© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TS EAMCET PREVIOUS YEAR

 PAPERSAP EAMCET SOLVED PAPER 2018 (23-
04-2019,SHIFT -1)

1. Assertion (A) Energy per unit volume and angular momentum can be added dimensionally. Reason (R) Physical quantities having same dimension can be added or subtracted.
A. Both (A) and (R) are true and (R) is the correct explanation of (A) B. Both (A) and (R) are true but (R) is not
the correct explanation of (A)
C. (A) is true but (R) is false
D. (A) is false but (R) is true.

Answer: D

D Watch Video Solution

2. A body is projected vertically upwards with a velocity u from the top of a tower. Time taken by it to reach the ground is n times, then the time taken by it to reach the highest point in its path. Height of the tower is
A. $\frac{\nu^{2}(n-1)}{2 g}$
B. $\frac{\nu^{2}(n-2)}{g}$
C. $\frac{\nu^{2}(n-2)}{2 g}$
D. $\frac{u^{2}}{2 g}(n+1)$

Answer: C

D Watch Video Solution

3. A body is projected horizontally from the top of a tower of height 180 m with a velocity of $20 m s^{-2}$. If acceleration due to gravity is

$10 \mathrm{~ms}^{-1}$, then match the following.

$10 \mathrm{~ms}^{-2}$, then match the following.

List I	List II
(A) Velocity of the body after 1 second (in ms ')	(I) 5
(B) Horizontal displacement of the body after 1 second (in metres)	(II) 20
(C) Vertical displacement of the body	(III) 10
\quad after 1 second (in metres)	(IV) 22.4
(D) Vertical velocity of the body after 1 second (in ms^{-1})	

$\begin{array}{llll}A & B & C & D\end{array}$

A.

IV II III I
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$I \quad$ II III IV
c. $A \quad B \quad C \quad D$
C. $\begin{array}{lllll}I V & I I & I & I I I\end{array}$
$A \quad B \quad C \quad D$
D.
$I I \quad I V \quad I \quad I I I$

Answer: C

4. Two towers A and B, each of height 20 m are situated a distance 200 m apart. A body thrown horizontally from the top of the tower A with a velocity $20 \mathrm{~ms}^{-1}$ towards the tower B hits the ground at point P and another body thrown horizontally from the top of tower B with a velocity $30 \mathrm{~ms}^{-1}$ towards the tower A hits the ground at point Q . if a car starting from rest from P reaches Q in 10 seconds, then the acceleration of the car is (acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. $3 m s^{-2}$

$$
\text { D. } 4 m s^{-2}
$$

Answer: B

D Watch Video Solution

5. A particle of mass 4 m explodes into three pieces of masses, m, m and 2 m . The equal masses move along X-axis and Y-axis with
velocities $4 m s^{-1}$ and $6 m s^{-1}$ respectively. The magnitude of the velocity of the heavier mass is
A. $\sqrt{17} m s^{-1}$
B. $2 \sqrt{13} m s^{-1}$
C. $\sqrt{13} m s^{-1}$
D. $\frac{\sqrt{13}}{2} m s^{-1}$

Answer: C

D Watch Video Solution
6. As shown in the figure, two particle each of mass m tied at the ends of a light string of length $2 a$ are kept on a frictionless horizontal surface. When the mid-point (P) of the string is pulled vertically upwards with a small but constant force F, the particles move towards each other on the surface. Magnitude of acceleration of each particle, when the
separation between them becomes $2 x$ is

A. $\frac{F}{2 m} \frac{a}{\sqrt{a^{2}-x^{2}}}$
B. $\frac{F}{2 m} \frac{x}{\sqrt{a^{2}-x^{2}}}$
C. $\frac{F}{2 m} \frac{x}{a}$
D. $\frac{F}{2 m} \frac{\sqrt{a^{2}-x^{2}}}{x}$

Answer: B
7. A particle is released from a height H . At a certain height, its kinetic energy is half of its potential energy with reference to the surface of the earth. Height and speed of the particle at that instant are respectively.

$$
\begin{aligned}
& \text { A. } \frac{H}{3}, \sqrt{\frac{2 g H}{3}} \\
& \text { B. } \frac{H}{3}, 2 \sqrt{\frac{g H}{3}} \\
& \text { C. } \frac{2 H}{3} \cdot \sqrt{2 g H} \\
& \text { D. } \frac{2 H}{3} \cdot \sqrt{\frac{2 g H}{3}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

8. A bullet of mass 10 g plerces through a plane A of mass 500 g and then gets embedded into a second plate B of mass 1.49 kg as shown in the figure. Initially, the two plates A and B are at rest and move with same velocity after collision. The percentage loss in the initial kinetic energy of the bullet, when it is between the plates A and B is _____(Neglect any loss of material of the
plates during the collision)

A. 25
B. 56.25
C. 43.75
D. 75

Answer: C

D Watch Video Solution

9. The moment of inertia of a body about a given axis is $12 \mathrm{~kg} . \mathrm{m}^{2}$. Initially, the body is at rest. In order to produce a rotational kinetic energy of 15000, an angular acceleration of $10 \mathrm{rads}^{-2}$ must be applied about that axis for a duration of
A. 2 s
B. 4 s
C. 10s
D. 5 s

Answer: D

D Watch Video Solution

10. A light rope is wound around a hollow cylinder of mass 4 kg and radius 40 cm . If the rope is pulled with a force of 40 N , its angular acceleration is
A. $0.40 \mathrm{rads}^{-2}$

B. $0.25 \mathrm{rads}^{-2}$

C. $25 r a d s^{-2}$
D. $40 \mathrm{rads}^{-2}$

Answer: C

D Watch Video Solution

11. In the case of a simple pendulum executing

SHM at $\mathrm{t}=0$, the bob is not at the mean position.
The graph drawn between the tension (T) in the string and time (t) is
A.
(a)
$\xrightarrow[t \longrightarrow \longrightarrow \text {-axis }]{\substack{\text { ? }}}$
B.

C.

D.

Answer: A
(Watch Video Solution
12. An artificial satellite of mass m is moving along anelliptical path around the earth. The area velocity of the satellite is proportional to
A. m
B. m^{-1}
C. m^{0}
D. $m^{1 / 2}$

Answer: C
13. A rubber cube of side 5 cm has one face fixed
while a tangential force 1800 N is applied on its opposite face. If modulus of rigidity of rubber is
$2.4 \times 10^{6} \mathrm{Nm}^{-2}$, then the lateral displacement of the strained face is \qquad
A. 3 mm
B. 5 mm
C. 15 mm
D. 1.5 mm
14. Water stands upto height h behind the dam as shown in the figure. The front view of the dam gate is also shown in the adjoining figure. Density of water is ρ and acceleration due to gravity is g. If atmospheric pressure force is also considered, then the point of application of total force acting on the dam due to water

above O is

A. $\frac{h}{r r 4 r}$
B. $\frac{h}{3}$
C. h
D. $\frac{h}{2}$

Answer: B

15. The time taken for a calorimeter containing

75 g of water at $62^{\circ} \mathrm{C}$ to cool to $58^{\circ} \mathrm{C}$ is 9 minutes. When the calorimeter contains 105 g of
water, it takes 12 minutes to cool from $62^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$. The water equivalent of the calorimeter is
A. 10 g
B. 15 g
C. 20 g
D. 30 g

Answer: B

D Watch Video Solution

16. Three rods of same dimension have thermal
conductivities $3 \mathrm{k}, 2 \mathrm{~K}$ and K . They are arranged as
shown in the figure below. Then in the steady
state the temperature of the junction P is

A. $\frac{200}{3}{ }^{\circ} C$
B. $\frac{100}{3}{ }^{\circ} C$
C. $75^{\circ} \mathrm{C}$
D. $\frac{50}{3}{ }^{\circ} C$

Answer: A

D Watch Video Solution

17. Freezing compartment of a refrigerator is at $0^{\circ} \mathrm{C}$ and room temperature is $27.3^{\circ} \mathrm{C}$. Work
done by the refrigerator to freeze 1 g of water at

$$
0^{\circ} C \text { is }\left(L_{\text {ice }}=80 \mathrm{calg}^{-1}\right)
$$

A. 336 J
B. 33.6J
C. 3.36 J
D. 40 J

Answer: B

- Watch Video Solution

18. Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially the tube is filled 75\% of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is 120 kg . If a pump delivers a volume
$500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(g=10 m s^{-2}\right)$
A. 10
B. 11
C. 21

D. 20

Answer: C

- View Text Solution

19. A diamtomic gas consisting of rigid molecules is at a temperature of $87^{\circ} \mathrm{C}$. If the moment of inertia is $2.76 \times 10^{-39} \mathrm{gcm}^{2}$, then the rms angular speed of the molecule is
(Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$)
A. $6 \times 10^{12} r a d s^{-1}$

$$
\text { B. } 3 \times 10^{12} r a d s^{-1}
$$

C. $6 \times 10^{13} \mathrm{rads}^{-1}$

$$
\text { D. } 3 \times 10^{13} \mathrm{rads}^{-1}
$$

Answer: A

D Watch Video Solution

20. If the length of a stretched string is
shortened by $\mathrm{x} \%$ and the tension is increased by
44%. Then the ratio of the final and initial
fundamental frequencies is $2: 1$, then the value of x is
A. 20
B. 30
C. 40
D. 60

Answer: C

- Watch Video Solution

21. A small source of sound vibrating at a frequency 500 Hz is rotated along a circle of radius $\frac{100}{\pi} \mathrm{~cm}$ at a constant angular speed of 5 revolutions per second. The minimum and maximum frequency of the sound observed by a listener situation in the plane of the circle is (speed of sound is $332 m s^{-1}$)
A. $338.5 \mathrm{~Hz}, 6125 \mathrm{~Hz}$
B. $485.4 \mathrm{~Hz}, 535.6 \mathrm{~Hz}$
C. $435.3 \mathrm{~Hz}, 565.6 \mathrm{~Hz}$
D. $485.4 \mathrm{~Hz}, 515.5 \mathrm{~Hz}$

Answer: D

D Watch Video Solution

22. A lens forms real and virtual images of an object, when the object is at u_{1} and u_{2} distance respectively. If the size of the virtual image is double that of the real image, then the focal length of the lens is (take, the magnification of the real image as m)
A. $\left(\frac{u_{1}+u_{2}}{2}\right) m$
B. $\left(\frac{u_{1}-u_{2}}{3}\right) 2 m$
C. $\left(\frac{u_{1}-u_{2}}{2}\right) 3 m$
D. $\left(\frac{u_{1}+u_{2}}{3}\right) 2 m$

Answer: C

D Watch Video Solution

23. Two point source S_{1} and S_{2} separated by a distanc $10 \mu m$ in phase. A circular wire of radius
$40 \mu m$ is placed around the sources as shown in figure, then (O is the centre of the circle and
$\left.O S_{2}=O S_{2}\right)$

A. point A and B are dark and points C and D
are bright
B. point A and B are bright and point C and D
are dark
C. point A and C are dark and points B and D
are bright
D. point A and C are bright and points B and

D are dark

Answer: C

- View Text Solution

24. Two equally charged metal spheres A and B repel each other with a force of $4 \times 10^{-5} N$.

Another identical uncharged sphere C is
touched to A and then placed at the mid-point of the line joining the sphere A and B. The net electric force on the sphere C is
A. $4 \times 10^{-5} N$ from C to A
B. $4 \times 10^{-5} \mathrm{~N}$ from C to B
C. $8 \times 10^{-5} \mathrm{~N}$ from C to A
D. $8 \times 10^{-5} N$ from C to B

Answer: A
25. Four positive point charges $+q$ are kept at the four corners of a square of side I. The net electric field at the mid-point of any one side of the square is (Take, $\frac{1}{4 \pi \varepsilon_{0}}=k$)
A. $\frac{4 k q}{l^{2}}$
B. $\frac{16 k q}{5 \sqrt{5} l^{2}}$
C. $\frac{8 k q}{\sqrt{5} l^{2}}$
D. $\frac{k q}{l^{2}}$

Answer: B
26. Four capacitors marked with capacitances and breakdown voltages are connected as shown in the figure. The maximum emf of the source, so that no capacitor breaks down is

A. 10.5 kV

B. 5.25 kV

C. 2.25 kV

D. 1.25 kV

Answer: C

- View Text Solution

27. A Van de Graaff generator has a spherical metal shell as an electrode which is at a potential $15 \times 10^{6} V$. If the dielectric strength of
the surrounding medium is $5 \times 10^{7} \mathrm{Vm}^{-1}$, then the diameter of the shell is
A. 30 cm
B. 15 cm
C. 60 cm
D. 120 cm

Answer: C

D Watch Video Solution
28. A DC source with internal resistance R_{0} is
connected to three identical resistors each of resistance R as shown in the figure. If the thermal power generated in the circuit is highest, then

A. $R=2 R_{0}$
B. $R=3 R_{0}$
C. $R=\frac{R_{0}}{3}$
D. $R=R_{0}$

Answer: B

D Watch Video Solution

29. In a potentiometer, a wire of length 10 m having resistance 50Ω is used. A battery of 5 V and a resistor of 450Ω are connected in series to the wire. If an unknown battery of emf E balances the potentiometer at 450 cm , then the value of E is

A. 0.225 V

B. 1.25 V
C. 2.25 V
D. 0.0225 V

Answer: A

D Watch Video Solution

30. A long straight wire carrying electric current
i is bent at its mid-point to form an angle of 45°
as shown in the figure. Magnetic field at a point
P at a distance d from the point Q of bending is

A. $\frac{\mu_{0} i}{4 \pi d}[\sqrt{2}-1]$
B. $\frac{\mu_{0} i}{2 \pi d}[\sqrt{2}-1]$
C. $\frac{\mu_{0} i}{4 \pi d}$
D. $\frac{\mu_{0} i}{2 \pi d}$

Answer: A
31. A current carrying square loop is placed near a straight infinitely long current carrying wire as shown in the figure. The torque acting on the loop is

A. $\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2} l}{a b}$
B. $\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2} l}{a(a+b)}$
C. $\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2} l(b-a)}{a b}$
D. 0

Answer: D

D Watch Video Solution

32. At a certain place the horizontal component of earth's magnetic field is $\frac{1}{\sqrt{3}}$ times the
vertical component. The angle of dip at that place is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

D Watch Video Solution
33. The energies required to set up in a cube of
side 10 cm
(i) a uniform electric field of $10^{7} \mathrm{Vm}^{-1}$ and
(ii) a uniform magnetic field of $0.25 \mathrm{Wbm}^{-2}$ are
respectively about
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}, \varepsilon_{0}=8.9 \times 10^{-12} \mathrm{Fm}^{-1}\right)$
A. $0.445 \mathrm{~J}, 25 \mathrm{~J}$
B. 4.45J, 2.5J
C. 44.5J, 25J
D. $0.44 \mathrm{~J}, 2.5 \mathrm{~J}$

Answer: A

D Watch Video Solution

34. The rms value of emf is given by
$E(8 \sin \omega t+6 \cos \omega t)$ volt is
A. $5 \sqrt{2} V$
B. $7 \sqrt{2} V$
C. 10V
D. $10 \sqrt{2} V$

Answer: A

D Watch Video Solution

35. An electromagnetic radiation has an energy
14.4 keV . To which region of the electromagnetic
spectrum it belongs?
A. infrared
B. visible
C. Ultraviolet
D. X-ray

Answer: D

D Watch Video Solution

36. An α-particle and a proton are accelerated
from rest by the same potential, thenthe ratio of their de-Broglie wavelength is
A. $2 \sqrt{2}: 1$
B. $1: 2 \sqrt{2}$
C. 1:2
D. $2: 1$

Answer: B

D Watch Video Solution

37. The difference between the radii of $n^{t h}$ and $(n+1)^{t h}$ orbits of hydrogen atoms is equal to the radius of $(n-1)^{t h}$ orbit of hydrogen. The angular momentum of the electron in the $n^{\text {th }}$ orbit is ___ (h is Planck's constant)

> A. $\frac{h}{\pi}$
> B. $\frac{2 h}{\pi}$
C. $\frac{3 h}{\pi}$
D. $\frac{4 h}{\pi}$

Answer: B

D Watch Video Solution

38. The maximum potential energy due to
electrostatic repulsion between two hydrogen
nuclei is nearly (radius of the nucleus $=1.1$ fermi)
$\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right]$
A. 0.65 MeV

B. 2.09 MeV

C. 3.31 MeV

D. 0.92 MeV

Answer: A

D Watch Video Solution

39. For the combination of logic gates shown in the figure, the equivalent logic gate is

A. AND

B. NOT

C. NAND
D. NOR

Answer: D

D Watch Video Solution
40. A TV transmitter has a range of 50 km . The height of the TV transmitter is (Radius of the earth, $R_{e}=6.4 \times 10^{6} \mathrm{~m}$)
A. 195.3 m
B. 186.5 m
C. 206m
D. 175 m

Answer: A
(D) Watch Video Solution

