. $\frac{21}{2}$
D. $\frac{66}{5}$

15

Answer: C

View Text Solution

91. The mean deviation of the data 3, 5, 11, 13, 17, 19, 23, 29 about its arithmetic mean is

A. A. 8.5

B. B. 8

C. C. 7.2

D. D. 7

Answer: D

92. If the weights of 10 persons (in kgs) are observed as : 45, 49, 55, 50,

41,44, 60, 58, 53, 55, then the variance of their weights is

A. A 51

B. B 42.8

C. C 39.4

D. D 35.6

Answer: D

Watch Video Solution

93. If two dice are rolled at a time, then the probability of getting an odd number on the first die or a total of 7 on both dice is

A.
$$\frac{5}{9}$$

B. $\frac{2}{3}$
C. $\frac{1}{12}$
D. $\frac{7}{12}$

Answer: D

94. If A and B are two events of a random experiment such that $P(\overline{A}) = 0.3, P(B) = 0.4$ and $P(A \cap \overline{B}) = 0.5$, then $P(A \cup B) + P(A \cup B$

A. 0.95

B. 1.15

C. 1.25

D. 0.25

Answer: B

Watch Video Solution

95. A speaks truth in 4 out of 5 times. A die is tossed. If A reports that there is 4 on the die, then the probability that there was 4 on the die, is

A.
$$\frac{2}{3}$$

B.
$$\frac{4}{9}$$

C. $\frac{1}{3}$
D. $\frac{2}{9}$

Answer: B

Watch Video Solution

96. Let S = {1, 2, 3,..., 50} and A_k be the set of multiples of k in S for $k \in N$. IF x_k is a number chosen from A_k , then match the items of List-I with the items of List-II.

	List I			List II
A.	$P(x_3 < 30)$	Ι.	$\frac{1}{2}$	
₿.	$P(15 < x_4 \le 36)$	١١.	$\frac{2}{3}$	
C.	$P(x_7 > 35)$	III.	$\frac{2}{7}$	
D.	$P(x_{11} > 11)$	IV.	$\frac{1}{4}$	
		V.	$\frac{3}{4}$	
		VI.	9 16	

The correct match is

A. A B C D

VI I IV V

B. A B C D

III I VI V

C. A B C D

IIVIIV

D. A B C D

VI I III V

Answer: D

D View Text Solution

97. If X is a Poisson variate such that P(X=2)=9P(X=4), then the

mean and variance of X are

A. (1, 2)

B. (1, 1)

C. (2, 1)

D. (2, 2)

Answer: B

Watch Video Solution

98. Let P be the point (4, 1) and Q be its image in the line y = x. If Q is translated through a distance 2 units along the negative Y-axis to reach the point R, then the co-ordinates of R are

A. (-1, 2)

B. (1, -2)

C. (-1, -2)

D. (1, 2)

Answer: D

Watch Video Solution

99. The normal form of the line x+y+1=0 is

$$egin{aligned} \mathsf{A}.\,x\cos(45^\circ) + y\sin(135^\circ) &= rac{1}{\sqrt{2}} \ \mathsf{B}.\,x\cos(45^\circ) + y\sin(45^\circ) &= rac{1}{\sqrt{2}} \ \mathsf{C}.\,x\cos(225^\circ) + y\sin(225^\circ) &= rac{1}{\sqrt{2}} \end{aligned}$$

D.
$$x \cos(45^\circ) + y \sin(45^\circ) = - rac{1}{\sqrt{2}}$$

Answer: C

100. The vetices of a triangle are O(0, 0), B(-3, -1), C(-1, -3). The equation of the line parallel to BC and intersecting the sides OB and OC whose perpendicular distance from O is 1/2 is

A.
$$x + y + \sqrt{2} = 0$$

B. $2x + 2y - \sqrt{2} = 0$
C. $2x + 2y + \sqrt{2} = 0$

D.
$$2x-2y+\sqrt{2}=0$$

Answer: B

Watch Video Solution

101. A variable line passing through a fixed point (α, β) intersects the coordinate axes at A and B. If O is the origin, then the locus of the centroid of the ΔOAB is

A.
$$eta x + lpha y = 3xy$$

B.
$$\alpha x + \beta y = 3xy$$

 $\mathsf{C.}\,\alpha x - \beta y = 3xy$

D.
$$\beta x - \alpha y = 3xy$$

Answer: A

Watch Video Solution

102. If A is the orthocentre of the triangle formed by $2x^2 - y^2 = 0$, x + y - 1 = 0 and B is the centroid of the triangle formed by $2x^2 - 5xy + 2y^2 = 0$, 7x - 2y - 12 = 0, then the distance between A and B is

A. $\sqrt{5}$

B. 1

C. 5

D. $\sqrt{2}$

Answer: A

View Text Solution

103. The distance between the pair of lines represented by

$$x^2+2\sqrt{2}xy+2y^2+4x+4\sqrt{2}y+1=0$$
, is

A. 1

B. 2

 $\mathsf{C}.\,\sqrt{2}$

D. 4

Answer: B

Watch Video Solution

104. The number of integers α , for which a chord of the circle $x^2 + y^2 = 75$ is bisected at $(8, \alpha)$ and that the slope of the chord is an integer, is

A. 10

B. 8

C. 4

D. 3

Answer: B

View Text Solution

105. If the line x - 6y - 12 = 0 meets the circle $S \equiv x^2 + y^2 - 4x + 8y + 6 = 0$ at A and B, then the point of intersection of the tangents at A and B to S = 0 is A. (1, 2)

B. (2, 1)

C. (-1, 2)

D. (2, -1)

Answer: A

View Text Solution

106. A circle of radius 5 units passes through A(-5, 0) and B(5, 0). If $P(5\cos\alpha, 5(\sin\alpha), Q(5\cos\beta, 5\sin\beta))$ are two points on this circle such that $\alpha - \beta = \frac{\pi}{2}$, then the locus of the point of intersection of the line AP and BQ is

A.
$$x^2 + y^2 - 10x - 25 = 0$$

B. $x^2 + y^2 + 10x - 25 = 0$
C. $x^2 + y^2 + 10y - 25 = 0$
D. $x^2 + y^2 - 10y - 25 = 0$

Answer: D

107. The condition that the circles which passes through the points (0, a), (0, -a) and touch the line y = mx + c will cut orthogonally is

Watch Video Solution

Answer: B

is a parameter, if the line joining the points circles of the system subtends a right angle at the origin, then $\frac{k}{f^2}$ A. -1 B. 1 C. 2 D. $\frac{1}{2}$ Answer: C View Text Solution

109. For the parabola $y^2 + 2x + 2y - 3 = 0$, match the items in List-I with those from List-II.

List I		List II
. Vertex	١.	2x - 5 = 0
3. Focus	н.	$\left(\frac{3}{2}, -1\right)$
C. Equation of the Directrix	Ш.	x - 2 = 0
D. Equation of the Axis	IV.	y + 1 = 0
	V.	(2, -1)
	VI.	$\left(2,\frac{3}{2}\right)$

The correct match is

A. A B C D

V VI I III

B. A B C D

VIIIV

C. A B C D

VI V IV I

D. A B C D

II VI III IV

Answer: B

110. The area (in sq units) of the triangle formed by the normal to the parabola $y^2 = 16x$ whose slope is $\frac{1}{2}$ with the co-ordinates axes is

Answer: D

111. If the major axis of an ellipse lies on the Y-axis, its minor axis lies on the X-axis and the length of its latusrectum is equal to $\frac{2}{3}$ of its minor axis, then the eccentricity of that ellipse is

Answer: D

Watch Video Solution

112. If
$$y=x+c$$
 is a normal to the ellipse $rac{x^2}{25}+rac{y^2}{9}=1, ext{ then } c^2=$

A. A
$$\frac{128}{17}$$

B. B $\frac{17}{128}$
C. C 34

D. D 225

Answer: A

113. The area (in sq units) of the quadrilateral formed by the four common

tangents drawn to the two hyperbolas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ and } \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(a > b) \text{ is}$$
A. $a^2 - b^2$
B. $2(a^2 - b^2)$
C. $\frac{a^2 - b^2}{\sqrt{2}}$
D. $\frac{a^2 - b^2}{2}$

Answer: B

114. The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to (1, -2, -2) and (0, 2, 1) are

A. A
$$\frac{2}{3}$$
, $\frac{-1}{3}$, $\frac{-2}{3}$
B. B $\frac{2}{3}$, $\frac{-1}{3}$, $\frac{-2}{3}$
C. C $\frac{2}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$
D. D $\frac{2}{3}$, $\frac{2}{3}$, $\frac{-1}{3}$

115. The number of lines passing through (0, 0, 0) and making an angle of

 $45^{\,\circ}\,$ with each of the three co-ordinate axes is

A. 0

B. 2

C. 4

D. 8

Answer: B

116. The equation of the plane which passes through the point (2, 5, -8) and perpendicular to each of the planes 2x-3y+4z+1=0 and 4x+y-2z+6=0 is

A. x+10y+7z+4=0

B. x+2y+2z+4=0

C. 3x+2y+2z=0

D. x+10y+7z-4=0

Answer: A

View Text Solution

117.
$$\lim_{x o rac{\pi}{6}} rac{\sin \left(x - rac{\pi}{6}
ight)}{rac{\sqrt{3}}{2} - \cos x} =$$

A. 0

B. 1

C. 2
D.
$$\frac{1}{2}$$

Answer: C

O Watch Video Solution

118. The integer 'n' is for which
$$Lt_{x
ightarrow 0}rac{(\cos x\,-\,1)(\cos x\,-\,e^x)}{x^n}$$
 is a finite

non zero numberis

- A. 4
- B. 3
- C. 2
- D. 1

Answer: B

Natch Video Solution

119. If
$$f(x)=\int_{-1}^x |t|dt, x\geq 1$$
 , then

A. f is continuous at x=0 but f' is not continuous

B. both f and $f^{\,\prime}$ are continuous for all x>~-1

C. f is continuous for x > -1 but f' is not continuous

D. f and f' are differentiable at x=0

Answer: A

View Text Solution

120. If
$$x = \sinh^{-1} \left[\log \left(1 + \sqrt{y} \right], \text{ then } \frac{dy}{dx} =$$

A. $2 \left(y + \sqrt{y} \right) \sinh x$
B. $2 \left(y + \sqrt{y} \right) \sqrt{1 - \left(\log \left(1 + \sqrt{y} \right) \right)^2}$
C. $2 \left(y + \sqrt{y} \right) (\cosh x)$

D.
$$2\left(y+\sqrt{y}
ight) \mathrm{log} \left(1+\sqrt{y}
ight)$$

View Text Solution

121. If
$$f(x) = \frac{(7x+1)\sin x}{e^x \log x}$$
 and $f'(x) = f(x)g(x)$, then $g'(x) =$
A. $\frac{1}{x^2 \log x} + \frac{1}{(x \log x)^2} - \cos ec^2 x - \frac{49}{(7x+1)^2}$
B. $\frac{1}{x^2 \log x} + \frac{1}{\log x} - \cos ec^2 x - \frac{49}{(7x+1)^2}$
C. $\frac{1}{(x \log x)^2} + \frac{1}{\log x} - \cos ec^2 x - \frac{49}{(7x+1)^2}$
D. $\frac{1}{x^{\Box}} (x^2 \log x) x + \frac{1}{(x \log x)^2} + \cos ec^2 x + \frac{49}{(7x+1)^2}$

Answer: A

View Text Solution

$$\begin{aligned} & \textbf{122. If } f(x) = \begin{vmatrix} \cos x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{vmatrix} \quad \text{then } \int_0^{\pi/2} f(x) dx = \\ & \textbf{A. } \cos 3x \\ & \textbf{B. } \cos(\pi + 3x) \\ & \textbf{C. } \sin 3x \\ & \textbf{D. } \sin(\pi + 3x) \end{aligned}$$

Answer: B

Watch Video Solution

123. The angle between the curves $y^2=8(x+4)$ and $y^2=24(4-x)$

is

A.
$$\tan^{-1}\left(\frac{1}{6}\right)$$

B. $\tan^{-1}(3)$
C. $\frac{\pi}{2}$

D.
$$\frac{\pi}{4}$$

124. The function
$$f(x) = x^{1/x}$$
 for $x > 0$, is

A. increasing in $(1,\infty)$

B. $decrea \sin g \in$ (1, infty)`

C. increasing in $(1, \theta)$ and decreasing in (θ, ∞)

D. decreasing in $(1, \theta)$ and increasing in (θ, ∞)

Answer: C

View Text Solution

125. Let
$$f \colon \left[0, rac{1}{2}
ight] o R$$
 be given by $f(x) = x(x-1)(x-2).$ The value

'c', when Lagrange's mean-value theorem is applied for f(x), is

A.
$$\frac{\sqrt{21}}{6}$$

B. $\frac{1}{6}$
C. $1 - \frac{\sqrt{21}}{6}$
D. $1 \pm \frac{\sqrt{21}}{6}$

Answer: D

View Text Solution

126. If a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ having slope $\frac{1}{3}$ is a normal to the circle $x^2 + y^2 + 2x + 2y + 1 = 0$, then the maximum value of ab is

A.
$$\frac{2}{3}$$

B. 9

C.
$$\frac{4}{9}$$

D. $\frac{1}{3}$

Answer: A

127.
$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x + 2\sin^4 x} dx =$$

A. $-\frac{1}{2}\sin 2x + c$
B. $-\sin 2x + c$
C. $\frac{1}{2}\sin 2x + c$

D. $\sin 2x + c$

Answer: A

Watch Video Solution

$$\begin{aligned} & \mathbf{128.} \int \! \frac{2x^{12} + 5x^9}{\left(x^5 + x^3 + 1\right)^3} dx = \frac{x^p}{q(x^5 + x^3 + 1)^r} + c, \text{then } p - q - r = \\ & \mathsf{A.} \frac{x^8}{2} \left(1 + x^3 + x^5\right)^2 + c \\ & \mathsf{B.} \frac{x^{10}}{\left(1 + x^3 + x^5\right)^2} + c \\ & \mathsf{C.} \frac{x^{10}}{2(1 + x^3 + x^5)^2} \\ & \mathsf{D.} \frac{x^8}{2(1 + x^3 + x^5)^2} + c \end{aligned}$$

Natch Video Solution

129.
$$\int rac{x^2+\cos^2 x}{(1+x^2) \sin^2 x} dx =$$

A.
$$\cot x + \tan^{-1} x + c$$

$$\mathsf{B.}\cot x - \tan^{-1}x + c$$

$$\mathsf{C}.-\cot x+\tan^{-1}x+c$$

$$\mathsf{D}.-\cot x-\tan^{-1}x+c$$

Answer: D

130.

If

A.
$$-\sin^6 x \cos x (1+\sin x) + c$$

B.
$$\sin^8 x \cos x + \sin^5 x \cos x + c$$

C.
$$-\sin^7 x \cos x (1-\sin x) + c$$

$$\mathsf{D}.-\cos^7 x \sin x (1+\cos x) + c$$

Answer: A

131.
$$\lim_{n
ightarrow\infty} \ rac{1+32+243+\ldots+n^5}{n^6} =$$

A.
$$\frac{1}{5}$$

B. $\frac{1}{11}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$

Watch Video Solution

132. Let a>1 and b>1. If f(t) is a periodic function of period T and $\int_0^\infty a^{-bi} f(t) dt = k \int_0^T a^{-bt} f(t) dt$ then k =

A.
$$rac{a^{bT}}{T+1}$$

B. $rac{a^{-bT}}{a^{-bT}+1}$
C. $rac{a^{bT}}{b^{aT}+1}$
D. $rac{a^{bT}}{a^{bT}-1}$

Answer: D

133. The area (in sq units) enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x - \sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is A. $4 + 2\sqrt{2}$ B. $4 - 2\sqrt{2}$ C. $2 + 2\sqrt{3}$ D. $6 - 3\sqrt{2}$

Answer: B

View Text Solution

134. The degree and order respectively of the differential equation of the family of the curves respresented by $y=\sqrt{cig(x+\sqrt{c}ig)}$ are (Here, C is a parameter)

A. A 1, 3

B. B 2, 3

C. C 3, 1

D. D 2, 2

Answer: C

Watch Video Solution

135. The solution of the differential equation $\frac{x+y-1}{x+y-2}\frac{dy}{dx} = \frac{x+y+1}{x+y+2}$, given that y = 1 when x = 1, is

$$\begin{aligned} \mathsf{A}. \ & 2(y-x) + \log \left| \frac{(x+y)^2 - 2}{2} \right| = 0\\ \mathsf{B}. \ & \log \left| \frac{(x+y)^2 - 2}{2} \right| = (x-y)^2\\ \mathsf{C}. \ & \log \left| \frac{(x-y)^2 + 2}{2} \right| + 2(y-x) = 0\\ \mathsf{D}. \ & (x-y) + \log \left| \frac{(x+y)^2 - 2}{2} \right| = 0 \end{aligned}$$

Answer: A

