©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TS EAMCET PREVIOUS YEAR

PAPERS

TS EAMCET 2018 (7 MAY SHIFT 1)

Physics

1. A tokamak fusion test reactor works on
A. bombardment of thermal neutrons with
uranium-235
B. magnetic confinement of plasma
C. electric discharge under high voltage bias

D. acceleration of charged particles in

electromagnetic fields

Answer: B

2. Dimension of the quantity $\frac{p}{\varepsilon_{0} \mu_{0}}$, where p is
the pressure, ε_{0} is electric permitivity of face
space and μ_{0} is permebility of free space, will be

$$
\begin{aligned}
& \text { A. }\left[M L T^{-4}\right] \\
& \text { B. }\left[M L^{2} T^{-2}\right] \\
& \text { C. }\left[M L^{3} T^{-3}\right] \\
& \text { D. }\left[M L^{2} T^{-4}\right]
\end{aligned}
$$

Answer: A

3. Consider a vechicle moving with a velocity $54 \mathrm{~km} / \mathrm{h}$. At a distance of 400 m , from the trafic light brakes are applied.The acceleration of the vehicle, after the application of brakes is
$-0.3 m / s^{2}$. The vehicle's position relative to
the traffic light is
A. 25 m
B. 375 m
C. 425 m

D. 30 m

Answer: A

D Watch Video Solution

4. Two trains A and B travel in two parallel rain
tracks in opposite direction with speed v_{1} and v_{2} respectively. They take 4 s to pass each other at this speed. If thte speed of train A is increased by 50% then they take 3 s to pass each other. The ratio of v_{1} / v_{2} is
A. 0.5
B. 1.5
C. 2.1
D. 2.5

Answer: C

D Watch Video Solution

5. A small ball is thrown at an angle 45° to the horizontal with an initial velocity of $2 \sqrt{2} m / s$.

The magnitude of mean velocity averaged over
the first 2 s is [take, acceleration due to

$$
\text { gravity, } \left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right]
$$

A. $7.0 m / s$
B. $8.2 m / s$
C. $7.8 m / s$
D. $9 \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
6. The position vector of a particle moving in a plane is given by $r=a \cos \omega t \hat{i}+b \sin \omega I \hat{j}$,
where \hat{i} and \hat{j} are the unit vectors along the rectangular axes C and Y : a,b, and ω are constants and t is time. The acceleration of the particle is directed along the vector
A. $-a \hat{i}+b \hat{j}$
B. $b \hat{i}+a \hat{j}$
C. $-r$
D. $\frac{d r}{d t}$

Answer: C

- Watch Video Solution

7. A child is on a merry-go-round, standing at a distacne 2 m from the centre. The coefficient of static friction between the child and the surface of merry-go-round is 0.8 . At what maximum angular velocity can the merry-goround be rotated before and child slips? (Take, $\left.g=10 m / s^{2}\right)$
A. $0.5 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{rad} / \mathrm{s}$
C. $2 \mathrm{rad} / \mathrm{s}$
D. $4 \mathrm{rad} / \mathrm{s}$

Answer: C

D Watch Video Solution

8. A ball of mass 0.2 kg is thrown from a height of 1 m and with an initial velocity of $\sqrt{10} \mathrm{~m} / \mathrm{s}$ at an angle of 45° with the horizontal.

Assuming, acceleration due to gravity
$g=10 \mathrm{~m} / \mathrm{s}^{2}$, ten modulus of momentum
increment during the total time of motion in
$\mathrm{kg} \mathrm{m} / \mathrm{s}$ is

$$
\begin{aligned}
& \text { A. } \frac{2+\sqrt{10}}{\sqrt{10}} \\
& \text { B. } \frac{1+\sqrt{10}}{\sqrt{5}} \\
& \text { C. } \frac{1+\sqrt{5}}{\sqrt{5}} \\
& \text { D. } \frac{\sqrt{5}-1}{\sqrt{5}}
\end{aligned}
$$

Answer: C

9. A small body of mass 500 g moves on a rough horizontal surface before finally stops.

The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of frictin is 0.3 Then, find absolute vlaue of the average pwoeer develped by the frictional force during the time of motion.
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 1 W
B. 1.5 W
C. $2 W$

D. 2.5 W

Answer: B

D Watch Video Solution

10. A 1.5 kg ball is shot upward at an angle of
34° to the horizontal with an initial speed of
$2 \mathrm{~mm} / \mathrm{s}$, then maximum height of the ball reaches is
(use
$\cos 34^{\circ}=0.83$ or $\left.\sin 34^{\circ}=0.56\right)$
A. $6.3 m$
B. $9.4 m$
C. $13.8 m$
D. $11.2 m$

Answer: A

D Watch Video Solution
11. If a disc of mass m and radius R totates
with an angular acceleration a, of the torque acting on the disc is
A. $M R^{2} a$
B. $\frac{M R^{2} a}{2}$
C. $\frac{2 M R^{2} a}{5}$
D. $\frac{M R^{2} a}{12}$

Answer: B

D Watch Video Solution

12. Consider a sphere of mass M and radius R centered at origin. The density of material of
the sphere is $\rho=A r^{\alpha}$, where r is the radial
distance, α and A are constants. If the moment of inertia of the sphere about the axis passing through centre is $\frac{6}{7} M R^{2}$, then the value of α is
A. 3
B. 6
C. 9
D. 12

Answer: A
13. The position of a particle axecuting simple
harmonic motion is given by
$x(t)=2 \cos \left(\frac{\pi}{15} t-\frac{\pi}{2}\right)$, where x is in centimetre and t is in seconds. The time period of the kinetic energy of the particle in second is
A. π
B. $\frac{\pi}{15}$
C. 15
D. 30

Answer: C

D Watch Video Solution

14. An artificial satellite of mass m revolves around the earth at a height h with a speed v.

How much power (energy per second) will it tequire to keep itself moving with constant speed in the orbit of radius r ?

$$
\begin{aligned}
& \text { A. } \frac{m v^{3}}{r} \\
& \text { B. } \frac{1}{2} m v^{2}
\end{aligned}
$$

C. $\frac{6 m M_{e}}{\left(R_{e}+h\right)}$
D. 0

Answer: D

D Watch Video Solution

15. Consider an air bubble of radius 2 mm in a
liquid at a depth of 5 cm below the free surface. The density of the liquid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the surface tension is
$0.1 N / m$. Then, find the pressure inside the
air bubble is greater than the pressure at the free surface of the liquid. (Take,$h=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. 500 Pa

B. 600 Pa
C. 700 Pa
D. 800 Pa

Answer: B
16. A cylindrical vessel is filled with water upto
the height 1 m from the base. A small orifice is opened at some height in the cylinder and the water level is reduced to height of orifice in 20
s. If the base area of the cylinder is 100 times
the area of orifice, then the height of orifice from the base is (take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 80 cm
B. 60 cm
C. 40 cm

D. 20 cm

Answer: A

- Watch Video Solution

17. A vessel of volume V contains a mixture of
ideal gases at temperature T. The gas mixture
contains n_{1}, n_{2} and n_{3} moles of three gases.
Assuming ideal gas system, the pressure of the mixture is

$$
\text { A. } \frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}
$$

B. $\frac{\left(n_{1} n_{2} n_{3}\right) R T}{V}$
C. $\frac{R T}{\left(n_{1}+n_{2}+n_{3}\right) V}$
D. $\frac{R T}{V\left(n_{1} n_{2} n_{3}\right)}$

Answer: A

D Watch Video Solution

18. The resistance of a thermometer is 100Ω at
the triple point of water $(273 K)$ and is 300Ω at
the melting point of gold $(\sim 873 K)$. The
temperature at which the resistance of the thermometer is 200Ω is
A. 273 K
B. 373 K
C. 473 K
D. 573 K

Answer: D
(Watch Video Solution
19. A diesel engine has a compression ratio of

20:1. If the initial pressure is $1 \times 10^{5} \mathrm{~Pa}$ and
the initial volume of the cylinder is
$1 \times 10^{-3} \mathrm{~m}^{2}$, then how much work does the gas do during the compression ?
(Assume the process as adiabatic)
$\left(C_{v}=20.8 J / \mathrm{molK}, Y_{a r i}=1.4,(20)^{1.4}=66.3\right)$
A. $-880 J$
B. $-579 J$
C. 220 J

D. 485 J

Answer: B

D Watch Video Solution

20. A polyatomic gas has f virational degrees
of freedom, then the ratio of the specific heat
at constant pressure to that at constant
volume will be

$$
\text { A. } \frac{4+f}{3+f}
$$

B. $\frac{4-f}{3-f}$
C. $\frac{3+f}{4+f}$
D. $\frac{3-f}{4-f}$

Answer: A

D View Text Solution

21. The speed of sound in air at temperature T and pressure p is v . When the temperature is increased to 2 T and the pressure is reduced to
$\frac{p}{2}$, then the speed is changed to
A. 2 v
B. v
C. $\sqrt{2} v$
D. $\frac{v}{\sqrt{2}}$

Answer: C

D Watch Video Solution

22. A printed page is kept pressed by a transparent cube of edge t. The refractive index of the cube varies us $\mu(z)=1+\frac{z}{t}$,
where x is the vertical distance from bottom of
the cube. If viewed from top, then the printed
letters appear to be shifted by an amount

> A. $(1-\ln 2) t$
> B. $(2 \ln 2-1) t$
> C. $\frac{t}{2 \ln 2}$
> D. $\frac{2 t}{3 \ln 2}$

Answer: A

D View Text Solution
23. A half spherical glass lens with refractive index 1.5 is placed in a liquid with refractive index of 1.3 (see following figure). The radius of the half spherical lens is 10 cm . A parallel beam of light travelling in the liquid is refreacted by the glass lens. Then the absolute
value of the position of the image from the centre of the glass lens will be
A. 10 cm
B. 65 cm
C. 5 cm
D. 11.5 cm

Answer: B

D Watch Video Solution

24. A light beam of wavelength 800 nm passes
through a single slit and projected on a screen
kept at 5 m away from the slit. What should be
the slit width for the ray optics approximation

to be valid?

A. 0.5 mm
B. $2 m m$
C. 1.5 mm
D. 0.25 mm

Answer: B
(Watch Video Solution
25. Choose the incorrect statement from the following.
A. The electric field in electrostatics obey
principle of superposition
B. The electric field inside a perfect
conductor is zero
C. The electric dipole will try to orient in a
direction opposite to the external
electric field
D. The electric flux passing through any
closed surface enclosing the changes remains constant

Answer: C

D Watch Video Solution

26. Consider a parallel plate capacitor with
plates in the spape of square and in XY-plane.

The gap between the plates is filled with dielectric material. The dielectric constant k
where α is a constant. Let D_{d} and C_{a} are capacitance in the presence of dielectric and air, respectively. If the ratio $\frac{C_{d}}{C_{a}}=\frac{7}{6}$, then the value of α must be
A. 3
B. 5
C. 7
D. 9

Answer: B
27. The emfs of three cells connected in parallel are
$E_{1}=5 V, E_{2}=8 V$ and $E_{3}=10 V$ and
their internal resistances are
$R_{1}=1 \Omega, R_{2}=2 \Omega$ and $R_{3}=3 \Omega$,
respectively. By changing E_{3} to $E_{3 N}$, the equivalent emf is doubled, then $E_{3 N}$ in V is
A. 12
B. 34
C. 47
D. 82

Answer: C

D Watch Video Solution

28. A cell of emf 10 V and internal resistance
3Ω is connected in parallel with another cell of emf $7 \vee$ and internal resistance $\frac{3}{5} \Omega$, such that their positive terminals are joined together and so there are negative terminals. Their
positive terminals are joined with the negative terminal and their negative terminal is joined with the positive terminal of a third cell of emf

20 V with internal resistance 2Ω. The combination can be replaced by a battery of emf E and internal resistance r, then the values of E and R are respectively

$$
\begin{aligned}
& \text { A. } E=2 V, r=2.5 \Omega \\
& \text { B. } E=2 V, r=0.4 \Omega 1 \\
& \text { C. } E=5 V, r=0.4 \Omega \\
& \text { D. } E=5 V, r=2.5 \Omega
\end{aligned}
$$

Answer: B

- Watch Video Solution

29. A square loop of length L is placed with its edges parallel to the XY -axies. The loop is carrying the current I. If the magnetic field in the region varies as $B=B_{0}\left(1+\frac{x y}{L^{2}}\right) \hat{k}$, then the magnitude of the force on the loop willl be
A. $l B_{0} L$
B. $\frac{l B_{0} L}{2}$
C. $\frac{l B_{0} L}{\sqrt{2}}$
D. $\sqrt{2} l B_{0} L$

Answer:

D View Text Solution

30. A nonOconducting disk of radius R has surface charge density which varies with distance from the
centre
as
$\sigma(r)=\sigma_{0}\left[1+\sqrt{\frac{r}{R}}\right], \quad$ where $\quad \sigma_{0}$ is a
constant. The disc rotates about its axis with angular velocity ω. If B is the magnitude of magnetic induction at the centre, then $\frac{B}{\mu_{0} \sigma_{o} \omega R}$ will be
A. $\frac{3}{4}$
B. $\frac{4}{5}$
C. $\frac{5}{6}$
D. $\frac{6}{7}$

Answer: C
31. For a wire, as shown in the figure, carrying a current of 10 A , then the magnetic induction field at the point O is [take,

$$
\left.\mu_{0}=4 \pi \times 10^{-7} H / m\right]
$$

A. $2 \times 10^{-4} T$
B. $4 \times 10^{-4} T$
C. $10 \times 10^{-4} T$
D. $4 \pi \times 10^{-4} T$

Answer: B

- Watch Video Solution

32. A solenoid of radius R has n turns per unit
length, then the self-inductance of the solenoid per unit length is
A. $\mu_{0} n R^{2}$
B. $\mu_{0} n R^{2}$
C. $\mu_{0} n R^{2}$
D. $\mu_{0} n^{2} \pi R^{2}$

Answer: D

D Watch Video Solution

33. A distribution transformeer with an efficiency of 90% supplies to a colony of 10 homes have electrical oven running at the same time, that draw 20 A current from 220 V
lines. The power dissipated as heat in the transformer is
A. $12.2 k W$
B. 4.9 kW
C. $8.4 k W$
D. 9.9 kW

Answer: B

D View Text Solution
34. The law not described by any four of the

Maxwell's equations is
A. Gauss' law for electricity
B. Le-Chatelier's law of equilibrium
C. Guss' law for magnetism
D. Faraday's law of induction

Answer: B

35. Let E_{0} and B_{0} denote the amplitude of electric and magnetic filed of a plane electromagnetic wave in air. The magnitude of the average momentum transferred per unit area and per unit time to a totally abosorbing surface is
A. $\frac{1}{2} \varepsilon_{0} E_{0}^{2}$
B. $\frac{1}{2} \mu_{0} B_{0}$
C. $\varepsilon_{0} E_{0}^{2}$
D. $\frac{B_{0}^{2}}{\mu_{0}}$

Answer: A

D View Text Solution

36. In a hydrogen sample, if the atoms are excited to states with principal, quantum number 20, then the number of different wavelengths which may be observed in the spectrum is
A. 100
B. 140

C. 190

D. 230

Answer: C

- Watch Video Solution

37. Consider a radioactive nuclide which follow decay rate given by $A(t)=A_{0} 2^{-\left(l / t_{0}\right)}$, where $A(f)$ is the fraction of radioactive material remaining after time t from the initial
A_{0} at zero time. Let A_{1} be the fraction of
orginal activity which remains after 120 hours.
likewise A_{2} is the fraction of 200 hours. If
$\frac{A_{1}}{A_{2}}=1.6$, then the half-life $\left(t_{0}\right)$ will be
A. 10 hours
B. 20 hours
C. 40 hours
D. 60 hours

Answer: B

D Watch Video Solution

38. In the diode-based rectifier circuit given below, if $V_{s}=V_{m} \sin \omega t$ and the diode is ideal, then the average value of V_{L} is

A. $\frac{R_{L}}{\left(R_{L}+R_{S}\right)} \frac{V_{m}}{\pi}$
B. $R_{L} V_{m} \sin \omega t$
C. $\frac{R_{L}}{\left(R_{L}+R_{S}\right)} V_{m}$
D. $\frac{R_{L}}{\left(R_{L}+R_{S}\right)} V_{m} \sin \omega t$

Answer: A

D View Text Solution

39. Consider the circuit given below

Chose the sketch depicting the output Y of this circuit having inputs A and B as given
below

A.

B.

c.

D. $\square \Pi \square$

Answer: C

- View Text Solution

40. For a television network, 5×10^{5} channels are granted. If the central frequency of the microwave link is 25 GHz and the alloted bandwidth for each channel is 2 KHz , then how much percentage of the link is used for the network ?
A. 4%
B. 10%
C. 25%
D. 5%

Answer: A
(D) View Text Solution

