©'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TS EAMCET PREVIOUS YEAR PAPERS

AP EAMCET ENGINEERING ENTRANCE EXAM QUESTION PAPER 2017 (SOLVED)

Physics

1. A monoatomic ideal gas through a cyclic process as shown in the figure. The efficiency of this process is

A. 19.04%
B. 40.04%
C. 50.00%
D. 10.00%

Answer:

- Watch Video Solution

2. Two situations are shown in fig. (a) and (b)

In each case $m_{1}=3 \mathrm{~kg}$ and $m_{2}=4 k g$. If a_{1}, a_{2} are the respective accelerations of the blocks in these situations, then the values of a_{1} and a_{2} are respectively $\left[g=10 \mathrm{~ms}^{-2}\right]$

A. $\frac{20}{7} m s^{-2}, \frac{10}{7} m s^{-2}$
B. $\frac{10}{7} m s^{-2}, \frac{25}{7} m s^{-2}$
C. $\frac{40}{7} m s^{-2}, \frac{10}{7} m s^{-2}$
D. $\frac{30}{7} m s^{-2}, \frac{5}{7} m s^{-2}$

D Watch Video Solution

3. Three uniform thin aluminum rods each of length 2 m form an equilateral triangle $P Q R$ as shown in the figure. The mid point of the $\operatorname{rod} P Q$ is at the origin of the coordinate system. If the temperature of the system of rods increases by $50^{\circ} \mathrm{C}$ the increase in y-coordinate of the ceentre of mass of hie system of the rods is \qquad mm.
(Coefficient of volume expansion of aluminium =
$12 \sqrt{3} \times 10^{-6} K^{-1}$)

A. 0.05
B. 0.8
C. 0.1
D. 0.2

Answer: D
4. An infinitely long thin straight wire has uniform linear charge density of $\frac{1}{3} C m^{-1}$. Then the magnitude of the force acting on a charge $3 \mu C$ situated at a point of 18 cm away from the wire is $\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N m^{2} C^{-2}\right)$
A. $2 \times 10^{5} N$
B. $10^{5} N$
C. $\frac{1}{3} \times 10^{6} N$
D. $3 \times 10^{11} N$

Answer: B

- Watch Video Solution

5. An electrostatic paint sprayer has a metal sphere of diameter 18 cm and at a potential of 25 kV . The charge on the metal sphere
A. $0.25 \mu C$
B. $2.5 \mu C$
C. $0.5 \mu C$
D. $25 \mu C$

Answer: A

- Watch Video Solution

6. A body is projected from the top of a tower with a velocity $\bar{u}=3 \hat{i}+4 \hat{j}+5 \hat{k} m s^{-1}$, where \hat{i}, \hat{j} and \hat{k} are unit vectors along east, north and vertically upwards respectively. If the height of the tower is 0 m , horizontal range of the body on the ground is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 15 m
B. 25 m
C. 9 m
D. 12 m

Answer: A

D View Text Solution

7. Two long parallel conducting wires carrying currents are seperated by a distance ' x ' . Work done per unit length in changing the distance between the wires is proportional to
A. $\frac{1}{\log _{e} x}$
B. $\frac{1}{x}$
C. $\log _{e} x$
D. x

Answer: C

- Watch Video Solution

8. A Zener diode voltage regulator operated in the range 120 V 180 V produces a constant supply of 110 v and 250 aM to the load . If the maximum current is equally shared between the load and the Zener diode, then the values of load resistance $\left(R_{L}\right)$ and series resistance $\left(R_{S}\right)$ are respectively
A. $R_{L}=280 \Omega, R_{S}=70 \Omega$
B. $R_{L}=440 \Omega, R_{S}=140 \Omega$
C. $R_{L}=70 \Omega, R_{S}=280 \Omega$
D. $R_{L}=440 \Omega, R_{S}=1400 \Omega$

- Watch Video Solution

9. Equation of a projectile is given by $y=P x-Q x^{2}$, where P and Q are constants. The ratio of maximum height to the range of the projectile is
A. $\frac{Q^{2}}{2 P}$
B. $\frac{P^{2}}{Q}$
C. 4 P
D. $\frac{P}{4}$

Answer: D

10. The transverse displacement of a string of a linear dinsity $0.01 \mathrm{kgm}^{-1}$, clamped at its ends is given by $Y_{x, t}=0.03 \sin \left(\frac{2 \pi x}{3}\right) \cos (60 \pi t)$, where x and y arein metres and time t is in seconds. Tension in the string is
A. 9 N
B. 36 N
C. 162 N
D. 81 N

Answer: D

- Watch Video Solution

11. A girl of mass 50 kg swinging on a cardle. If she moves with a velocity of $2 m s^{-1}$ upwards in a direction making an angle 60°
with the vertical, then the power generated is $\left(g=9.8 m s^{-2}\right)$
A. 245 W
B. $490 \sqrt{2} W$
C. $490 \sqrt{3} W$
D. 980 W

Answer: C

- Watch Video Solution

12. Two point surces S_{1} and S_{2} are 24 cm apart. Where should a convex lens of focal length 9 cm be placed them, so that the images of both sources are formed at the same place ?
A. 8 cm
B. 12 cm
C. 6 cm
D. 10 cm

Answer: B

- Watch Video Solution

13. Assertion (A) It is more difficult to push a magnet into a coil with more number of turns.

Reasong (R) The emfincuced in a coil opposes the motion of a magnet when it is moved towards the coil .
A. A is false , R is ture
B. Both A and R are true. R is correct explanation of A
C. A is ture, R is false
D. Both A and R are true. R is not correct explanation of A

- Watch Video Solution

14. A wall is made of equally thick layers P and Q of different materials. Thermal conductivity of Q is half of that of the P. In the steady state, If the temperature difference across the wall is
$24^{\circ} C$, then the temperature difference across the layer ' P ' is
A. $12^{\circ} C$
B. $16^{\circ} \mathrm{C}$
C. $4^{\circ} \mathrm{C}$
D. $8^{\circ} \mathrm{C}$

Answer: D

15. In the determination of the internal resistance of a cell with a potentiometer, the error in the measurement of the balancing length is $\pm 1 \mathrm{~mm}$. When the cell alone is connected in the circuit, the balancing length is obtained at 60 cm and when the cell is shunted with a resistance of $10 \Omega \pm 2 \%$, the balancing length is ovtained at 50 cm . The error int he determination of The internal resistance of the cell is \qquad
A. 2.4%
B. 4.2%
C. 1.8%
D. 5.6%

Answer: B
16. The half life of a stream of radioactive particles moving along as straight path with a constant kinetic energy of 4 eV is 1 minute. The percentage of particles which decay before travelling a distance of 3.6 km is (Mass of the radioactive particles $=3.2 \times 10^{-21} \mathrm{~kg}$ and charge of the electron $\left.=1.6 \times 10^{-19} C\right)$.
A. 87.5
B. 175
C. 37.5
D. 75

Answer: A

17. The process of recovering the modulating signal from the modulated carrier wave is called
A. amplification
B. detection
C. rectification
D. noise

Answer: B

- Watch Video Solution

18. Two bodies of masses 4 m and 9 m are seperated by distance ' r '
. The gravitational potential at a point on this line joining them where the gravitational field becomes zero is

$$
\text { A. } \frac{-25 G m}{r}
$$

B. $\frac{-4 G m}{r}$
C. $\frac{-9 G m}{r}$
D. $\frac{-13 G m}{r}$

Answer: A

- Watch Video Solution

19. If the charge on the capacitor is 1 mC in the given circuit, then $\frac{R_{1} R_{2}}{R_{3}}=\ldots \ldots \Omega$.

A. 6
B. 0. 4
C. 0.6
D. 10

Answer: C
20. The amplitude of electric field in an electromagnetic wave is $60 \mathrm{Vm}^{-1}$. Then the amplitude of magnetic field is
A. $2 \times 10^{-7} T$
B. $2 \times 10^{7} T$
C. $6 \times 10^{7} T$
D. $6 \times 10^{-7} T$

Answer: A

- Watch Video Solution

21. A bird is tossing (flying to and pro) between two cars moving towards each other on a straight road. One car has speed of
$54 \mathrm{kmh}^{-1}$ while the other has the speed of $36 \mathrm{kmh}^{-1}$. The bird starts moving from first can towards the other and is moving with the speed of $36 \mathrm{kmh}^{-1}$ where the two cars were separated by 36 km . The total distance covered by the bird before the cars meet each other is
A. 14400 m
B. 1440 m
C. 244 m
D. 24400 m

Answer: A

- Watch Video Solution

22. If the average translational kinetic energy of molecule in a gas is equal to the kinetic energy of an electron acceleration
from rest through 10 V , then the temperature of the gas molecule is
(Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$)
A. $7.73 \times 10^{23} K$
B. $730 K$
C. 737 K
D. $77.3 \times 10^{3} \mathrm{~K}$

Answer: D

- Watch Video Solution

23. A closed organ pipe of length 'L' and an open organ pipe contain gases of densities $\rho(1)$ and ρ_{2} respectively . The compressibility of gases are equal in both the pipes. If the
frequencies of their first overtones are same then, the length of the open organ pipe is
A. $\frac{4 L}{3} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
B. $\frac{4 L}{3} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
C. $\frac{4 L}{3}$
D. $\frac{L}{3}$

Answer: B

- Watch Video Solution

24. One mole of a gas expands such that its volume ' v ' changes with absolute temperature ' T ' in accordance with the ralation $V=H T^{2}$ where ' K ' is a constant. If the temperature of the gas changes by $60^{\circ} C$, then work done by the gas is (R is universal gas constant).
A. KRIn 60
B. Rin 60
C. 40 KR
D. 120 R

Answer: D

- Watch Video Solution

25. When a coil is connected to AC supply of frequency 50 Hz , current of 4 A flows in it and it consumes 240 w power. If the potential difference across the coil is 100 v . Then the inductance value of the coil is
A. $L=(5 \pi) H$
B. $L=\frac{\pi}{5} H$
C. $L=\frac{1}{5 \pi} H$
D. $L=\frac{1}{25 \pi} H$

Answer: C

- Watch Video Solution

26. The uniform electric field intensity between the two plates of a parallel plate capacitor is $1 \times 10^{3} \mathrm{Vm}^{-1}$ acting vertically upwards as shown in the figure.

The plates are sufficiently long and have separation 2 cm . A particle of negative charge $1 \mu C$ and mass 2 g is projected at an angle 45° with the electric field from the lower plate with a velocity 'u'. The maximum velocity acquired by the particle, if it
is not hit the upper plate is

A. $2 m s^{-1}$
B. $1 m s^{-1}$
C. $0.1 m s^{-1}$
D. $0.2 m s^{-1}$

Answer: D

27. Both an electron and a photon have same de-Broglie wavelength of $1.2 . \AA$. The ratio of their energies is nearly
A. 1:100
B. 1: 10
C. 1: 1000
D. 1:1

Answer: A

D Watch Video Solution

28. When the terminals of a cells are connected by a wire of resistance 4Ω, the potential difference across the cell is 1.6 V . If a wire of the same resistance is connected in parallel with the
first, the potential difference becomes 1.33 v . The emf and internal resistance of the cell are respectively
А. $1 V, 1 \Omega$
B. $2 V, 1 \Omega$
C. $1 V, 2 \Omega$
D. $2 V, 2 \Omega$

Answer: B

- Watch Video Solution

29. Two concentric coils of 20 turns each are placed in same plane. Their radii are 30 cm and 60 cma nd carry 0.4 A and 0.6 currents respectively in opposite directions. The magnetic induction at the centre in tesla is
A. $\frac{8}{3} \mu_{0}$
B. $\frac{2}{3} \mu_{0}$
C. $\frac{5}{3} \mu_{0}$
D. $\frac{10}{3} \mu_{0}$

Answer: D

- Watch Video Solution

30. Time period of a simple pendulum of length 'L' is T_{1}. Time period of a uniform rod of same length 'L' suspended from one end and oscillating in a vertical plane is T_{2}. Amplitude of oscillation is small in both the cases. Them $\frac{T_{1}}{T_{2}}$ is
A. $\sqrt{\frac{2}{3}}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{4}{3}}$
D. 1

Answer: B

(Watch Video Solution

31. In steady state,a capacitor of capacitance $2 \mu F$ is charged to $4 \mu C$, as shown in figure. If the internal resistance of the cell is
0.5Ω, then the emf of the cell is

A. 4 V
B. 5 V
C. 2.5 V
D. 2 V

Answer: C

- Watch Video Solution

32. A uniform thin rod of 120 cm length and 1600 g mass is bent as shown in the figure. The moment of inertia of the bent rod about and axis passing through the point ' O ' and perpendicular
to the plane of the paper is $\ldots \ldots k g-m^{2}$.

A. 0.084
B. 0.360
C. 0.018
D. 0.120

Answer: A

- Watch Video Solution

33. Two block of masses ' M ' and ' m ' are placed on one another on a smoothe horizontal surface as shown in the figure.

The force ' F ' is acting on the mass ' M ' horizontally during time intervel ' t ' Assuming no relative sliding between the blocks, the work done by friction on the blocks is

A. $\frac{F t}{2(M+m)}$
B. $\frac{M+m}{m t^{2}}$
C. $\frac{m F^{2} t^{2}}{2(M+m)^{2}}$
D. $\frac{F^{2} t^{2}}{(M+m)}$

Answer: C

(-) Watch Video Solution

34. A solid sphere is projected up along an inclined plane of inclination 30° with the horizontal with a speed of $4 \mathrm{~ms}^{-1}$. If it rolls without slipping , the maximum distance traversed by it is .
$\ldots \ldots\left(g=10 m s^{-2}\right)$
A. $2.24 m$
B. 112 m
C. 1.12 m
D. 22.4 m

Answer: A
35. Fully filled open water tank has two holes on either sides of its walls. One is a square hole of side xcm at a depth of 2 m from the top, and the other hole is equilateral triangle of side 4 cm at a depth of 6 m from the top. If the rate of flow of water is same from both the holes, then ' x ' is
A. 1.73 cm
B. 12 cm
C. 6.92 cm
D. 3.46 cm

Answer: A

36. The radius of orbit of an electron and the speed of electron in the ground state of hydrogen atom are $5.5 \times 10^{-11} \mathrm{~m}$ and $4 \times 10^{6} \mathrm{~ms}^{-1}$ respectivley. Then, the orbital period of this electron in the first excited state will be
A. $6.908 \times 10^{-6} s$
B. $9.608 \times 10^{-16} s$
C. $7.806 \times 10^{-16} s$
D. $8.9068 \times 10^{-16} s$

Answer: A

- Watch Video Solution

37. Two slits separated by 0.5 mm are illuminated by light of wavelength 500 nm . The screen is at a distance of 120 cm from the slits. The phase difference between the interfering waves at a point 3 mm on the screen from the central bright fringe is
A. 5π
B. π
C. 3π
D. 7π

Answer: A

- Watch Video Solution

38. The ratios of length areas of cross-section and Young's modulii of steel of that of brass wires shown in the figure are a,b
and c respectively. The ratio of increase in the lengths of brass
of that of steel wires is [Assume that the masses of steel and brass wires are negligible]

A. $\frac{4 a}{7 b c}$
B. $\frac{7 b c}{4 a}$
C. $\frac{4 b c}{7 a}$
D. $\frac{7 a}{4 b c}$

Answer: C

- Watch Video Solution

39. A person of 60 kg mass is in a lift which is coming down such that the man exerts a force of 150 N on the floor of the lift. Then the accelaration of the lift is $\left(g=10 m s^{-2}\right)$
A. $7.7 m s^{-2}$
B. $40.0 \mathrm{~ms}^{-2}$
C. $22.5 m s^{-2}$
D. $15.0 m s^{-2}$

Answer: A

40. Match the following

List - I
(a) High retentivity
(b) High resistivity
(c) Low coercivity
(d) Negative susceptibility

List-II

(i) Telephone diaphram
(ii) Diamagnet
(iii) To decrease eddy current losses
(iv) Permanent magnet
A. a - (i), b- (iv), c-(iii), d-(ii)
B. $\mathrm{a}-$ (iv), b -(iii), c -(i), d -(ii)
C. a-(i), b-(ii), c-(iii), d-(iv)
D. a-(iv, b-(ii), c-(i), d-(iii)

Answer: B

D Watch Video Solution

