©゙doubtnut

MATHS

BOOKS - TS EAMCET PREVIOUS YEAR PAPERS

AP EAMCET SOLVED PAPER 2019 (22-04-2019, SHIFT-2)

Mathematics

1. Let f be a function such that $f(x y)=\frac{f(x)}{y}$ for all positive real numbers x, y . If $f(20)=15$, then $f(50)=$
A. $\frac{75}{2}$
B. 12
C. 6
D. 75

Answer: C

- Watch Video Solution

2. If $f: A \rightarrow B$ is a function defined by $f(x)=\frac{x^{2}-x}{x^{2}+2 x}$, then which one of the following is true?
$A . A=R-\{0,-2\}, B=R$ and $f(x)$ is decreasing function
B. $\mathrm{A}=\mathrm{R}-\{-2\}, \mathrm{B}=\mathrm{R}-\{1\}$ and $f^{-1}(x)$ is decreasing function
C. $\mathrm{A}=\mathrm{R}-\{0,-2\}, \mathrm{B}=\mathrm{R}-\{1\}$ and $f^{-1}(x)$ is increasing function
D. Both $\mathrm{f}(\mathrm{x})$ and $f^{-1}(x)$ are increasing functions

Answer: C

D View Text Solution

3. The statement " $n^{5}-5 n^{3}+4 n$ is divisible by 120 " is true for
A. $n=1$ only
B. $\mathrm{n}=10$ only
C. $\mathrm{n}=100$ only
D. All positive integer values of n

Answer: D

- View Text Solution

4. Let $A=\left[\begin{array}{ll}7 & 5 \\ 4 & 8\end{array}\right], B=\left[\begin{array}{ll}4 & 3 \\ 7 & 5\end{array}\right]$ and $C=\left[\begin{array}{ll}-5 & 3 \\ 7 & -4\end{array}\right]$

IF $\operatorname{Tr}(\mathrm{S})$ denotes the trace of a square matrix S then
$\sum_{k=0}^{\infty} \frac{1}{3^{k}} \operatorname{Tr}\left\{A(B C)^{k}\right\}=$
A. $\frac{45}{2}$
B. 36
C. $\frac{81}{2}$
D. 9

- View Text Solution

5. If the inverse of the matrix $A=\left[\begin{array}{lll}3 & 4 & 5 \\ 2 & -1 & 8 \\ 5 & -2 & 7\end{array}\right]$ is B, then $B^{T}=$
A. $\frac{1}{136}\left[\begin{array}{lll}9 & 26 & 1 \\ -38 & -4 & 26 \\ 37 & -14 & -11\end{array}\right]$
B. $\frac{1}{136}\left[\begin{array}{lll}9 & -38 & 37 \\ 26 & -4 & -14 \\ 1 & 26 & -11\end{array}\right]$
C. $\frac{1}{136}\left[\begin{array}{lll}9 & 26 & 1 \\ 37 & -14 & -11 \\ -38 & -4 & 26\end{array}\right]$
D. $\frac{1}{136}\left[\begin{array}{lll}9 & 1 & 26 \\ -38 & 26 & -4 \\ 37 & -11 & -14\end{array}\right]$

Answer: A

- Watch Video Solution

6. If $x=\alpha, y=\beta, z=\gamma$ is the solution of the system of equations $x+y+z=4,2 x-y+3 z=9,3 x+y+2 z=8, \quad$ then $4 \alpha+2 \beta+3 \gamma$
A. 0
B. 1
C. 12
D. 19

Answer: C

- View Text Solution

7. $\left(\frac{2}{i+\sqrt{3}}\right)^{100}+\left(\frac{2}{i-\sqrt{3}}\right)^{100}=$
A. 2
B. 1
C. -1
D. -2

Answer: C

- Watch Video Solution

8. If $a=3+4 i, z_{1}$ and z_{2} are two complex numbers such that $\left|z_{1}\right|=3$ and $\left|z_{2}-a\right|=2$, then the maximum value of $\left|z_{1}-z_{2}\right|$ is
A. 5
B. 10
C. 15
D. 20

Answer: B

9. If α is the real root and β, γ are the complex roots of the equation $x^{3}+3 x^{2}+3 x+28=0, \quad$ then $2 \alpha+3 \beta+3 \gamma=$
A. -5
B. 0
C. 5
D. -23

Answer: A

- Watch Video Solution

10. Given that $\alpha, \beta, \gamma, \delta$ are in a geometric progression. If α, β are the roots of $x^{2}-x+p=0$ and γ, δ are the roots of $x^{2}-4 x+q=0$, where p and q are integers, then the ordered pair $(\mathrm{p}, \mathrm{q})=$
A. $(2,32)$
B. $(2,-32)$
C. $(-2,32)$
D. $(-2,-32)$

Answer: D

- View Text Solution

11. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the sets of all values of x , for which $x^{2}-5 x-14$ is positive, $-6 x^{2}+2 x-3$ is negative and $4 x-5 x^{2}+2$ is negative respectively, then $A \cap B \cap C=$
A. $(-2,7)$
B. ϕ
C. $\left(\frac{2-\sqrt{14}}{5}, \frac{2+\sqrt{14}}{5}\right)$
D. R

Answer: C

12. The complex solution set of the inequation $\sqrt{x^{2}-3 x+2}>(3-x)$ is
A. $\left(\frac{7}{3}, 3\right]$
B. $(3, \infty)$
C. $(-\infty, 1] \cup[2, \infty)$
D. $\left(\frac{7}{3}, \infty\right)$

Answer: D

- Watch Video Solution

13. Solve the equation $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$.
A. 2
B. $\frac{5}{2}$
C. 3
D. $\frac{7}{2}$

Answer: C

- Watch Video Solution

14.I. The number of all ten digited numbers that can be formed with all the distinct digits and which ar divisble by 4 is 15×81.
II. The number of positive integers that can be formed by using the digits $0,1,2,3,4,5$ without any repetition is 630 .
A. Only I is true
B. Only II is true
C. Both I and II are true
D. Both I and II are false

Answer: B

15. A man has 5 male and 4 female relatives. His wife has 4 male and 5 female relatives. The number of ways in which they can invite 5 male and 5 female relatives so that 5 of them are man's relatives and remaining 5 are his wife's relatives
A. A 5426
B. B 5226
C. C 5526
D. D 5626

Answer: D

- Watch Video Solution

16. If the coefficients of $r^{t h},(r+1)^{t h}$ and $(r+2)^{t h}$ terms in the expansion of $(1+x)^{14}$ are in an arithmetic progression, then $r=$
B. 5 or 9
C. 8 or 6
D. 7

Answer: B

- View Text Solution

17. If $x=\frac{5}{(2!) \cdot 3}+\frac{5.7}{(3!) \cdot 3^{2}}+\frac{5.7 \cdot 9}{(4!) \cdot 3^{3}}+\ldots$.
then find the value of $x^{2}+4 x$.
A. 17
B. 23
C. 27
D. 39

Answer: B

18. If the periods of the functions $\sin (a x+b)$ and $\tan (c x+d)$ are respectively $\frac{4}{7}$ and $\frac{2}{5}$, then $\sin (|a|+|c|)+\cos (|a|-|c|)=$
A. -1
B. 0
C. 1
D. 2

Answer: A

- Watch Video Solution

19. The smallest positive value of x (in degress) for whiich $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \cdot \tan x \tan \left(x-50^{\circ}\right)$ is
A. 25°
B. $82 \frac{1}{2^{\circ}}$
C. 55°
D. 30°

Answer: D

- Watch Video Solution

20. For $\alpha \neq 0, \quad$ if $\cos (\theta+\alpha), \cos \theta$ and $\cos (\theta-\alpha)$ are in harmonic progression, then $\sec ^{2} \theta \cdot \cos ^{2} \frac{\alpha}{2}=$
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

21. If $\cos 2 \theta+\alpha \sin \theta=2 \alpha-7$ has a solution, then
A. $\alpha \in[-2,4]$
B. $\alpha \in[-6,-2]$
C. $\alpha \in[6,8]$
D. $\alpha \in[2,6]$

Answer: D

22. If $\mathrm{x}=\mathrm{a}$ is a solution of the equation $\sin ^{-1} \frac{x}{3}+\sin ^{-1} \frac{2 x}{3}=\sin ^{-1} x$, then the roots of the equation $x^{2}-a x-1=0$ are
A. ± 1
B. $\frac{1}{2}, 1$
C. $\pm \frac{1}{2}$
D. $-\frac{1}{2}, 1$

- View Text Solution

23. The set of all real values of x for which $f(x)=\log _{e} \sqrt{\frac{1+x}{1-x}}+\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\operatorname{coth}^{-1} x+\log _{e}\left(\frac{1+\sqrt{1}}{x}\right.$ is defined is
A. ϕ
B. $(0,1)$
C. $(-1,1)$
D. $(0,1]$

Answer: B

D View Text Solution

24. If $A=60^{\circ}$ then $\frac{1}{a+b}+\frac{1}{a+c}=$
A. $\frac{3(1+b-c)}{a+b+c}$
B. $\frac{2}{a+b+c}$
C. $\frac{3}{a+b+c}$
D. $\frac{a+b+c}{3 a^{2}}$

Answer: C

- Watch Video Solution

25. In a $\triangle A B C, 8 R^{3} \sum \sin ^{3} A \cos (B-C)=$
A. abc
B. 4 abc
C. $3 R \Delta$
D. $12 R \Delta$

Answer: D

26. In a $\Delta A B C$, if $a: b: c=4: 5: 6$, then the ratio of the radius of the circumcircle to the radius of the incircle is
A. $13: 7$
B. 15: 7
C. 16:7
D. 17: 9

Answer: C

- Watch Video Solution

27. a, b, c are three mutually perpendicular unit vectors in the right handed system. If the points P, Q, R with position vectors $2 a+5 b-4 c, a+4 b-3 c$ and $k a+7 b-6 c$ respectively lie on a line, then the ratio in which the point P divides $Q R$ is
A. $1: 2$
B. $-1: 3$
C. $3: 1$
D. $-1: 2$

Answer: A

- View Text Solution

28. Let π be the plane passing through the points $\hat{i}, \hat{j}, \hat{i}+\hat{j}+\hat{k}$ and L be the line passing through the point $\hat{i}+2 \hat{j}+3 \hat{k}$ and parallel to the vector $\hat{i}-\hat{j}+\hat{k}$. If $P(\alpha, \beta, \gamma)$ is the point of intersection of the plane π and line L, then $\sqrt{\left(\alpha^{2}+\beta^{2}\right) \gamma^{2}}=$
A. 0
B. 1
C. 6
D. $\sqrt{14}$

- View Text Solution

29. If $a=\hat{i}-\hat{j}-\hat{k}, b=2 \hat{i}-3 \hat{j}+\hat{k}$ and p_{1}, p_{2} are the orthogonal projection vectors of a on b and b on a respectively, then $\left(p_{1}+p_{2}\right) \cdot\left(p_{1}-p_{2}\right)=$
A. $-\frac{46}{21}$
B. $\frac{25}{7}$
C. $\frac{44}{7}$
D. $-\frac{88}{21}$

Answer: D

30. Let a, b, c be three non-coplanar vectors and $a^{\prime}=\frac{b \times c}{[a b c]}, b^{\prime}=\frac{c \times a}{[a b c]}, c^{\prime}=\frac{a \times b}{[a b c]}$. The length of the altitude of the parallelopiped formed by a $a^{\prime}, b^{\prime}, c^{\prime}$ as coterminous edges, with respect to the base having a^{\prime} and c^{\prime} as its adjacent sides is
A. $|a|$
B. $\frac{1}{|b|}$
C. $|c|$
D. $\frac{1}{|a \times c|}$

Answer: B

- View Text Solution

31. Let a, b, c be three non-coplanar vectors. Let $S_{i}(i=1,2,3,4,5,6)$ denonte the six scalar triple products formed by all possible permutations of a, b, c. If $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$ are randomly chosen distinct numbers from 1 to 6 and if $x=\frac{S_{i}}{S_{j}}+\frac{S_{k}}{S_{l}}, y=\frac{S_{i}}{S_{j}}-\frac{S_{k}}{S_{l}}$, then $x^{2}+y^{2}=$
A. 1
B. 4
C. 8
D. 2

Answer: B

- View Text Solution

32.

$a=\hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}+3 \hat{j}-2 \hat{k}, c=2 \hat{i}+\hat{j}-\hat{k}$ and $d=\hat{i}+\hat{j}+\hat{k}$, then the volume (in cubic units) of the tetrahedron having
$(a \times b) \times c, b, d$ as its coterminuous edges is
A. $\frac{15}{2}$
B. 90
C. $\frac{21}{2}$
D. $\frac{66}{5}$

Answer: C

D View Text Solution

33. The mean deviation of the data $3,5,11,13,17,19,23,29$ about its arithmetic mean is
A. A. 8.5
B. B. 8
C. C. 7.2
D. D. 7

Answer: D

D Watch Video Solution

34. If the weights of 10 persons (in kgs) are observed as : 45, 49, 55, 50, $41,44,60,58,53,55$, then the variance of their weights is
A. A 51
B. B 42.8
C. C 39.4
D. D 35.6

Answer: D

- Watch Video Solution

35. If two dice are rolled at a time, then the probability of getting an odd number on the first die or a total of 7 on both dice is
A. $\frac{5}{9}$
B. $\frac{2}{3}$
C. $\frac{1}{12}$
D. $\frac{7}{12}$
36. If A and B are two events of a random experiment such that $P(\bar{A})=0.3, P(B)=0.4$ and $P(A \cap \bar{B})=0.5, \quad$ then $P(A \cup B)+P($
A. 0.95
B. 1.15
C. 1.25
D. 0.25

Answer: B

- Watch Video Solution

37. A speaks truth in 4 out of 5 times. A die is tossed. If A reports that there is 4 on the die, then the probability that there was 4 on the die, is
A. $\frac{2}{3}$
B. $\frac{4}{9}$
C. $\frac{1}{3}$
D. $\frac{2}{9}$

Answer: B

- Watch Video Solution

38. Let $\mathrm{S}=\{1,2,3, \ldots ., 50\}$ and A_{k} be the set of multiples of k in S for $k \in N$. IF x_{k} is a number chosen from A_{k}, then match the items of List-I with the items of List-II.

A.	$P\left(x_{3}<30\right)$	I.
B.	$P\left(15<x_{4} \leq 36\right)$	II.
$\frac{2}{3}$		
C.	$P\left(x_{7}>35\right)$	III. $\frac{2}{7}$
D.	$P\left(x_{11}>11\right)$	IV. $\frac{1}{4}$
		V. $\frac{3}{4}$
	VI. $\frac{9}{16}$	

The correct match is
A. ABCD

VI I IV V
B. A B C D

III I VI V
C. ABCD

II V I IV
D. A B C D

VI I III V

Answer: D

- View Text Solution

39. If X is a Poisson variate such that $P(X=2)=9 P(X=4)$, then the mean and variance of X are
A. $(1,2)$
B. $(1,1)$
C. $(2,1)$
D. $(2,2)$

Answer: B

40. Let P be the point $(4,1)$ and Q be its image in the line $y=x$. If Q is translated through a distance 2 units along the negative Y-axis to reach the point R, then the co-ordinates of R are
A. $(-1,2)$
B. $(1,-2)$
C. (-1, -2)
D. $(1,2)$

Answer: D

- Watch Video Solution

41. The normal form of the line $x+y+1=0$ is
A. $x \cos \left(45^{\circ}\right)+y \sin \left(135^{\circ}\right)=\frac{1}{\sqrt{2}}$
B. $x \cos \left(45^{\circ}\right)+y \sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
C. $x \cos \left(225^{\circ}\right)+y \sin \left(225^{\circ}\right)=\frac{1}{\sqrt{2}}$
D. $x \cos \left(45^{\circ}\right)+y \sin \left(45^{\circ}\right)=-\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

42. The vetices of a triangle are $\mathrm{O}(0,0), \mathrm{B}(-3,-1), \mathrm{C}(-1,-3)$. The equation of the line parallel to $B C$ and intersecting the sides $O B$ and $O C$ whose perpendicular distance from O is $1 / 2$ is
A. $x+y+\sqrt{2}=0$
B. $2 x+2 y-\sqrt{2}=0$
C. $2 x+2 y+\sqrt{2}=0$
D. $2 x-2 y+\sqrt{2}=0$

Answer: B

- Watch Video Solution

43. A variable line passing through a fixed point (α, β) intersects the coordinate axes at A and B. If O is the origin, then the locus of the centroid of the $\triangle O A B$ is
A. $\beta x+\alpha y=3 x y$
B. $\alpha x+\beta y=3 x y$
C. $\alpha x-\beta y=3 x y$
D. $\beta x-\alpha y=3 x y$

Answer: A

- Watch Video Solution

44. If A is the orthocentre of the triangle formed by $2 x^{2}-y^{2}=0, x+y-1=0$ and B is the centroid of the triangle formed by $2 x^{2}-5 x y+2 y^{2}=0,7 x-2 y-12=0$, then the distance between A and B is
A. $\sqrt{5}$
B. 1
C. 5
D. $\sqrt{2}$

Answer: A

- View Text Solution

45. The distance between the pair of lines represented by
$x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$, is
A. 1
B. 2
C. $\sqrt{2}$
D. 4

Answer: B

46. The number of integers α, for which a chord of the circle $x^{2}+y^{2}=75$ is bisected at $(8, \alpha)$ and that the slope of the chord is an integer, is
A. 10
B. 8
C. 4
D. 3

Answer: B

- View Text Solution

47. If the line $x-6 y-12=0$ meets the circle $S \equiv x^{2}+y^{2}-4 x+8 y+6=0$ at A and B , then the point of intersection of the tangents at A and B to $\mathrm{S}=0$ is
A. $(1,2)$
B. $(2,1)$
C. $(-1,2)$
D. $(2,-1)$

Answer: A

- View Text Solution

48. A circle of radius 5 units passes through $A(-5,0)$ and $B(5,0)$. If $P(5 \cos \alpha, 5(\sin \alpha), Q(5 \cos \beta, 5 \sin \beta)$ are two points on this circle such that $\alpha-\beta=\frac{\pi}{2}$, then the locus of the point of intersection of the line $A P$ and $B Q$ is
A. $x^{2}+y^{2}-10 x-25=0$
B. $x^{2}+y^{2}+10 x-25=0$
C. $x^{2}+y^{2}+10 y-25=0$
D. $x^{2}+y^{2}-10 y-25=0$

Answer: D

D View Text Solution

49. The condition that the circles which passes through the points
$(0, a),(0,-a)$ and touch the line $y=m x+c$ will cut orthogonally is
A. $a^{2}+m^{2}$
B. $a^{2}(1+m)^{2}$
C. $a^{2}\left(1+m^{2}\right)$
D. $a^{2}\left(1+2 m^{2}\right)$

Answer: B

- Watch Video Solution

50. For the system of circles given by $\left(x^{2}+y^{2}+2 g x\right)+\lambda\left(x^{2}+y^{2}+2 f y+l\right)=0, \quad$ where $g \neq 0, f \neq 0$ and
is a parameter, if the line joining the points circles of the system subtends a right angle at the origin, then $\frac{k}{f^{2}=}$
A. -1
B. 1
C. 2
D. $\frac{1}{2}$

Answer: C

- View Text Solution

51. For the parabola $y^{2}+2 x+2 y-3=0$, match the items in List-I with those from List-II.

List I		List II
A. Vertex	I.	$2 x-5=0$
B. Focus	II.	$\left(\frac{3}{2},-1\right)$
C. Equation of the Directrix	III.	$x-2=0$
D. Equation of the Axis	IV.	$y+1=0$
	V.	$(2,-1)$
	VI.	$\left(2, \frac{3}{2}\right)$

The correct match is
A. ABCD

V VI I III
B. A B C D

V II IIV
C. A B C D

VI V IV I
D. ABCD

Answer: B

- Watch Video Solution

52. The area (in sq units) of the triangle formed by the normal to the parabola $y^{2}=16 x$ whose slope is $\frac{1}{2}$ with the co-ordinates axes is
A. $\frac{9}{4}$
B. $\frac{27}{4}$
C. $\frac{54}{4}$
D. $\frac{81}{4}$

Answer: D

- View Text Solution

53. If the major axis of an ellipse lies on the Y-axis, its minor axis lies on the X -axis and the length of its latusrectum is equal to $\frac{2}{3}$ of its minor
axis, then the eccentricity of that ellipse is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{5}}{3}$

Answer: D

- Watch Video Solution

54. If $y=x+c$ is a normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1, \quad$ then $c^{2}=$
A. A $\frac{128}{17}$
B. B $\frac{17}{128}$
C. C 34
D. D 225
55. The area (in sq units) of the quadrilateral formed by the four common tangents drawn to the two hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1(a>b)$ is
A. $a^{2}-b^{2}$
B. $2\left(a^{2}-b^{2}\right)$
C. $\frac{a^{2}-b^{2}}{\sqrt{2}}$
D. $\frac{a^{2}-b^{2}}{2}$

Answer: B

- View Text Solution

56. The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $(1,-2,-2)$ and $(0,2,1)$ are
A. A $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
в. В $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
C. C $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
D. D $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$

Answer: C

- Watch Video Solution

57. The number of lines passing through $(0,0,0)$ and making an angle of 45° with each of the three co-ordinate axes is
A. 0
B. 2
C. 4
D. 8
58. The equation of the plane which passes through the point $(2,5,-8)$ and perpendicular to each of the planes $2 x-3 y+4 z+1=0$ and $4 x+y-2 z+6=0$ is
A. $x+10 y+7 z+4=0$
B. $x+2 y+2 z+4=0$
C. $3 x+2 y+2 z=0$
D. $x+10 y+7 z-4=0$

Answer: A

D View Text Solution

59. $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2}-\cos x}=$
A. 0
B. 1
C. 2
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

60. The integer ' n ' is for which $L t_{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non zero numberis
A. 4
B. 3
C. 2
D. 1

Answer: B

61. If $f(x)=\int_{-1}^{x}|t| d t, x \geq 1$, then
A. f is continuous at $\mathrm{x}=0$ but f^{\prime} is not continuous
B. both f and f^{\prime} are continuous for all $x>-1$
C. f is continuous for $x>-1$ but f^{\prime} is not continuous
D. f and f^{\prime} are differentiable at $\mathrm{x}=0$

Answer: A

- View Text Solution

62. If $x=\sinh ^{-1}\left[\log (1+\sqrt{y}]\right.$, then $\frac{d y}{d x}=$
A. $2(y+\sqrt{y}) \sinh x$
B. $2(y+\sqrt{y}) \sqrt{1-(\log (1+\sqrt{y}))^{2}}$
C. $2(y+\sqrt{y})(\cosh x$
D. $2(y+\sqrt{y}) \log (1+\sqrt{y})$

Answer: C

- View Text Solution

63. If $f(x)=\frac{(7 x+1) \sin x}{e^{x} \log x}$ and $f^{\prime}(x)=f(x) g(x)$, then $g^{\prime}(x)=$
A. $\frac{1}{x^{2} \log x}+\frac{1}{(x \log x)^{2}}-\operatorname{cosec}^{2} x-\frac{49}{(7 x+1)^{2}}$
B. $\frac{1}{x^{2} \log x}+\frac{1}{\log x}-\cos e c^{2} x-\frac{49}{(7 x+1)^{2}}$
C. $\frac{1}{(x \log x)^{2}}+\frac{1}{\log x}-\operatorname{cosec} 2-\frac{49}{(7 x+1)^{2}}$
D. $\frac{1}{x^{\square}}\left(x^{2} \log x\right) x+\frac{1}{(x \log x)^{2}}+\operatorname{cosec} x+\frac{49}{(7 x+1)^{2}}$

Answer: A

- View Text Solution

64. If $f(x)=\left|\begin{array}{lll}\cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|$ then $\int_{0}^{\pi / 2} f(x) d x=$
A. $\cos 3 x$
B. $\cos (\pi+3 x)$
C. $\sin 3 x$
D. $\sin (\pi+3 x)$

Answer: B

- Watch Video Solution

65. The angle between the curves $y^{2}=8(x+4)$ and $y^{2}=24(4-x)$ is
A. $\tan ^{-1}\left(\frac{1}{6}\right)$
B. $\tan ^{-1}(3)$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

66. The function $f(x)=x^{1 / x}$ for $x>0$, is
A. increasing in $(1, \infty)$
B. decrea $\sin g \in\left(1\right.$, infty) ${ }^{\text { }}$
C. increasing in $(1, \theta)$ and decreasing in (θ, ∞)
D. decreasing in $(1, \theta)$ and increasing in (θ, ∞)

Answer: C

- View Text Solution

67. Let $f:\left[0, \frac{1}{2}\right] \rightarrow R$ be given by $f(x)=x(x-1)(x-2)$. The value 'c', when Lagrange's mean-value theorem is applied for $f(x)$, is
A. $\frac{\sqrt{21}}{6}$
B. $\frac{1}{6}$
C. $1-\frac{\sqrt{21}}{6}$
D. $1 \pm \frac{\sqrt{21}}{6}$

Answer: D

- View Text Solution

68. If a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ having slope $\frac{1}{3}$ is a normal to the circle $x^{2}+y^{2}+2 x+2 y+1=0$, then the maximum value of $a b$ is
A. $\frac{2}{3}$
B. 9
C. $\frac{4}{9}$
D. $\frac{1}{3}$

Answer: A

- View Text Solution

69. $\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x+2 \sin ^{4} x} \mathrm{dx}=$
A. $-\frac{1}{2} \sin 2 x+c$
B. $-\sin 2 x+c$
C. $\frac{1}{2} \sin 2 x+c$
D. $\sin 2 x+c$

Answer: A

Watch Video Solution

70. $\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x=\frac{x^{p}}{q\left(x^{5}+x^{3}+1\right)^{r}}+c$, then $p-q-r=$
A. $\frac{x^{8}}{)}\left(1+x^{3}+x^{5}\right)^{2}+c$
B. $\frac{x^{10}}{\left(1+x^{3}+x^{5}\right)^{2}}+c$
C. $\frac{x^{10}}{2\left(1+x^{3}+x^{5}\right)^{2}}$
D. $\frac{x^{8}}{2\left(1+x^{3}+x^{5}\right)^{2}}+c$

Answer: C

Watch Video Solution

71. $\int \frac{x^{2}+\cos ^{2} x}{\left(1+x^{2}\right) \sin ^{2} x} d x=$
A. $\cot x+\tan ^{-1} x+c$
B. $\cot x-\tan ^{-1} x+c$
C. $-\cot x+\tan ^{-1} x+c$
D. $-\cot x-\tan ^{-1} x+c$

Answer: D

$I_{n}=\int \sin ^{n} x d x$, for $n=1,2,3 \ldots$ then $8 I_{8}+7\left(I_{7}-I_{6}\right)-6 I_{5}=$
A. $-\sin ^{6} x \cos x(1+\sin x)+c$
B. $\sin ^{8} x \cos x+\sin ^{5} x \cos x+c$
C. $-\sin ^{7} x \cos x(1-\sin x)+c$
D. $-\cos ^{7} x \sin x(1+\cos x)+c$

Answer: A

- View Text Solution

73. $\lim _{n \rightarrow \infty} \frac{1+32+243+\ldots+n^{5}}{n^{6}}=$
A. $\frac{1}{5}$
B. $\frac{1}{11}$
C. $\frac{1}{6}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

74. Let $a>1$ and $b>1$. If $\mathrm{f}(\mathrm{t})$ is a periodic function of period T and $\int_{0}^{\infty} a^{-b i} f(t) d t=k \int_{0}^{T} a^{-b t} f(t) d t$ then $\mathrm{k}=$
A. $\frac{a^{b T}}{T+1}$
B. $\frac{a^{-b T}}{a^{-b T}+1}$
C. $\frac{a^{b T}}{b^{a T}+1}$
D. $\frac{a^{b T}}{a^{b T}-1}$

Answer: D

75. The area (in sq units) enclosed by the curves $y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is
A. $4+2 \sqrt{2}$
B. $4-2 \sqrt{2}$
C. $2+2 \sqrt{3}$
D. $6-3 \sqrt{2}$

Answer: B

- View Text Solution

76. The degree and order respectively of the differential equation of the family of the curves respresented by $y=\sqrt{c(x+\sqrt{c})}$ are (Here, C is a parameter)
A. A 1,3
B. B 2, 3
C. C 3, 1
D. D 2,2

Answer: C

- Watch Video Solution

77. The solution of the differential equation $\frac{x+y-1}{x+y-2} \frac{d y}{d x}=\frac{x+y+1}{x+y+2}$, given that $\mathrm{y}=1$ when $\mathrm{x}=1$, is
A. $2(y-x)+\log \left|\frac{(x+y)^{2}-2}{2}\right|=0$
B. $\log \left|\frac{(x+y)^{2}-2}{2}\right|=(x-y)^{2}$
C. $\log \left|\frac{(x-y)^{2}+2}{2}\right|+2(y-x)=0$
D. $(x-y)+\log \left|\frac{(x+y)^{2}-2}{2}\right|=0$

Answer: A

- View Text Solution

\square

