

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

PROGRESSION AND SERIES

Single Correct Answer

1. If
$$3x^2 - 2ax + (a^2 + 2b^2 + 2c^2) = 2(ab + bc)$$
, then *a*, *b*, *c* can be in

A. A. P.

B. G. P.

C. *H*. *P*.

D. None of these

Answer: A

2. If
$$x = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
, $y = \frac{1}{1^2} + \frac{3}{2^2} + \frac{1}{3^2} + \frac{3}{4^2} + \dots$ and $z = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ then

A. *x*, *y*,*z* are in *A*. *P*.

B. $\frac{y}{6}$, $\frac{x}{3}$, $\frac{z}{2}$ are in *A*. *P*. C. $\frac{y}{6}$, $\frac{x}{3}$, $\frac{z}{2}$ are in *A*. *P*.

D. 6*y*, 3*x*, 2*z* are in *H*. *P*.

Answer: B

Watch Video Solution

3. For $a, b, c \in \mathbb{R} - \{0\}$, let $\frac{a+b}{1-ab}$, $b, \frac{b+c}{1-bc}$ are in A. P. If α, β are the roots

of the quadratic equation

 $2acx^2 + 2abcx + (a + c) = 0$, then the value of $(1 + \alpha)(1 + \beta)$ is

A. 0

B. 1

C. - 1

D. 2

Answer: B

Watch Video Solution

4. If $a_1, a_2, a_3, \dots, a_{87}, a_{88}, a_{89}$ are the arithmetic means between 1 and 89, then $\sum_{r=1}^{89} \log(\tan(a_r)^\circ)$ is equal to

A. 0

B. 1

 $C. \log_2 3$

D. log5

Answer: A

5. Let a_1, a_2, \ldots and b_1, b_2, \ldots be arithemetic progression such that $a_1 = 25$, $b_1 = 75$ and $a_{100} + b_{100} = 100$, then the sum of first hundred term of the progression $a_1 + b_1, a_2 + b_2, \ldots$ is equal to

A. 1000

B. 100000

C. 10000

D. 24000

Answer: C

6. The sum of 25 terms of an A.P., whose all the terms are natural numbers, lies between 1900 and 2000 and its 9th term is 55. Then the first term of the A.P. is

A. 5		
B. 6		
C. 7		
D. 8		

Answer: C

Watch Video Solution

7. If the first, fifth and last terms of an A. P. is l, m, p, respectively, and sum

of the A. P. is $\frac{(l+p)(4p+m-5l)}{k(m-l)}$ then k is

A. 2

B. 3

C. 4

D. 5

Answer: A

8. If $a_1, a_2a_3, \dots, a_{15}$ are in *A*. *P* and $a_1 + a_8 + a_{15} = 15$, then $a_2 + a_3 + a_8 + a_{13} + a_{14}$ is equal to

A. 25

B. 35

C. 10

D. 15

Answer: A

9. If
$$a_1, a_2, a_3, ...$$
 are in A.P. and $a_i > 0$ for each i, then

$$\sum_{i=1}^{n} \frac{n}{a_n^{\frac{2}{3}+1} + a_n^{\frac{1}{3}+1} a_n^{\frac{1}{3}} + a_n^{\frac{2}{3}}}$$
 is equal to (a) $\frac{n}{a_n^{2/3} + a_n^{1/3} + a_1^{2/3}}$ (b)

$$\frac{n(n+1)}{a_n^{2/3} + a_n^{1/3} + a_1^{2/3}}$$
 (c) $\frac{n(n-1)}{a_n^{2/3} + a_n^{1/3} \cdot a_1^{1/3} + a_1^{2/3}}$ (d) None of these

A.
$$\frac{n}{a_n^{2/3} + a_n^{1/3} + a_1^{2/3}}$$

B.
$$\frac{n+1}{a_n^{2/3} + a_n^{1/3} + a_1^{2/3}}$$

C.
$$\frac{n-1}{a_n^{2/3} + a_n^{1/3} \cdot a_1^{1/3} + a_1^{2/3}}$$

D.

Answer: C

10. Between the numbers 2 and 20, 8 means are inserted. Then their sum

is

A. 88

B. 44

C. 176

D. None of these

Answer: A

11. Let
$$a_1, a_2, a_3, \dots, a_{4001}$$
 is an *A.P.* such that
 $\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \dots + \frac{1}{a_{4000}a_{4001}} = 10$
 $a_2 + a_{4000} = 50.$
Then $|a_1 - a_{4001}|$ is equal to
A.20
B.30
C.40
D. None of these

D Watch Video Solution

12. An A. P. consist of even number of terms 2n having middle terms equal to 1 and 7 respectively. If n is the maximum value which satisfy

 $t_1t_{2n} + 713 \ge 0$, then the value of the first term of the series is

A. (a) 17

B.(b) - 15

C. (c) 21

D. (d) - 23

Answer: D

Watch Video Solution

13. If the sum of the first 100 terms of an AP is -1 and the sum of even terms lying in first 100 terms is 1, then which of the following is not true ?

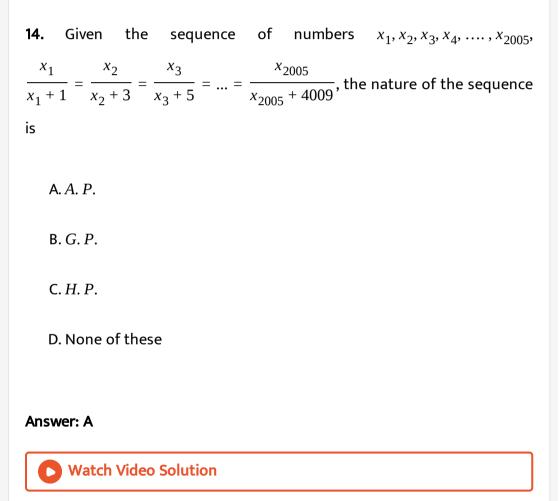
A. Common difference of the sequence is
$$\frac{3}{50}$$

B. First term of the sequence is $\frac{-149}{50}$

C. 100^{th} term = $\frac{74}{25}$

D. None of these

Answer: D



15. If b - c, bx - cy, $bx^2 - cy^2$ ($b, c \neq 0$) are in *G*. *P*, then the value of $\left(\frac{bx + cy}{b + c}\right)\left(\frac{bx - cy}{b - c}\right)$ is A. x^2 B. $-x^2$ C. $2y^2$ D. $3y^2$

Answer: A

Watch Video Solution

16. If a_1, a_2, a_3, \ldots are in *G*. *P*., where $a_i \in C$ (where *C* satands for set of complex numbers) having *r* as common ratio such that $\sum_{k=1}^{n} a_{2k-1} = \sum_{k=1}^{n} a_{2k+3} \neq 0$, then the number of possible values of *r* is

A. 2

C. 4

D. 5

Answer: C

Watch Video Solution

17. If a, b, c are real numbers forming an A. P. and 3 + a, 2 + b, 3 + c are in

G. P. , then minimum value of ac is

A. - 4

B.-6

C. 3

D. None of these

Answer: B

18. a, b, c, d are in increasing G. P. If the AM between a and b is 6 and the AM between c and d is 54, then the AM of a and d is

A. 15

B. 48

C. 44

D. 42

Answer: D

19. The numbers *a*, *b*, *c* are in *A*. *P*. and a + b + c = 60. The numbers (*a* - 2), *b*, (*c* + 3) are in *G*. *P*. Then which of the following is not the possible value of $a^2 + b^2 + c^2$? **B.** 1218

C. 1298

D. None of these

Answer: B

Watch Video Solution

20. a, b, c are positive integers formaing an increasing G. P. and b - a is a

perfect cube and $\log_6 a + \log_6 b + \log_6 c = 6$, then a + b + c =

A. 100

B. 111

C. 122

D. 189

Answer: D

21. The first three terms of a geometric sequence are *x*, *y*,*z* and these have the sum equal to 42. If the middle term *y* is multiplied by 5/4, the numbers *x*, $\frac{5y}{4}$, *z* now form an arithmetic sequence. The largest possible value of *x* is

- A. 6
- **B.** 12
- **C**. 24
- D. 20

Answer: C

22. If an infinite G.P. has 2nd term x and its sum is 4, then prove that $\xi n(-8, 1] - \{0\}$

A. (0, 2]

B. (1, 8)

C. (-8, 1]

D. none of these

Answer: C

Watch Video Solution

23. In a *GP*, the ratio of the sum of the first eleven terms of the sum of the last even terms is 1/8 and the ratio of the sum of all the terms without the first nine to the sum of all terms without the last nine is 2. Then the number of terms in the *GP* is

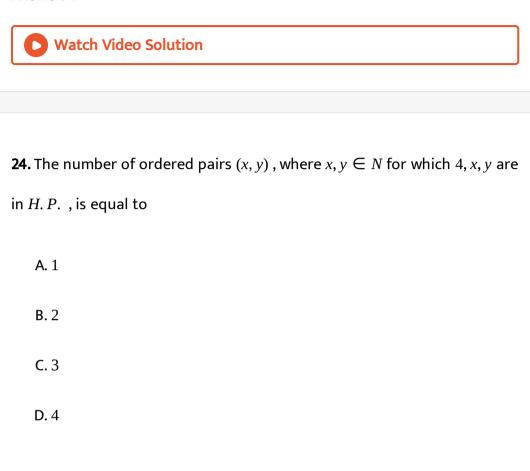
A. 40

B. 38

C. 36

D. 34

Answer: B



Answer: C

25. If a + c, a + b, b + c are in G. P and a, c, b are in H. P. where a,b,c > 0,

then the value of
$$\frac{a+b}{c}$$
 is

A.	3
A.	3

B. 2 C. $\frac{3}{2}$

D. 4

Answer: B

Watch Video Solution

26. If a, b, c are in H. P, b, c, d are in G. P and c, d, e are in A. P. , then the value of e is (a) $\frac{ab^2}{(2a-b)^2}$ (b) $\frac{a^2b}{(2a-b)^2}$ (c) $\frac{a^2b^2}{(2a-b)^2}$ (d) None of these A. $\frac{ab^2}{(2a-b)^2}$

$$\begin{array}{l} \text{R.} & (2a - b)^2 \\ \text{B.} & \frac{a^2 b}{(2a - b)^2} \\ \text{C.} & \frac{a^2 b^2}{(2a - b)^2} \end{array}$$

D. None of these

Answer: A

27. If x > 1, y > 1, z > 1 are in G. P., then $\log_{ex} e$, $\log_{ey} e$, $\log_{ez} e$ are in

A. A. P.

B. *H*. *P*.

C. *G*. *P*.

D. none of these

Answer: B

Watch Video Solution

28. If x, y, z are in G. P.
$$(x, y, z > 1)$$
, then $\frac{1}{2x + \log_e x}$, $\frac{1}{4x + \log_e y}$, $\frac{1}{6x + \log_e z^2}$

are in

A. A. P.

B. G. P.

C. H. P.

D. none of these

Answer: C

Watch Video Solution

29. The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^2 + 3H = 48$. Then the product of the two numbers is

A. 24

B. 32

C. 48

D. 54

Answer: B

30. If x, y, z be three numbers in G. P. such that 4 is the A. M. between x and y and 9 is the H. M. between y and z, then y is

A. 4	
B. 6	
C. 8	
D. 12	

Answer: B

Watch Video Solution

31. If harmonic mean of
$$\frac{1}{2}$$
, $\frac{1}{2^2}$, $\frac{1}{2^3}$, ..., $\frac{1}{2^{10}}$ is $\frac{\lambda}{2^{10}-1}$, then $\lambda =$
A. 10.2^{10}

B.5

C. 5.2¹⁰

Answer: B

32. An aeroplane flys around squares whose all sides are of length 100 miles. If the aeroplane covers at a speed of 100*mph* the first side, 200*mph* the second side 300*mph* the third side and 400*mph* the fourth side. The average speed of aeroplane around the square is

A. 190mph

B. 195mph

C. 192mph

D. 200mph

Answer: C

33. The sum of the series $1 + \frac{9}{4} + \frac{36}{9} + \frac{100}{16} + \dots$ infinite terms is

A. 446

B. 746

C. 546

D. 846

Answer: A

Watch Video Solution

34. The sum 2 × 5 + 5 × 9 + 8 × 13 + ...10 terms is

A. 4500

B. 4555

C. 5454

D. None of these

Answer: B

35. The sum of *n* terms of series

$$ab + (a + 1)(b + 1) + (a + 2)(b + 2) + ... + (a + (n - 1))(b + (n - 1))$$
 if $ab = \frac{1}{6}$
and $(a + b) = \frac{1}{3}$ is
A. $\frac{n}{6}(1 - 2n)^2$
B. $\frac{n}{6}(1 + n - 2n^2)$
C. $\frac{n}{6}(1 - 2n + 2n^2)$

D. None of these

Answer: C

36.
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}}$$
 is equal to (where $|a| > 1$)
A. $(a - 1)^{-3}$
B. $\frac{3}{a - 1}$
C. $\frac{3}{a^3 - 1}$

D. None of these

Answer: A

Watch Video Solution

37. The coefficient of x^{1274} in the expansion of $(x + 1)(x - 2)^2(x + 3)^3(x - 4)^4...(x + 49)^{49}(x - 50)^{50}$ is

A. 1275

B. - 1275

C.
$$-\sum_{i=1}^{50} i^2$$

D. -
$$\sum_{i=1}^{50} i^2$$

Answer: B

38. If the positive integers are written in a triangular array as shown below,

then the row in which the number 2010 will be, is

A. 65

B. 61

C. 63

D. 65

Answer: C

View Text Solution

39. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = 220$, then the value of *n* equals 11 b. 12 c.10

d. 9

A. 11

B. 12

C. 10

D. 9

Answer: C

Watch Video Solution

40. The sum
$$\sum_{k=1}^{10} \sum_{j=1}^{10} j = 1 i \neq j \neq k \sum_{i=1}^{10} 1$$
 is equal to

A. 240

B.720

C. 540

D. 1080

Answer: B

41.	The	major	product	of	the	following	reaction	is:
CH ₃	$C \equiv CH$	(i)DCl(lee [→	quiv.) (ii)DI					
A	A. 120							
E	8.240							
C	2.360							
C	0. 720							
Ansv	wer: A							

42. If the sum to infinity of the series , $1 + 4x + 7x^2 + 10x^3 + \dots$, is $\frac{35}{16}$, where |x| < 1, then 'x' equals to

A. 19/7

B. 1/5

C. 1/4

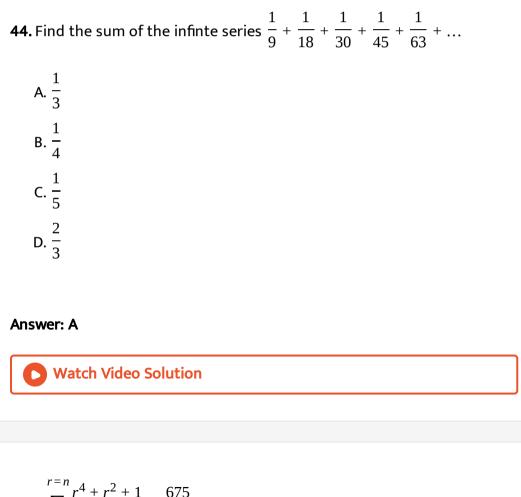
D. None of these

Answer: B

43. The value of
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{5^n}\right)$$
 equals
A. $\frac{5}{12}$
B. $\frac{5}{24}$
C. $\frac{5}{36}$

 $\mathsf{D.}\,\frac{5}{16}$

Answer: C



45. If
$$\sum_{r=1}^{\infty} \frac{r^2 + r^2 + 1}{r^4 + r} = \frac{675}{26}$$
, then *n* equal to

Answer: C

D. 30

Watch Video Solution

46. The sequence $\{x_k\}$ is defined by $x_{k+1} = x_k^2 + x_k$ and $x_1 = \frac{1}{2}$. Then

 $\left[\frac{1}{x_1+1} + \frac{1}{x_2+1} + \dots + \frac{1}{x_{100}+1}\right]$ (where [.] denotes the greatest integer

function) is equal to

A. 0

B. 2

C. 4

D. 1

Answer: D

47. The absolute value of the sum of first 20 terms of series, if $S_n = \frac{n+1}{2}$

and $\frac{T_{n-1}}{T_n} = \frac{1}{n^2} - 1$, where *n* is odd, given S_n and T_n denotes sum of first *n* terms and n^{th} terms of the series

A. 340

B. 430

C. 230

D. 320

Answer: B

48. If
$$S_n = (1^2 - 1 + 1)(1!) + (2^2 - 2 + 1)(2!) + ... + (n^2 - n + 1)(n!)$$
, then $S_{50} =$

A. 52!

B. 1 + 49 × 5!

C. 52! - 1

D. 50 × 51! - 1

Answer: B

Watch Video Solution

49. If
$$S_n = \frac{1.2}{3!} + \frac{2.2^2}{4!} + \frac{3.2^2}{5!} + \dots +$$
 up to *n* terms, then sum of infinite

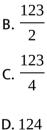
terms is

A.
$$\frac{4}{\pi}$$

B. $\frac{3}{e}$
C. $\frac{\pi}{r}$

Answer: D

50. There is a certain sequence of positive real numbers. Beginning from the third term, each term of the sequence is the sum of all the previous terms. The seventh term is equal to 1000 and the first term is equal to 1. The second term of this sequence is equal to



0.121

Answer: B

51. The sequence $\{x_1, x_2, ..., x_{50}\}$ has the property that for each k, x_k is k less than the sum of other 49 numbers. The value of $96x_{20}$ is

A. 300

B. 315

C. 1024

D. 0

Answer: B

Watch Video Solution

52. Let $a_0 = 0$ and $a_n = 3a_{n-1} + 1$ for $n \ge 1$. Then the remainder obtained dividing a_{2010} by 11 is

A. 0

B.7

C. 3

Answer: A

53. Suppose $a_1, a_2, a_3, ..., a_{2012}$ are integers arranged on a circle. Each number is equal to the average of its two adjacent numbers. If the sum of all even idexed numbers is 3018, what is the sum of all numbers ?

A. 0

B. 9054

C. 12072

D. 6036

Answer: D

54. The sum of the series $\frac{9}{5^2 \cdot 2 \cdot 1} + \frac{13}{5^3 \cdot 3 \cdot 2} + \frac{17}{5^4 \cdot 4 \cdot 3} + \dots$ upto infinity

A. 1 B. $\frac{9}{5}$ C. $\frac{1}{5}$ D. $\frac{2}{5}$

Answer: C

Watch Video Solution

Comprehension

1. The 1^{st} , 2^{nd} and 3^{rd} terms of an arithmetic series are a, b and a^2 where 'a' is negative. The 1^{st} , 2^{nd} and 3^{rd} terms of a geometric series are a, a^2 and b respectively.

The sum of infinite geometric series is

A.
$$\frac{-1}{2}$$

B. $\frac{-3}{2}$
C. $\frac{-1}{3}$

D. None of these

Answer: C

Watch Video Solution

2. The 1^{st} , 2^{nd} and 3^{rd} terms of an arithmetic series are a, b and a^2 where 'a' is negative. The 1^{st} , 2^{nd} and 3^{rd} terms of a geometric series are a, a^2 and b respectively.

The sum of the 40 terms of the arithmetic series is

A. $\frac{545}{2}$ B. 220 C. 250 D. $\frac{575}{2}$

Answer: A

3.

img

src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/CEN_ALG_DPP_4_2
width="80%"gt

Let *ABCD* is a unit square and each side of the square is divided in the ratio α : $(1 - \alpha)(0 < \alpha < 1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio α : $(1 - \alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_n denote the length of side and A_n the area of the n^{th} square

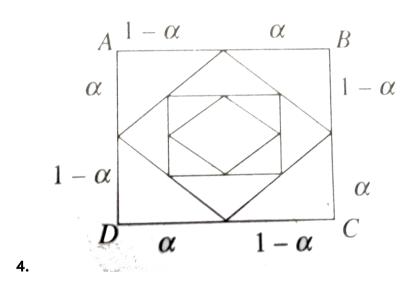
If
$$\alpha = \frac{1}{3}$$
, then the least value of *n* for which $A_n > \frac{1}{10}$ is

A. 4

B. 5

C. 6

Answer: B



Let *ABCD* is a unit square and each side of the square is divided in the ratio $\alpha: (1 - \alpha)(0 < \alpha < 1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha: (1 - \alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_n denote the length of side and A_n the area of the n^{th}

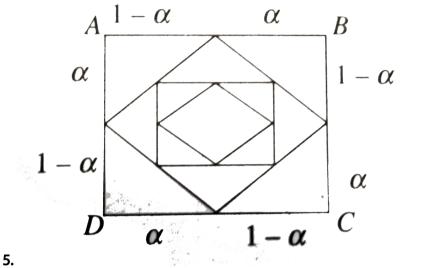
square

The value of α for which $\sum_{n=1}^{\infty} A_n = \frac{8}{3}$ is/are

A.
$$\frac{1}{3}, \frac{2}{3}$$

B. $\frac{1}{4}, \frac{3}{4}$
C. $\frac{1}{5}, \frac{4}{5}$
D. $\frac{1}{2}$

Answer: B



Let ABCD is

a unit square and each side of the square is divided in the ratio $\alpha:(1 - \alpha)(0 < \alpha < 1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1 - \alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_n denote the length of side and A_n the area of the n^{th} square

The value of α for which side of n^{th} square equal to the diagonal of $(n + 1)^{th}$ square is

A.
$$\frac{1}{3}$$

B. $\frac{1}{4}$

C.
$$\frac{1}{2}$$

D. $\frac{1}{\sqrt{2}}$

Answer: C

Watch Video Solution

6. Let f(n) denote the n^{th} terms of the seqence of 3, 6, 11, 18, 27, and g(n) denote the n^{th} terms of the seqence of 3, 7, 13, 21, Let F(n) and G(n) denote the sum of n terms of the above sequences, respectively. Now answer the following:

 $\lim n \to \infty \frac{f(n)}{g(n)} =$ A. 0
B. 1
C. 2
D. ∞

Answer: B

7. Let f(n) denote the n^{th} terms of the sequence of 3, 6, 11, 18, 27, and g(n) denote the n^{th} terms of the sequence of 3, 7, 13, 21, Let F(n) and G(n) denote the sum of n terms of the above sequences, respectively. Now answer the following:

 $\lim n \to \infty \frac{F(n)}{G(n)} =$ A. 2
B. 1
C. 0
D. ∞

Answer: B

1. Let a, x, b be in A. P, a, y, b be in G. P and a, z, b be in H. P. If x = y + 2and a = 5z, then

A. $y^2 = xz$

B. x > y > z

C. *a* = 9, *b* = 1

D. a = 1/4, b = 9/4

Answer: A::B::C

Watch Video Solution

2. If A_1 , A_2 , A_3 , G_1 , G_2 , G_3 , and H_1 , H_2 , H_3 are the three arithmetic, geometric and harmonic means between two positive numbers a and b(a > b), then which of the following is/are true ?

A.
$$2G_1G_3 = H_2(A_1 + A_3)$$

B.
$$A_2H_2 = G_2^2$$

C. $A_2G_2 = H_2^2$
D. $2G_1A_1 = H_1(A_1 + A_3)$

Answer: A::B

Watch Video Solution

3. Given that α , γ are roots of the equation $Ax^2 - 4x + 1 = 0$ and β , δ are

roots of the equation Bx^2 - 6x + 1 = 0. If α , β , γ and δ are in H. P., then

- A. A = 5
- B.A = 3
- C. *B* = 8
- D.B = -8

Answer: B

4. If
$$\frac{1}{a} + \frac{1}{c} = \frac{1}{2b - a} + \frac{1}{2b - c}$$
, then
A. *a*, *b*, *c* are in *A*. *P*.
B. *a*, $\frac{b}{2}$, *c* are in *A*. *P*.
C. *a*, $\frac{b}{2}$, *c* are in *H*. *P*.

D. a, 2b, c are in H. P.

Answer: A::D

Watch Video Solution

Illustration 51

1. Write down the sequence whose nth term is $2^n/n$ and (ii) $[3 + (-1)^n]/3^n$

1. Find the sequence of the numbers defined by

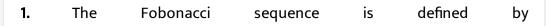
$$a_n = \begin{cases} \frac{1}{n} & \text{when n is odd} \\ -\frac{1}{n} & \text{when n is even} \end{cases}$$

Watch Video Solution

Illustration 5 3

1. Write the first three terms of the sequence defined by $a_1 2, a_{n+1} = \frac{2a_n + 3}{a_n + 2}$.

Watch Video Solution



$$1 = a_1 = a_2 anda_n = a_{n-1} + a_{n-2}, n > 2$$
. Find $\frac{a_{n+1}}{a_n}$, f or $n = 5$.

Watch Video Solution

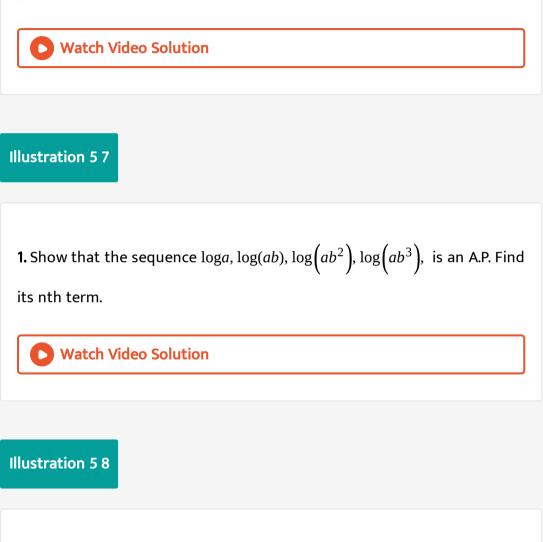
Illustration 5 5

1. A sequence of integers $a_1 + a_2 + a_n$ satisfies $a_{n+2} = a_{n+1} - a_n f$ or $n \ge 1$. Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

Watch Video Solution

1. Show that the sequence 9,12,15,18,... is an A.P. Find its 16th term and the

general term.



1. In a certain A.P., 5 times the 5th term is equal to 8 times the 8th term.

Then prove that its 13th term is 0.

Illustration 5 9

1. Find the term of the series 25, 22, $\frac{3}{4}$, $20\frac{1}{2}$, $18\frac{1}{4}$ which is numerically the

smallest.

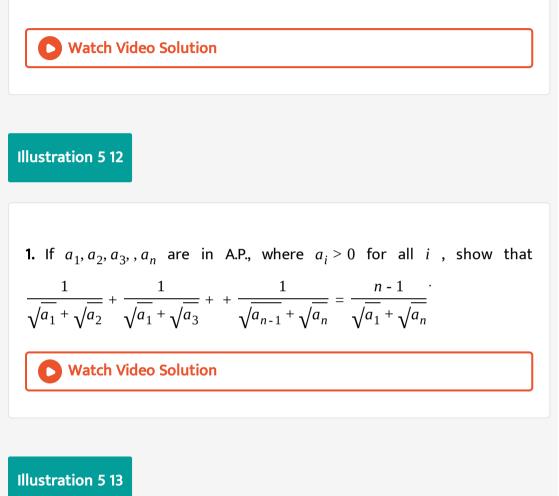
Watch Video Solution

Illustration 5 10

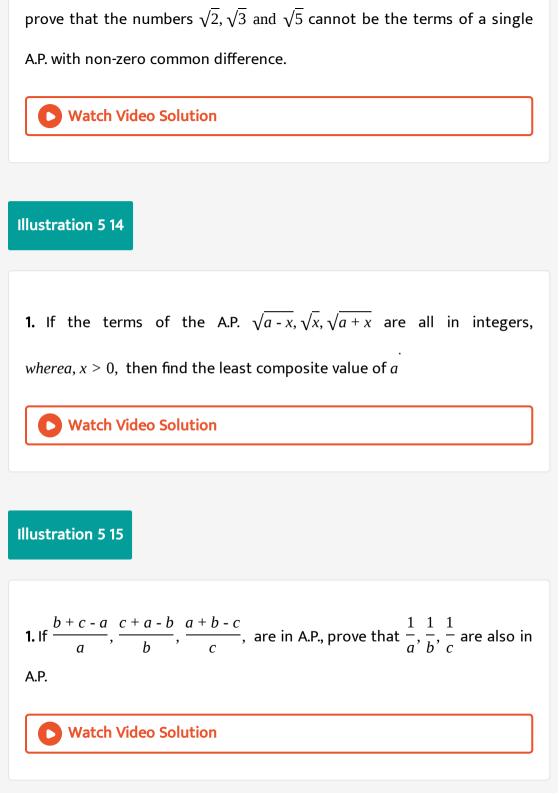
1. about to only mathematics

1. Consider two A.P.: S₂: 2, 7, 12, 17, 500 terms and S₁: 1, 8, 15, 22, 300 terms

Find the number of common term. Also find the last common term.



1. If p,q and r ($p \neq q$) are terms (not necessarily consecutive) of an A.P., then prove that there exists a rational number k such that $\frac{r-q}{q-p}$ =k. hence,



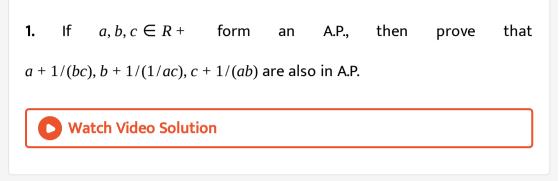


Illustration 5 17

1. If a,b,c are in A.P., then prove that the following are also in A.P
(i)
$$a^2(b+c)$$
, $b^2(c+a)$, $c^2(a+b)$ ltbr gt(ii) $\frac{1}{\sqrt{b}+\sqrt{c}}$, $\frac{1}{\sqrt{c}+\sqrt{a}}$, $\frac{1}{\sqrt{a}+\sqrt{b}}$
(iii) $a\left(\frac{1}{b}+\frac{1}{c}\right)$, $b\left(\frac{1}{c}+\frac{1}{a}\right)$, $c\left(\frac{1}{a}+\frac{1}{b}\right)$

1. If the sum of three numbers in A.P., is 24 and their product is 440, find

the numbers.

Watch Video Solution Illustration 5 19 1. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15. Watch Video Solution Illustration 5 20

1. The digits of a positive integer, having three digits, are in A.P. and their sum is 15. The number obtained by reversing the digits is 594 less than the original number. Find the number.

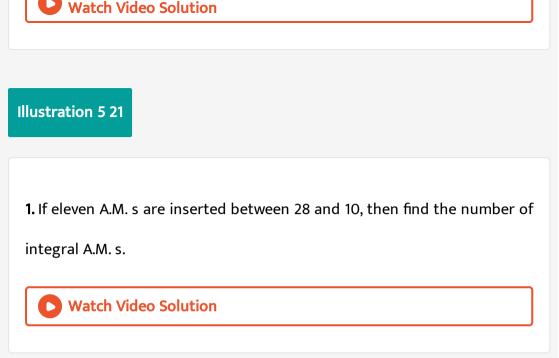
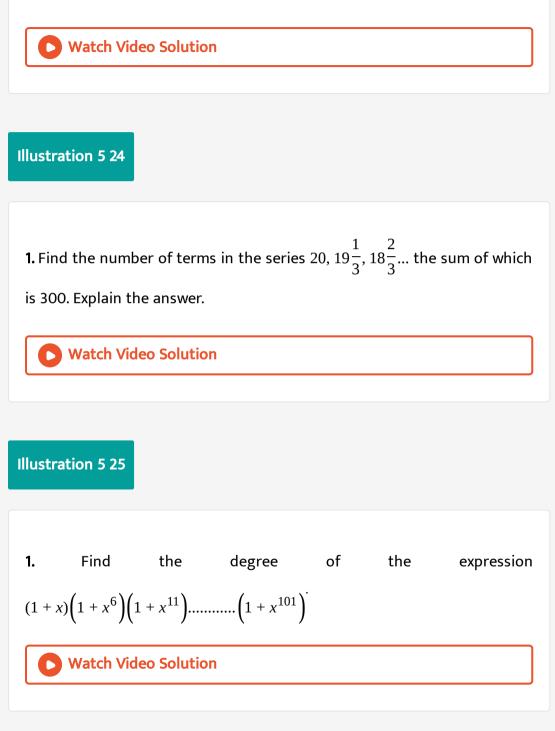


Illustration 5 22

1. Between 1 and 31 are inserted m arithmetic mean so that the ratio of

the 7th and (m - 1)th means is 5:9. Find the value of m





1. Find the sum of first 24 terms of the A.P. a_1, a_2, a_3 , if it is know that

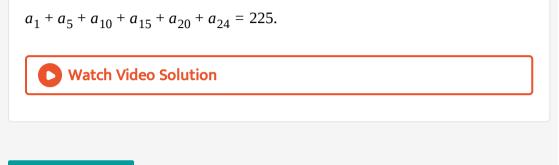


Illustration 5 27

1. If S_1 is the sum of an AP of 'n' odd number of terms and S_2 be the sum

of the terms of series in odd places of the same AP then $\frac{S_1}{S_2}$ =

1. If the sequence $a_1, a_2, a_3, ..., a_n$ is an A.P., then prove that $a_1^2 - a_2^2 + a_3^2 - a_4^2 + ... + a_{2n-1}^2 - a_{2n}^2 = \frac{n}{2n-1} \left(a_1^2 - a_{2n}^2 \right)$

Watch Video Solution

Illustration 5 29

1. If the arithmetic progression whose common difference is nonzero the

sum of first 3n terms is equal to the sum of next n terms. Then, find the

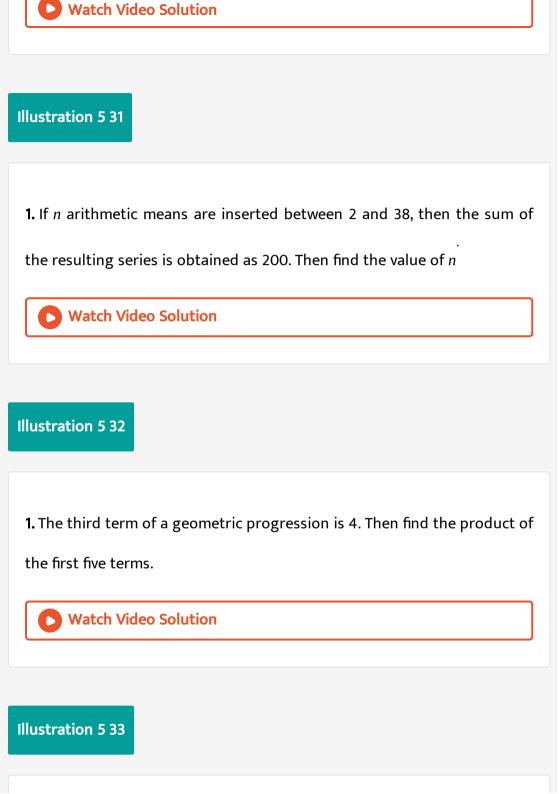
ratio of the sum of the 2n terms to the sum of next 2n terms.

Watch Video Solution

Illustration 5 30

1. The sum of n terms of two arithmetic progressions are in the ratio

5n + 4:9n + 6. Find the ratio of their 18th terms.



1. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है | तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी

का सार्व अनुपात ज्ञात किजिए |

View Text Solution

Illustration 5 34

1. If
$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x \neq 0)$$
, then show that a, b, c and d are in G.P.

Watch Video Solution

1. The fourth, seventh, and the last term of a G.P. are 10, 80, and 2560, respectively. Find the first term and the number of terms in G.P.

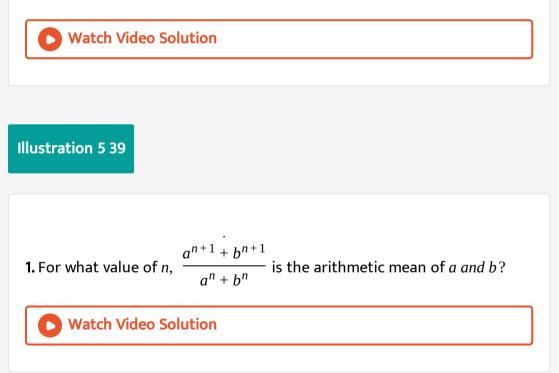
1. If a, b, c, dandp are distinct real numbers such that $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + (b^2 + c^2 + d^2) \le 0$, then prove that a, b, c, d are in G.P.

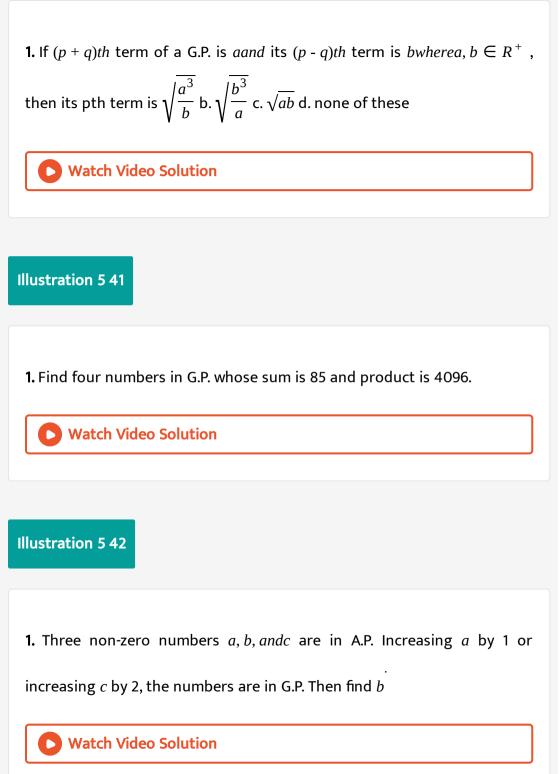
Watch Video Solution

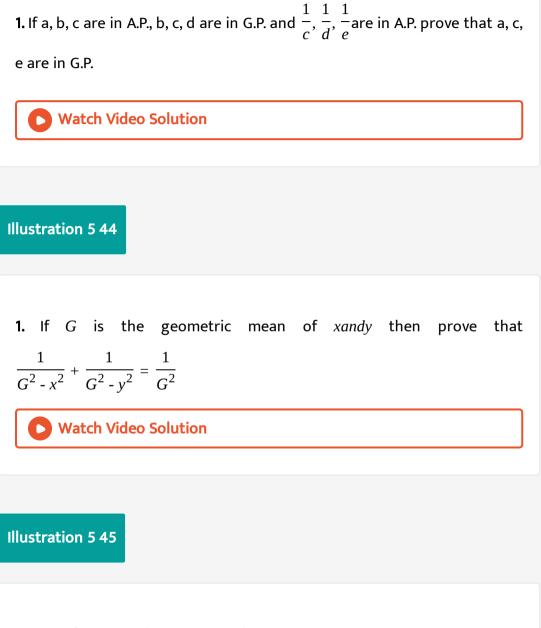
Illustration 5 37

1. Does there exist a geometric progression containing 27,8 and 12 as three of its term ? If it exists, then how many such progressions are possible ?

1. In a sequence of (4n + 1) terms, the first (2n + 1) terms are n A.P. whose common difference is 2, and the last (2n + 1) terms are in G.P. whose common ratio is 0.5 if the middle terms of the A.P. and LG.P. are equal ,then the middle terms of the sequence is $\frac{n \cdot 2n + 1}{2^{2n} - 1}$ b. $\frac{n \cdot 2n + 1}{2^n - 1}$ c. $n \cdot 2^n$ d. none of these







1. Insert four G.M.s between 2 and 486.

Illustration 5 46

1. If A.M. and G.M. between two numbers is in the ratio m:n then prove

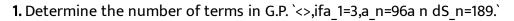
that the numbers are in the ratio
$$\left(m + \sqrt{m^2 - n^2}\right)$$
: $\left(m - \sqrt{m^2 - n^2}\right)$

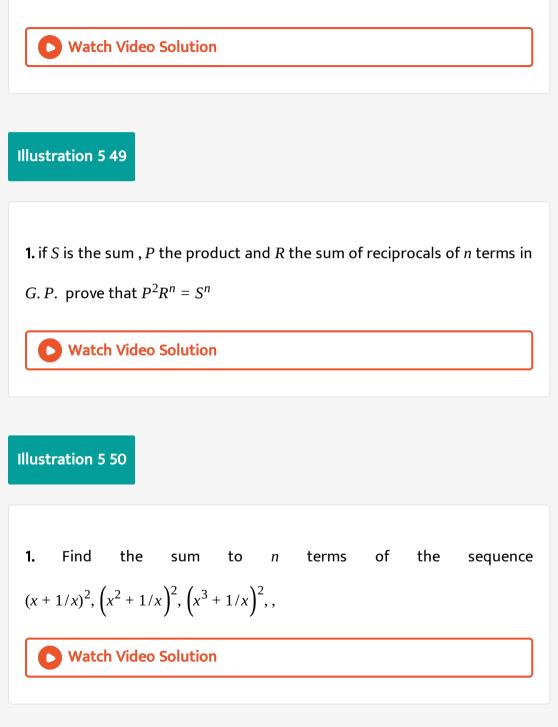
Watch Video Solution

Illustration 5 47

1. If a be one A.M and \boldsymbol{G}_1 and \boldsymbol{G}_2 be then geometric means between b and

c then $G_1^3 + G_2^3 =$





Prove that the sum to *n* terms of the series 1. $11 + 103 + 1005 + is(10/9) \left(10^n - 1\right) + n^2$ Watch Video Solution Illustration 5 52 1. Find the sum of the following series up to n terms: (i) $5 + 55 + 555 + (ii) \cdot 6 + 66 + 666 +$ Watch Video Solution Illustration 5 53

1. Find the sum
$$1 + (1 + 2) + (1 + 2 + 2^2) + (1 + 2 + 2^2 + 2^3) + \dots$$
 To n

terms.

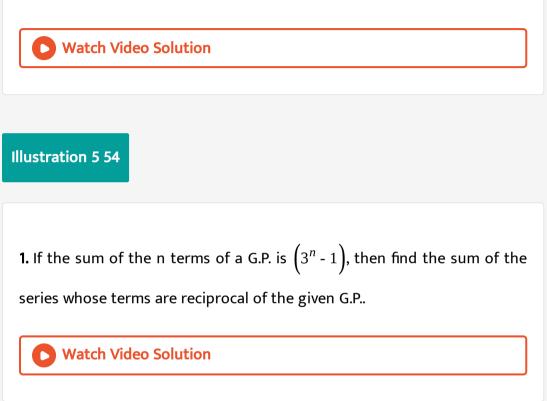


Illustration 5 55

1. Prove that in a sequence of numbers 49,4489,444889,444889 in which every number is made by inserting 48-48 in the middle of previous as indicated, each number is the square of an integer.

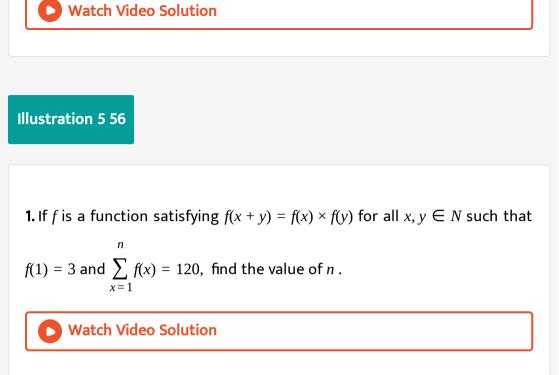
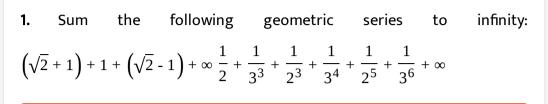


Illustration 5 57

1. Using the sum of G.P., prove that $a^n + b^n(a, b \in N)$ is divisble by a+b for odd natural numbers n. Hence prove that $1^{99} + 2^{99} + \dots 100^{99}$ is divisble by 10100



Watch Video Solution

Illustration 5 59

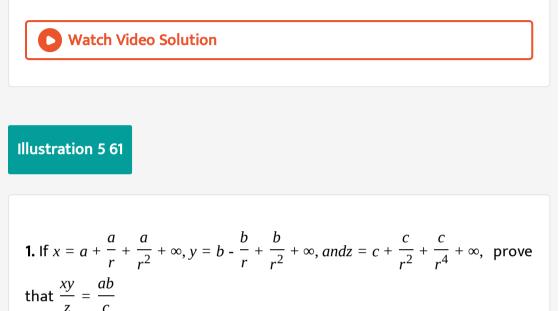
1. The sum of infinite number of terms in G.P. is 20 and the sum of their

squares is 100. Then find the common ratio of G.P.

Watch Video Solution

1. If each term of an infinite G.P. is twice the sum of the terms following it,

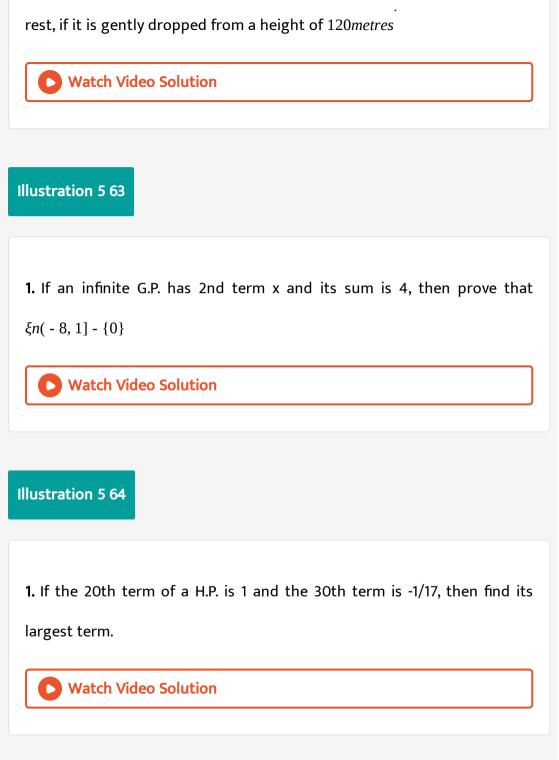
then find the common ratio of the G.P.



Watch Video Solution

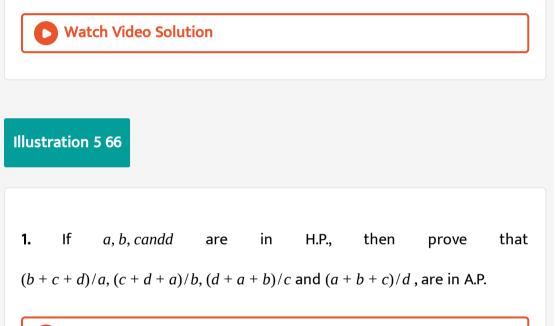
Illustration 5 62

1. After striking a floor a certain ball rebounds $\left(\frac{4}{5}\right)^{th}$ of the height from which it has fallen. Find the total distance that it travels before coming to



1. If
$$\frac{a-x}{px} = \frac{a-y}{qy} = \frac{a-z}{r}$$
 and p , q , and r are in A.P., then prove that x, y, z are

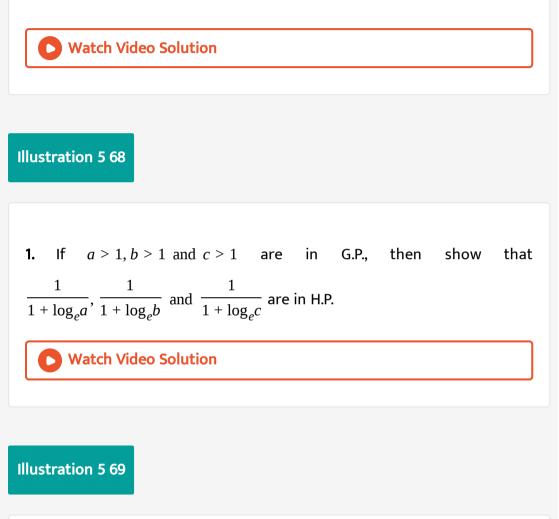
in H.P.



Watch Video Solution

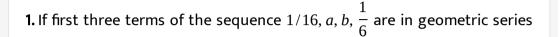
1. The mth term of a H.P is n and the nth term is m. Proves that its rth

term is mn/r

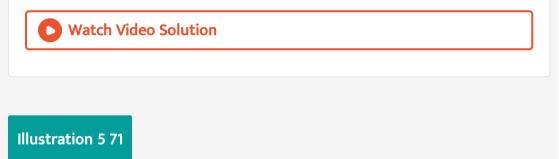


1. If a, b, and c be in G.P. and a + x, b + x, and c + x in H.P. then find the

value of x(a ,b and c are distinct numbers) .



and last three terms are in harmonic series, then find the values of *aandb*



1. if (m + 1)th, (n + 1)th and (r + 1)th term of an AP are in GP.and m, n and r

in HP. . find the ratio of first term of A.P to its common difference

1. Insert four H.M.s between 3/2 and 13/2.

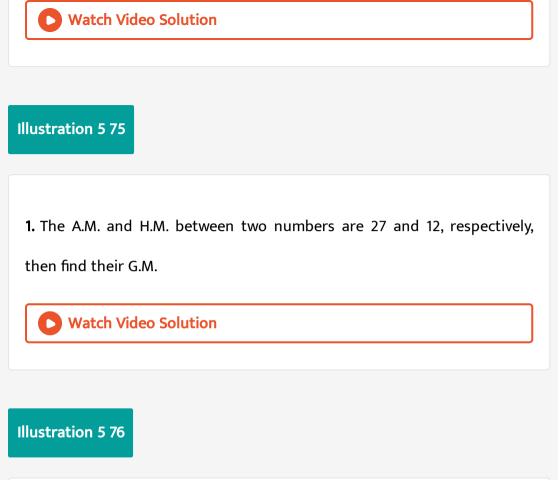
Illustration 5 73

1. If nine arithmetic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that A + 6/H = 5 (where A is any of the A.M.'s and H the corresponding H.M.)

Watch Video Solution

Illustration 5 74

1. Let *a*, *b* be positive real numbers. If aA_1, A_2, b be are in arithmetic progression *a*, G_1, G_2, b are in geometric progression, and *a*, H_1, H_2, b are in harmonic progression, show that $\frac{G_1G_2}{H_1H_2} = \frac{A_1 + A_2}{H_1 + H_2} = \frac{(2a + b)(a + 2b)}{9ab}$



1. If the A.M. between two numbers exceeds their G.M. by 2 and the GM.

Exceeds their H.M. by 8/5, find the numbers.

1. Find the sum

$$2017 + \frac{1}{4} \left(2016 + \frac{1}{4} \left(2015 + \ldots + \frac{1}{4} \left(2 + \frac{1}{4} (1) \right) \ldots \right) \right)$$

Watch Video Solution

Illustration 5 78

1. The sum of 50 terms of the series $1 + 2\left(1 + \frac{1}{50}\right) + 3\left(1 + \frac{1}{50}\right)^2 + is$

given by 2500 b. 2550 c. 2450 d. none of these

D Watch Video Solution

Illustration 5 79

1. Find the sum to ininity of the series $1 - 3x + 5x^2 + 7x^3 + \dots \infty$ when |x|

<1.

Illustration 5 80

1. The sum of the infinite series

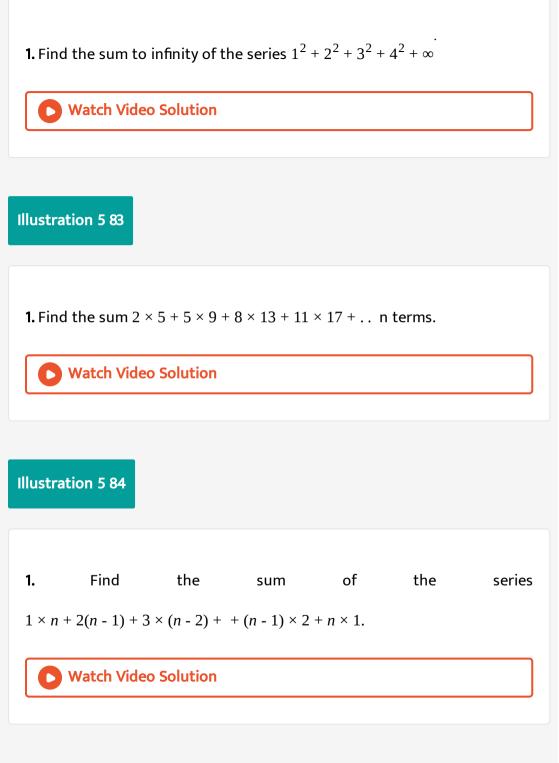
$$1 + \left(1 + \frac{1}{5}\right)\left(\frac{1}{2}\right) + \left(1 + \frac{1}{5} + \frac{1}{5^2}\right)\left(\frac{1}{2^2}\right) + \dots$$

Vatch Video Solution

Illustration 5 81

1. If the sum to infinity of the series $3 + (3 + d)\frac{1}{4} + (3 + 2d)\frac{1}{4^2} + \infty$ is $\frac{44}{9}$,

then find



1. For and odd integer $n \ge 1$, $n^3 - (n - 1)^3 + \dots$

 $+(-1)^{n-1}1^3$

Watch Video Solution

1. Find the sum of the series
$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \text{ up to } n \text{ terms.}$$
Watch Video Solution
Illustration 5 87
1. Find the sum of first n terms of the series
$$1^3 + 3 \times 2^2 + 3^3 + 3 \times 4^2 + 5^3 + 3 \times 6^2 + \text{ when } n \text{ is even } n \text{ is odd}$$

Illustration 5 88

1. If
$$\sum_{r=1}^{n} T_r = n \left(2n^2 + 9n + 13 \right)$$
, then find the sum $\sum_{r=1}^{n} \sqrt{T_r}$.

Watch Video Solution

Illustration 5 89

1. Find the sum to *n* terms of the series 3 + 15 + 35 + 63 +

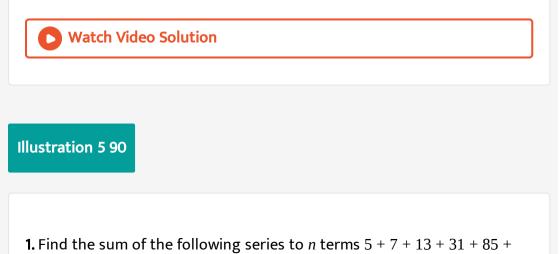


Illustration 5 91

1. Find the
$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{k}{2^{n+k}}$$
.

Illustration 5 92

1. The sum of the products of the ten numbers ± 1 , ± 2 , ± 3 , ± 4 , ± 5

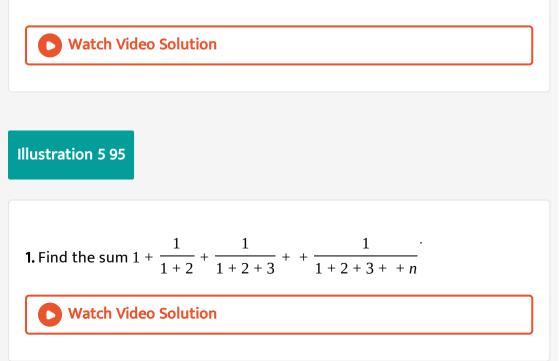
taking two at a time is:

1. Find the
$$\sum \sum_{0 \le i < j \le n} 1$$
.

Watch Video Solution

Illustration 5 94

1. Let the terms $a_1, a_2, a_3, ..., a_n$ be in G.P. with common ratio r. Let S_k denote the sum of first k terms of this G.P.. Prove that $S_{m-1} \times S_m = \frac{r+1}{r}$ SigmaSigma_(i le itj le n)a_(i)a_(j)`



1. Find the sum of the series:

$$\frac{1}{(1\times3)} + \frac{1}{(3\times5)} + \frac{1}{(5\times7)} + \dots + \frac{1}{(2n-1)(2n+1)}$$

Natch Video Solution

Illustration 5 97

1. Find the sum to *n* terms of the series

$$3/(1^2 \times 2^2) + 5/(2^2 \times 3^2) + 7/(3^2 \times 4^2) +$$

Watch Video Solution

1. Find the sum to *n* terms of the series:

$$\frac{1}{1+1^{2}+1^{4}} + \frac{2}{1+2^{2}+2^{4}} + \frac{3}{1+3^{2}+3^{4}} +$$
() Watch Video Solution

Illustration 5 99

1. Find the sum
$$\sum_{r=1}^{n} \frac{r}{(r+1)!}$$
. Also, find the sum of infinite terms.

Watch Video Solution

1. Find the sum
$$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)(r+3)}$$

Also, find $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)(r+3)}$

1. Find the sum
$$\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$$

Watch Video Solution

Illustration 5 102

1. Find the sum of the series
$$\sum_{r=11}^{99} \left(\frac{1}{r\sqrt{r+1} + (r+1)\sqrt{r}} \right)$$

Watch Video Solution

1. Find the sum of the series
$$\frac{1}{3^2+1} + \frac{1}{4^2+2} + \frac{1}{5^2+3} + \frac{1}{6^2+4} + \infty$$

1. Find the sum of firs 100 terms of the series whose general term is given

by
$$T_r = \left(r^2 + 1\right)r!$$
.

Watch Video Solution

Illustration 5 105

1. Find the sum of the series

$$\frac{2}{1 \times 3} + \frac{5}{2 \times 3} \times 2 + \frac{10}{3 \times 4} \times 2^2 + \frac{17}{4 \times 5} \times 2^3 + \rightarrow n \text{ terms.}$$
Watch Video Solution

1. about to only mathematics Watch Video Solution Solved Examples 5 2 **1.** Prove that x=1111, 91times is composite number. Watch Video Solution Solved Examples 5 3 **1.** If a,b,c are in G.P. and $\log_{c} a$, $\log_{b} c$, $\log_{a} b$ are in A.P., then the common differenec of the A.P. is Watch Video Solution

1. The values of xyz is $\frac{15}{2}$ or $\frac{18}{5}$ according as the series a, x, y, z, b is an AP

or HP. Find the values of a&b assuming them to be positive integer.

Watch Video Solution

Solved Examples 5 5

1. Let p(> 0) be the first of the n arthimatic means betweens between two numbers and q(> 0) the first of n harmonic means between the same numbers. Then prove that

$$q \notin \left(p, \left(\frac{n+1}{n-1}\right)^2 p\right)$$
 and $p \notin \left(\left(\frac{n-1}{n+1}\right)^2 q, q\right)$

Watch Video Solution

1. If
$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 $(n \in N)$, then prove that
 $S_1 + S_2 + \dots + S_{(n-1)} = (nS((n)) - n)$ or $(nS((n-1)) - n + 1)$

Watch Video Solution

Solved Examples 5 7

1. The value of the expression
1.
$$(2 - \omega)$$
. $(2 - \omega^2) + 2$. $(3 - \omega)(3 - \omega^2) + ... + (n - 1)(n - \omega)(n - \omega^2)$, where

omega is an imaginary cube root of unity, is......

Watch Video Solution

1. Find the value of
$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (\in e_j \neq k) \frac{1}{3^i 3^j 3^k}.$$

Solved Examples 5 9

1. Find the sum
$$\sum_{j=1}^{10} \sum_{i=1}^{10} i \times 2^{j}$$

Solved Examples 5 10

1. Coefficient of
$$x^{18}$$
 in $(1 + x + 2x^2 + 3x^3 + + 18x^{18})^2$ equal to 995 b. 1005

c. 1235 d. none of these

Watch Video Solution

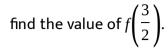
1. Let
$$a_1, a_2, \dots, a_n$$
 be real numbers such that
 $\sqrt{a_1} + \sqrt{a_2 - 1} + \sqrt{a_3 - 2} + + \sqrt{a_n - (n - 1)} = \frac{1}{2} (a_1 + a_2 + \dots + a_n) - (n \frac{n - 3}{4})$
then find the value of $\sum_{i=1}^{100} a_i$

Watch Video Solution

Solved Examples 5 12

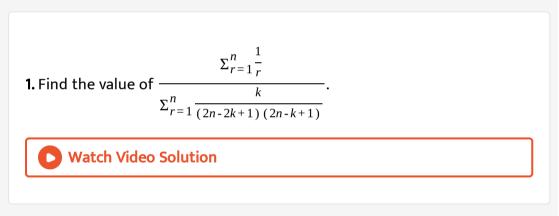
1. A sequence of numbers A_n , n = 1, 2, 3 is defined as follows : $A_1 = \frac{1}{2}$ and for each $n \ge 2$, $A_n = \left(\frac{2n-3}{2n}\right)A_{n-1}$, then prove that $\sum_{k=1}^n A_k < 1, n \ge 1$

1. If f:R \rightarrow R is continous such that f(x)- $f\left(\frac{x}{2}\right) = \frac{4x^2}{3}$ for all ξnR and f(0)=0,



Watch Video Solution

Solved Examples 5 14



1. Find the sum
$$\sum_{n=1}^{\infty} \frac{6^n}{(3^n - 2^n)(3^{n+1} - 2^{n+1})}$$

Concept Application Exericise 51

1. Write the first five terms of the following sequence amd obtain the corresponding series.

$$a_1 = a_2 = 2, a_n = a_{n-1} - 1, n > 2$$

Watch Video Solution

2. If
$$a_{n+1} = \frac{1}{1 - a_n}$$
 for $n \ge 1$ and $a_3 = a_1$. then find the value of $(a_{2001})^{2001}$

Watch Video Solution

3. Let
$$\{a_n\}(n \ge 1)$$
 be a sequence such that $a_1 = 1$, $and 3a_{n+1} - 3a_n = 1f$ or $alln \ge 1$. Then find the value of a_{2002} .

Concept Application Exericise 5 2

1. If the pth term of an A.P. is q and the qth term isp, then find its rth term.

2. If x is a positive real number different from 1, then prove that the numbers $\frac{1}{1 + \sqrt{x}}, \frac{1}{1 - x}, \frac{1}{1 - \sqrt{x}}, \dots$ are in A.P. Also find their common difference.

Watch Video Solution

3. एक समांतर श्रेणी के प्रथम चार पदों का योगफल 56 है | अंतिम चार पदों का योगफल 112 है

| यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात किजिए |

View Text Solution

4. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive of it. Prove that the resulting sum is the squares of an integer.

Watch Video Solution

5. Divide 28 into four parts in an A.P. so that the ratio of the product of

first and third with the product of second and fourth is 8:15.

Watch Video Solution

6. If
$$(b - c)^2$$
, $(c - a)^2$, $(a - b)^2$ are in A.P. prove that $\frac{1}{b - c}$, $\frac{1}{c - a}$, $\frac{1}{a - b}$, are in

A.P.

7. Find the number of common terms to the two sequences 17,21,25,...,417

and 16,21,26,...,466.

8. If a, b, c, d are distinct integers in an A.P. such that $d = a^2 + b^2 + c^2$,

then find the value of a + b + c + c

Watch Video Solution

9. यदि $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए |

View Text Solution

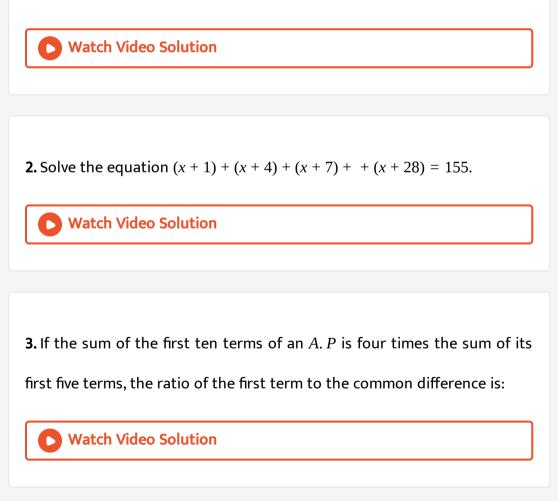
10. *n* arlithmetic means are inserted between *xand*2*y* and then between

2xandy If the rth means in each case be equal, then find the ratio x/y

Concept Application Exericise 5 3

1. If $S_n = nP + \frac{n(n-1)}{2}Q$, where S_n denotes the sum of the first *n* terms of

an A.P., then find the common difference.



4. If the sum of n, 2n, 3n terms of an AP are S_1 , S_2 , S_3 respectively . Prove

that
$$S_3 = 3(S_2 - S_1)$$

5. Let S_n denote the sum of first *n* terms of an A.P. If $S_{2n} = 3S_n$, then find

the ratio S_{3n}/S_n

Watch Video Solution

6. The ratio of the sum of *mandn* terms of an A.P. is $m^2: n^2$ Show that the

ratio of the mth and nth terms is (2m - 1): (2n - 1)

7. Find the sum to *n* terms of the series $1^2 + 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots$

8. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5° Find the number of sides of the polygon

Watch Video Solution

9. 150 workers were engaged to finish a piece of work in a certain number of days. Four workers dropped the second day, four more workers dropped the third day and so on. It takes 8 more days to finish the work now. Find the number of days in which the work was completed.

Concept Application Exericise 5 4

1. The first and second term of a G.P. are x^{-4} and x^n respectively. If x^{52} is the 8th term, then find the value of n.

2. If a, b, and c are respectively, the pth, qth , and rth terms of a G.P.,

show that $(q - r)\log a + (r - p)\log b + (p - q)\log c = 0$.

Watch Video Solution

3. If *p*, *q*, *andr* are inA.P., show that the pth, qth, and rth terms of any G.P. are in G.P.

4. यदि a, b, c, d गुणोत्तर श्रेणी में है, तो सिद्ध किञिए कि
$$(a^n + b^n), (b^n + c^n), (c^n + d^n)$$
 गुणोत्तर श्रेणी में है |

5. Let T_r denote the rth term of a G.P. for r = 1, 2, 3, If for some positive integers *mandn*, we have $T_m = 1/n^2$ and $T_n = 1/m^2$, then find the value of $T_{m+n/2}$

Watch Video Solution

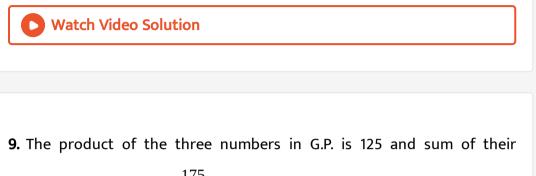
6. If *a*, *b*, *c*, *d* are in G.P., show that:

$$(ab + bc + cd)^2 = (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)$$

Watch Video Solution

7. The sum of three numbers in GP. Is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

8. If x, y, andz are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z}y^{z-x}z^{x-y}$ is equal to xyz b. 0 c. 1 d. none of these



product taken in pairs is $\frac{175}{2}$. Find them.

Watch Video Solution

10. Find the product o three geometric means between 4 and 1/4.

11. Find two numbers whose arithmetic mean is 34 and the geometric mean is 16.

12. If the arithmetic means of two positive number a and b (a > b) is twice

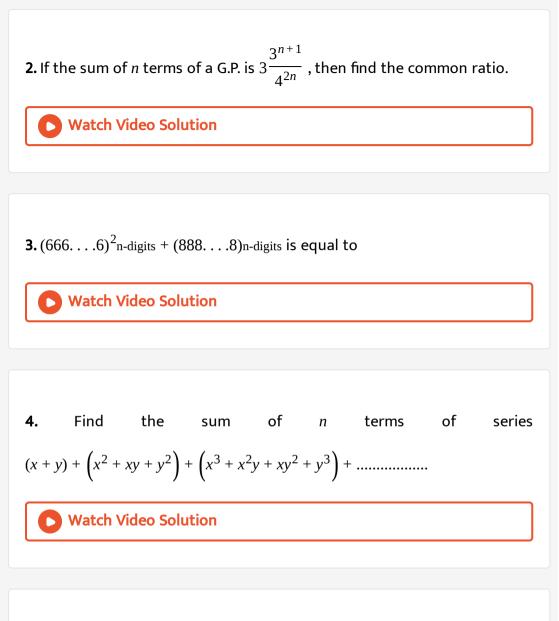
their geometric mean, then find the ratio a: b

13. Let
$$a_1, a_2, a_3$$
and $b_1, b_2, b_3...$ be two geometric progressions with $a_1 = 2\sqrt{3}$ and $b_1 = \frac{52}{9}\sqrt{3}$ If $3a_{99}b_{99} = 104$ then find the value of $a_1b_1 + a_2b_2 + \ldots + a_nb_n$

Watch Video Solution

Concept Application Exericise 5 5

 किसी गुणोत्तर श्रेणी के पदों की संख्या सम है | यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात किजिए |



5. Find the sum of n terms of the series 4/3 + 10/9 + 28/27 + ...

6. If
$$p(x) = (1 + x^2 + x^4 + x^{2n-2})/(1 + x + x^2 + x^{n-1})$$
 is a polomial in x

, then find possible value of n

7.

Let

$$A_n = \left(\frac{3}{4}\right) - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots + (-1)^{n-1} \left(\frac{3}{4}\right)^n \text{ and } B_n = 1 - A_n \cdot f \in dthe \le 3$$

n_0, so that B_ngtA_n Aangen_0`

8. If the sum of the series
$$\sum_{n=0}^{\infty} r^n$$
, $|r| < 1$ is *s*, then find the sum of the series $\sum_{n=0}^{\infty} r^{2n}$.
Watch Video Solution

9. Prove that $6^{1/2} \times 6^{1/4} \times 6^{1/8} = 6$.

10. The sum to *n* terms of series

$$1 + \left(1 + \frac{1}{2} + \frac{1}{2^2}\right) + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}\right) + \text{ is}$$

Vatch Video Solution

Concept Application Exericise 5 6

1. The 8th and 14th term of a H.P. are 1/2 and 1/3, respectively. Find its 20th

term. Also, find its general term.

2. If the first two terms of a H.P. are 2/5 and 12/23 respectively. Then,

largest term is

3. If a, b, c are in G.P. and a - b, c - a, andb - c are in H.P., then prove that

a + 4b + c is equal to 0.

Watch Video Solution

4. If x,y and z are in A.P ax,by and cz in G.P and a, b, c in H.P then prove that

 $\frac{x}{z} + \frac{z}{x} = \frac{a}{c} + \frac{c}{a}$

Watch Video Solution

5. If a,b,c and the d are in H.P then find the value of $\frac{a^{-2} - d^{-2}}{b^{-2} - c^{-2}}$

6. If
$$x = \sum_{n=0}^{\infty} a^n$$
, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$, where a , b , and c are in A.P. and

|a| < , |b| < 1, and |c| < 1, then prove that x, yandz are in H.P.

_			
\\/atch	Video	Cal	lution
Watch	video	20	ιμιιοπ

7. If x, 1, andz are in A.P. and x, 2, andz are in G.P., then prove that x, and4, z

are in H.P.

Watch Video Solution

8. If $a, a_1, a_2, a_3, a_{2n}, b$ are in A.P. and $a, g_1, g_2, g_3, g_{2n}, b$. are in G.P. and h

s the H.M. of *aandb*, then prove that $\frac{a_1 + a_{2n}}{g_1 g_{2n}} + \frac{a_2 + a_{2n-1}}{g_1 g_{2n-1}} + + \frac{a_n + a_{n+1}}{g_n g_{n+1}} = \frac{2n}{h}$

9. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equil to the sum of the squares of their reciprocals, then prove that $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in H.P.

Watch Video Solution

10. The A.M. of two given positive numbers is 2. If the larger number is increased by 1, the G.M. of the numbers becomes equal to the A.M. of the given numbers. Then find the H.M.

11. The harmonic mean between two numbers is 21/5, their A.M. 'A' and G.M. 'G' satisfy the relation $3A + G^2 = 36$. Then find the sum of square of numbers.

1. If $\alpha \neq 1$ is a nth root of unity then $S = 1 + 3\alpha + 5\alpha^2 + \dots$ upto n terms is equal to Watch Video Solution **2.** Find the sum of *n* terms of the series $1 + \frac{4}{5} + \frac{7}{5^2} + 10 + 5^3 + \frac{7}{5^2}$ Watch Video Solution **3.** Find the sum $\frac{3}{2} - \frac{5}{6} + \frac{7}{18} - \frac{9}{54} + \infty$ Watch Video Solution **4.** Find the sum $\frac{1^2}{2} + \frac{3^2}{2^2} + \frac{5^2}{2^3} + \frac{7^2}{2^4} + \dots \infty$

1. Find the sum to n terms of the series : $\begin{array}{c}
\vdots\\
1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 +
\end{array}$

Watch Video Solution

2. Find the sum of the series $1^2 + 3^2 + 5^2 + \rightarrow n$ terms.

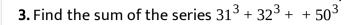
A.
$$\frac{n(2n-1)(2n+1)}{3}$$

B.
$$\frac{n(2n+1)(2n+1)}{3}$$

C.
$$\frac{n(2n-1)(2n-1)}{3}$$

D.
$$\frac{n(2n+1)(2n-1)}{3}$$

Answer: A



4. Find the sum
$$1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) +$$
 up to 22nd term.

Watch Video Solution

5. The sum of the first n terms of the series $1^2 + 2.2^2 + 3^2 + 2.4^2 + ...$ is $\frac{n(n+1)^2}{2}$ when n is even. Then the sum if n is odd , is

Watch Video Solution

6. Find the sum $11^2 - 1^2 + 12^2 - 2^2 + 13^2 - 3^2 + \dots + 20^2 - 10^2$

8. Find the sum
$$\sum_{j=1}^{n} \sum_{i=1}^{n} I \times 3^{j}$$

Watch Video Solution

9. If S_n' the \sum offirst terms of an AP is given by $2n^2 + n$, then find its nth term

10. Find the value of
$$\frac{\Sigma\Sigma}{1 \le i \le j}$$
 $i \times \left(\frac{1}{2}\right)^j$

Watch Video Solution

Concept Application Exericise 5 9

1. Find the sum of infinite series

$$\frac{1}{1\times3\times5} + \frac{1}{3\times5\times7} + \frac{1}{5\times7\times9} + \dots$$

Watch Video Solution

2. If
$$\sum_{r=1}^{n} T_r = \frac{n}{8}(n+1)(n+2)(n+3)$$
 then find $\sum_{r=1}^{n} \frac{1}{T_r}$

Watch Video Solution

3. Find the sum
$$\sum_{n=1}^{\infty} \frac{3n^2 + 1}{(n^2 - 1)^3}$$

Watch Video Solution

4. Find the sum
$$\sum_{r=1}^{\infty} \frac{r}{r^4 + \frac{1}{4}}$$

5. Find the sum

$$\frac{3}{1!+2!+3!} + \frac{4}{2!+3!+4!} + \dots + \frac{1000}{998!+999!+1000!}$$

6. Let

$$S = \frac{\sqrt{1}}{1 + \sqrt{1} + \sqrt{2}} + \frac{\sqrt{2}}{1 + \sqrt{2} + \sqrt{3}} + \frac{\sqrt{3}}{1 + \sqrt{3} + \sqrt{4}} + \dots + \frac{\sqrt{n}}{1 + \sqrt{n} + (\sqrt{n} + 1)} = 1$$

Then find the value of n.

Watch Video Solution

7. Find the sum
$$\frac{1 \times 2}{3!} + \frac{2 \times (2)^2}{4!} + \frac{3 \times (2)^3}{5!} + \ldots + \frac{20 \times (2)^{20}}{22!}$$

Watch Video Solution

8. Find the sum $\sum_{r=1}^{\infty} \frac{r-2}{(r+2)(r+3)(r+4)}$

9. Find the sum of the series `1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x).....

[1-(n-1)x].

Watch Video Solution

Exerciese Single Correct Answer Type

1. If a,b,c are in A.P., then $a^3 + c^3 - 8b^3$ is equal to

A. 2 abc

B. 3abc

C. 4abc

D. - 6abc

Answer: D

2. If three positive real numbers a, b, c are in A.P such that abc = 4, then the minimum value of b is a)2^{1/3} b) 2^{2/3} c) 2^{1/2} d) 2^{3/23}

A. 2^{1/3}

B. $2^{2/3}$

 $C. 2^{1/2}$

D. 2^{3/2}

Answer: B

Watch Video Solution

3. If $\log_2(5.2^x + 1)$, $\log_4(2^{1-x} + 1)$ and 1 are in A.P,then x equals

A. $\log_2 5$

B. 1 - log₅2

 $C. \log_5 2$

D. 1 - log₂5

Answer: D

Watch Video Solution

4. The largest term common to the sequences 1, 11, 21, 31, \rightarrow 100 terms

and 31, 36, 41, 46, \rightarrow 100 terms is 381 b. 471 c. 281 d. none of these

A. 381

B.471

C. 281

D. 521

Answer: D

5. In any A.P. if sum of first six terms is 5 times the sum of next six terms then which term is zero?

A. 10 th

B. 11 th

C. 12 th

D. 13 th

Answer: B

Watch Video Solution

6. If the sides of a right angled triangle are in A.P then the sines of the acute angles are

A.
$$\frac{3}{5}, \frac{4}{5}$$

B. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$
C. $\frac{1}{2}, \frac{\sqrt{3}}{2}$

D. none of these

Answer: A

Watch Video Solution

7. If $a, \frac{1}{b}, and \frac{1}{p}, q, \frac{1}{r}$ from two arithmetic progressions of the common difference, then a, q, c are in A.P. if p, b, r are in A.P. b. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are in A.P. c.

p, b, r are in G.P. d. none of these

A. p,b,r are in A.P

B.
$$\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$$
 are $\in A. P$

C. p,b,r are in G.P

D. none of these

Answer: B

8. Suppose that $F(n + 1) = \frac{2f(n) + 1}{2}$ for n = 1, 2, 3,....and f(1)= 2 Then F(101)

equals = ?

A. 50

B. 52

C. 54

D. none of these

Answer: B

9.	Consider	an	A. P. a_1, a_2, a_3, \dots	such	that
a ₃	$+a_5 + a_8 = 11$	and $a_4 + a_2 =$	- 2 then the value of	$a_1 + a_6 + a_7$ is.	
	A8				
	B. 5				
	C. 7				

Answer: C

10. If a_1, a_2, a_3, \ldots are in A.P., then a_p, a_q, a_r are in A.P. if p,q,r are in

A. A.P

B. G.P

C. H.P

D. none of these

Answer: A

11. Let $\alpha, \beta \in R$ If α, β^2 are the roots of quadratic equation $x^2 - px + 1 = 0$ and α^2, β is the roots of quadratic equation $x^2 - qx + 8 = 0$, then the value of r if $\frac{r}{8}$ is the arithmetic mean of *pandq*, is

A. $\frac{83}{2}$ B. 83 C. $\frac{83}{8}$ D. $\frac{83}{4}$

Answer: B

Watch Video Solution

12. If the sum of m terms of an A.P. is same as the sum of its n terms, then

the sum of its (m+n) terms is

A. mn

B. - mn

C. 1/mn

D. 0

Answer: D

13. If
$$S_n$$
, denotes the sum of n terms of an $A.P.$, then
 $S_{n+3} - 3S_{n+2} + 3S_{n+1} - S_n =$
A. $2s_n$
B. S_{n+1}
C. $3S_n$
D. 0

Answer: D

14. The first term of an A.P. is a and the sum of first p terms is zero, show

that the sum of its next q terms is $\frac{-a(p+q)q}{p-1}$.

A.
$$\frac{-a(p+q)p}{q+1}$$

B.
$$\frac{a(q+q)p}{P+1}$$

C.
$$\frac{-a(p+q)q}{p-1}$$

D. none of these

Answer: C

Watch Video Solution

15. If S_n denotes the sum of first *n* terms of an A.P. and $\frac{S_{3n} - S_{n-1}}{S_{2n} - S_{2n-1}} = 31$,

then the value of *n* is 21 b. 15 c.16 d. 19

A. 21

B. 15

C. 16

Answer: B

16. The number of terms of an A.P. is even, the sum of odd terms is 24, of the even terms is 3, and the last term exceeds the first by 10 1/2 find the number of terms and the series.

A. 8 B. 4 C. 6 D. 10

Answer: A

17. The number of terms of an A.P is even : the sum of the odd terms is 24, and of the even terms is 30, and the last term exceeds the first by 10/2, then the number of terms in the series is

A. 8 B. 4 C. 6

D. 10

Answer: D

18. Concentric circles of radii 1, 2, 3, ..., 100*cm* are drawn. The interior of the smallest circle is colored red and the angular regions are colored alternately green and red, so that no two adjacent regions are of the same color. Then, the total area of the green regions in sq. cm is equal to 1000π b. 5050π c. 4950π d. 5151π

A. 1000 π

B. 5050 π

C. 4950 π

D. 5151 π

Answer: B

Watch Video Solution

19. If
$$a_1, a_2, a_3, \dots, a_{2n+1}$$
 are in A.P then

$$\frac{a_{2n+1} - a_1}{a_{2n+1} + a_1} + \frac{a_2n - a_2}{a_{2n} + a_2} + \dots + \frac{a_{n+2} - a_n}{a_{n+2} + a_n}$$
 is equal to
A. $\frac{n(n+1)}{2} \times \frac{a_2 - a_1}{a_{n+1}}$
B. $\frac{n(n+1)}{2}$
C. $(n+1)(a_2 - a_1)$

D. none of these

Answer: A

20. If a_1, a_2, \dots, a_n are in A.P. with common difference $d \neq 0$, then the sum of the series sin $d \left[\sec a_1 \sec a_2 + \dots \cdot \sec a_{n-1} \sec a_n \right]$ is

A. $\cos eca_n$ - $\cos eca$

B. $\cot a_n$ - $\cot a$

C. $\sec a_n - \sec a_1$

D. $\tan a_n$ - $\tan a_1$

Answer: D

Watch Video Solution

21. ABC is a right-angled triangle in which $\angle B = 90^{\circ}$ and BC = a. If n points $L_1, L_2, ..., L_n$ on AB is divided in n+1 equal parts and $L_1M_1, L_2M_2, ..., L_nM_n$ are line segments parallel to BC and

 M_1,M_2,\ldots,M_n are on AC, then the sum of the lengths of $L_1M_1,L_2M_2,\ldots,L_nM_n \, {\rm is}$

A.
$$\frac{a(n + 1)}{2}$$

B. $\frac{a(n - 1)}{2}$
C. $\frac{an}{2}$

D. none of these

Answer: C

Watch Video Solution

22. If a, b, c, d are in G.P, then $(b - c)^2 + (c - a)^2 + (d - b)^2$ is equal to `

A. $(a - d)^2$

B. (*ad*)²

C. $(a + d)^2$

D. $(a/d)^2$

Answer: A

23. Let $\{t_n\}$ be a sequence of integers in G.P. in which $t_4: t_6 = 1:4$ and $t_2 + t_5 = 216$. Then t_1 is (a).12 (b). 14 (c). 16 (d). none of these

A. 12

B. 14

C. 16

D. none of these

Answer: A

24. if x , 2y and 3z are in AP where the distinct numbers x, yand z are in gp.

Then the common ratio of the GP is

A. 3 B. $\frac{1}{3}$ C. 2 D. $\frac{1}{2}$

Answer: B

Watch Video Solution

25. If a,b, and c are in A.P and b-a,c-b and a are in G.P then a:b:c is

A.1:2:3

B.1:3:5

C.2:3:4

D.1:2:4

Answer: A

26. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality `0

A. $0 < r < \sqrt{2}$ B. $1 < r < \sqrt{2}$ C. 1 < r < 2

D. none of these

Answer: B

27. If x, y, z are in G.P. and $a^x = b^y = c^z$, then $(\log)_b a = (\log)_a c$ b.

 $(\log)_c b = (\log)_a c c. (\log)_b a = (\log)_c b d.$ none of these

A. $\log_b a = \log_a c$

- $B.\log_c b = \log_a c$
- $C. \log_b a = \log_b$
- D. none of these

Answer: C

Watch Video Solution

28. The number of terms common between the series 1+ 2 + 4 + 8..... to 100 terms and 1 + 4 + 7 + 10 +... to 100 terms is

A. 6

B.4

C. 5

D. none of these

Answer: C

29. If $a^2 + b^2$, ab + bc, $andb^2 + c^2$ are in G.P., then a, b, c are in a. A.P. b. G.P.

c. H.P. d. none of these

A. A.P.

B. G.P

C. H.P

D. none of these

Answer: B

Watch Video Solution

30. In a G.P. the first, third, and fifth terms may be considered as the first, fourth, and sixteenth terms of an A.P. Then the fourth term of the A.P., knowing that its first term is 5, is 10 b. 12 c. 16 d. 20

A. 10	
B. 12	
C. 16	
D. 20	

Answer: D

Watch Video Solution

31. If the pth ,qth and rth terms of an AP are in G.P then the common ration of the GP is

A.
$$p \frac{r}{q^2}$$

B. $\frac{r}{p}$
C. $\frac{q+r}{p+q}$
D. $\frac{q-r}{p-q}$

Answer: D

32. If pth, qth , rth and sth terms of an AP are in GP then show that (p-q),

(q-r), (r-s) are also in GP

A. A.P

B. G.P

C. H.P

D. none of these

Answer: B

Watch Video Solution

33. If *a*, *b*, *andc* are in G.P. and *x*, *y*, respectively, are the arithmetic means

between a, b, andb, c , then the value of $\frac{a}{x} + \frac{c}{y}$ is 1 b. 2 c. 1/2 d. none of

these

A. 1

B. 2

C. 1/2

D. none of these

Answer: B

Watch Video Solution

34. If *a*, *bandc* are in A.P., and *pandp'* are respectively, A.M. and G.M. between *aandbwhileq*, *q'* are , respectively, the A.M. and G.M. between *bandc*, then $p^2 + q^2 = p'^2 + q'^2$ b. pq = p'q' c. $p^2 - q^2 = p'^2 - q'^2$ d. none of these

A. $p^2 + q^2 = P'^2 + q'^2$ B. pq = p'q'C. $p^2 - q^2 = p'^2 - q'^2$

D. none of these

Answer: C

35. If
$$(1 + x)(1 + x^2)(1 + x^4)...(1 + x^{128}) = \sum_{r=0}^n x^r$$
, then n is equal is

A. 256

B. 255

C. 254

D. none of these

Answer: B

36. If
$$(1 - p)(1 + 3x + 9x^2 + 27x^3 + 81x^4 + 243x^5) = 1 - p^6, p \neq 1$$
, then the value of $\frac{p}{x}$ is
a. $\frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2

A.
$$\frac{1}{3}$$

B. 3
C. $\frac{1}{2}$
D. 2

Answer: B

37. Consider the ten numbers ar, ar^2 , ar^3 , ar^{10} If their sum is 18 and the sum of their reciprocals is 6, then the product of these ten numbers is 81 b. 243 c. 343 d. 324

A. 81

B. 243

C. 343

D. 324

Answer: B

Watch Video Solution

38. If *x*, *y*, *andz* are distinct prime numbers, then (a).*x*, *y*, *andz* may be in A.P. but not in G.P. (b)*x*, *y*, *andz* may be in G.P. but not in A.P. (c).*x*, *y*, *andz* can neither be in A.P. nor in G.P. (d).none of these

A. x,y and z may be in A.P but not in G.P

B. x,y and z may be in G.P but not in A.P

C. x,y and z can neither be in

D. none of these

Answer: A

a = 111.....1 55 times, *b* = 1 + 10 + 10² + 10³ + 10⁴ and *c* = 1 + 10⁵ + 10¹⁰ + . + 2

then prove that a=bc

A. a+b+c

B. a=bc

C. b=ac

D. c=ab

Answer: B

40. Let a_n be the nth therm of a G.P of positive numbers .Let $\Sigma_{n=1}^{100} a_{2n} = \alpha$ and $\Sigma_{n=1}^{100} a_{an-1} = \beta$ then the common ratio is

A. α/β

B. β/α

C. $\sqrt{\alpha/\beta}$

D. $\sqrt{\beta/\alpha}$

Answer: A

Watch Video Solution

41. The sum of 20 terms of a series of which every even term is 2 times the term before it, every odd term is 3 times the term before it, the first term

being unity is a.
$$\binom{2}{7}$$
 $\binom{6^{10}}{5^{10}} = 1$ b. $\binom{3}{7}$ $\binom{6^{10}}{5^{10}} = 1$ c. $\binom{3}{5}$ $\binom{6^{10}}{5^{10}} = 1$ d. none of

these

A.
$$\left(\frac{2}{7}\right)\left(6^{10}-1\right)$$

B. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$
C. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$

D. none of these

Answer: C

42. Let $a \in (0, 1)$ satisfies the equation $a^{2008} - 2a + 1 = 0$ values(s) $\rightarrow S$ is

2010 b. 2009 c. 2008 d. 2

A. 2010

B. 2009

C. 2008

D. 2

Answer: A

43. In a geometric series, the first term is a and common ratio is r If S_n

n

denotes the sum of the terms and $U_n = \sum_{n=1}^{\infty} S_n$, then $rS_n + (1 - r)U_n$ equals

(a)0 b. n c. na d. nar

- A. 0
- B. n
- C. na
- D. nar

Answer: C

Watch Video Solution

44. Let *S* ⊂ (0, π) denote the set of values of *x* satisfying the equation 8¹ + |cos*x*| + cos²*x* + | cos^{3*x*| → ∞} = 4³. Then, *S* = { $\pi/3$ } b. { $\pi/3, 2\pi/3$ } c. { - $\pi/3, 2\pi/3$ } d. { $\pi/3, 2\pi/3$ }

A. {*π*/3}

B. $\{\pi/6, 5\pi/6\}$

C. { $\pi/3$, 5 $\pi/6$ }

D. { $\pi/3$, $2\pi/3$ }

Answer: D

Watch Video Solution

45. If
$$||a| < 1$$
 and $|b| < 1$ then the sum of the series
 $1 + (1 + a)b + (1 + a + a^2)b^2 + (1 + a + a^2 + a^3)b^3 + \dots$ is
A. $\frac{1}{(1 - a)(1 - b)}$
B. $\frac{1}{(1 - a)(1 - ab)}$
C. $\frac{1}{(1 - b)(1 - ab)}$
D. $\frac{1}{(1 - a)(1 - b)(1 - ab)}$

Answer: C

46. The value of 0. $2^{\log \sqrt{5}\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{$

A. 4

B. log 4

C. log 2

D. none of these

Answer: A

Watch Video Solution

47. If
$$x = 9^{\frac{1}{3}}9^{\frac{1}{9}}9^{\frac{1}{27}}... \rightarrow \infty$$
, $y = 4^{\frac{1}{3}}4^{-\frac{1}{9}}4^{\frac{1}{27}}... \rightarrow \infty$ and $z = \sum_{r=1}^{\infty} (1+i)^{-r}$

then , the argument of the complex number w = x + yz is

A. 0

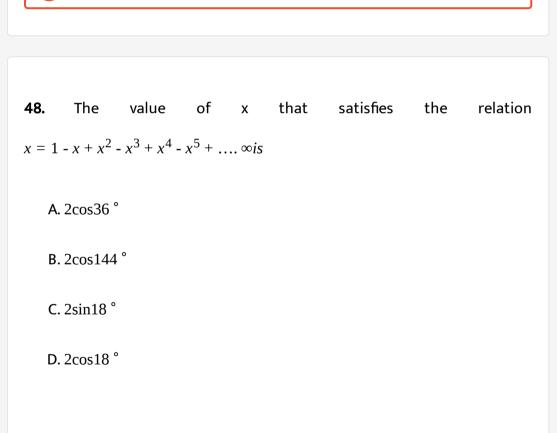
$$\mathsf{B}.\,\pi\,-\,\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$$

C.
$$-\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$$

D. $-\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Watch Video Solution

Answer: C



Answer: C

49. If S dentes the sum to infinity and S_n the sum of n terms of the series

 $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots, \text{ such that } S - S_n < \frac{1}{1000} \text{ then the least value of n is}$ A. 8 B. 9 C. 10 D. 11

Answer: D

50. The first term of an infinite geometric series is 21. The second term and the sum of the series are both positive integers. Then which of the following is not the possible value of the second term a. 12 b. 14 c. 18 d. none of these

B. 14

C. 18

D. none of these

Answer: D

Watch Video Solution

51. The sum of an infinite G.P. is 57 and the sum of their cubes is 9457,

find the G.P.

A. 1/3

B.2/3

C. 1/6

D. none of these

Answer: B

52. If S_p denotes the sum of the series $1 + r^p + r^{2p} + \rightarrow \infty ands_p$ the sum of the series $1 - r^{2p}r^{3p} + \rightarrow \infty$, |r| < 1, then $S_p + s_p$ in term of S_{2p} is $2S_{2p}$ b. 0 c. $\frac{1}{2}S_{2p}$ d. $-\frac{1}{2}S_{2p}$ A. $2S_{2p}$ B. 0 c. $\frac{1}{2}S_{2p}$ D. $-\frac{1}{2}S_{2p}$

Answer: A

Watch Video Solution

53. If the sum to infinity of the series $1 + 2r + 3r^2 + 4r^3 + is 9/4$, then value of *r* is 1/2 b. 1/3 c. 1/4 d. none of these

A. 1/2

B. 1/3

C. 1/4

D. none of these

Answer: B

Watch Video Solution

54. Find the sum of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$

A. 7/16

B.5/16

C. 105/64

D. 35/16

Answer: D

55. The sum of 0.2 + 0.004 + 0.00006 + 0.000008 + ... to ∞ is

A.	200
	891
п	2000
Β.	9801
~	1000
C.	9801
D.	2180
	9801

Answer: D

56.	The	positive	integer	n	for	which		
$2 \times 2^{2} \times + 3 \times 2^{3} + 4 \times 2^{4} + n \times 2^{n} = 2^{n+10}$ is 510 b. 511 c. 512 d. 513								
A. 5	510							
B. 5	511							
C. 5	512							
D. 5	513							

Answer: D

57. If ω is a complex nth root of unity, then $ar + b_r = 1\omega^{r-1}$ is equal to

A.
$$(n(n + 1))a\frac{)}{a}$$

B. $\frac{nb}{1 - n}$
C. $\frac{na}{\omega - 1}$

D. none of these

Answer: C

Watch Video Solution

58. about to only mathematics

A.
$$\frac{1}{2}a(a-1)^2$$

B.
$$\frac{1}{2}(a - 1)(2a - 1)(4a - 1)$$

C. $\frac{1}{2}a(a - 1)^2$

D. none of these

Answer: C

Watch Video Solution

59. The 15th term of the series
$$2\frac{1}{2} + 1\frac{7}{13} + 1\frac{1}{9} + \frac{20}{23} + \dots$$
 is

A. $\frac{10}{39}$ B. $\frac{10}{21}$ C. $\frac{10}{23}$

D. none of these

Answer: A

60. If a_1, a_2, a_n are in H.P., then $\frac{a_1}{a_2 + a_3 + a_n}, \frac{a_2}{a_1 + a_3 + a_n}, \frac{a_n}{a_1 + a_2 + a_{n-1}}$ are in a. A.P b. G.P. c. H.P. d. none of these

A. A.P

B. G.P

C. H.P

D. none of these

Answer: C

Watch Video Solution

61. If
$$a_1, a_2, a_3, a_n$$
 are in H.P. and $f(k) = \left(\sum_{r=1}^n a_r\right) - a_k$, then $\frac{a_1}{f(1)}, \frac{a_2}{f(2)}, \frac{a_3}{f(3)}, \frac{a_n}{f(n)}$, are in a. A.P b. G.P. c. H.P. d. none of these

A. A.P

B. G.P

C. H.P

D. none of these

Answer: C

Watch Video Solution

62. If *a*, *b*, and*c* are in A.P. *p*, *q*, and*r* are in H.P., and *ap*, *bq*, and*cr* are in G.P.,

then
$$\frac{p}{r} + \frac{r}{p}$$
 is equal to $\frac{a}{c} - \frac{c}{a}$ b. $\frac{a}{c} + \frac{c}{a}$ c. $\frac{b}{q} + \frac{q}{b}$ d. $\frac{b}{q} - \frac{q}{b}$

A. A.P

B. G.P

C. G.P

D. none of these

Answer: D

63. If a, b, andc are in A.P. p, q, andr are in H.P., and ap, bq, andcr are in G.P.,

then
$$\frac{p}{r} + \frac{r}{p}$$
 is equal to $\frac{a}{c} - \frac{c}{a}$ b. $\frac{a}{c} + \frac{c}{a}$ c. $\frac{b}{q} + \frac{q}{b}$ d. $\frac{b}{q} - \frac{q}{b}$
A. $\frac{a}{c} - \frac{c}{a}$
B. $\frac{a}{c} + \frac{c}{a}$
C. $\frac{b}{q} + \frac{q}{b}$
D. $\frac{b}{a} - \frac{q}{b}$

Answer: B

Watch Video Solution

64. a,b,c,d $\in \mathbb{R}^+$ such that a,b and c are in H.P and ap.bq, and cr are in G.P then $\frac{p}{r} + \frac{r}{p}$ is equal to A. ab=cd B. ac=bd C. bc=ad

D. none of these

Answer: C

Watch Video Solution

65. If in a progression $a_1, a_2, a_3, et \cdot, (a_r - a_{r+1})$ bears a constant atio with $a_r \times a_{r+1}$, then the terms of the progression are in a. A.P b. G.P. c.

H.P. d. none of these

A. A.P

B. G.P

C. H.P

D. none of these

Answer: C

66. If a,b, and c are in G.P then a+b,2b and b+ c are in

A. A.P

B. G.P

C. H.P

D. none of these

Answer: C

Watch Video Solution

67. If a,x,b are in A.P.,a,y,b are in G.P. and a,z,b are in H.P. such that x=9z and

a>0, b>0, then

A. |y| = 3z

B. x = 3|y|

C. 2y = x + z

D. none of these

Answer: B

68. Let $n \in N$, n > 25. Let A, G, H deonote te arithmetic mean, geometric man, and harmonic mean of 25 and n. The least value of n for which $A, G, H \in \{25, 26, n\}$ is a. 49 b. 81 c.169 d. 225

A. 49

B. 81

C. 169

D. 225

Answer: D

69. If A.M., G.M., and H.M. of the first and last terms of the series of 100, 101, 102, ...*n* - 1, *n* are the terms of the series itself, then the value of `ni s(100

A. 200

B. 300

C. 400

D. 500

Answer: C

Watch Video Solution

70. If H_1 , H_2 , ..., H_{20} are 20 harmonic means between 2 and 3, then $\frac{H_1 + 2}{H_1 - 2} + \frac{H_{20} + 3}{H_{20} - 3} =$

A. 20

B. 21

C. 40

D. 38

Answer: C

Watch Video Solution

71. If the sum of n terms of an A.P is cn (n-1)where $c \neq 0$ then the sum of

the squares of these terms is

A.
$$c^2 n(n + 1)^2$$

B. $\frac{2}{3}c^2 n(n - 1)(2n - 1)$
C. $\frac{2c^2}{3}n(n + 1)(2n + 1)$

D. none of these

Answer: B

72. If
$$b_i = 1 - a_i$$
, $na = \sum_{i=1}^n a_i$, $nb = \sum_{i=1}^n b_i$, then $\sum_{i=1}^n a_i$, $b_i + \sum_{i=1}^n (a_i - a)^2 = ab$ b.

nab c. (n + 1)ab d. nab

A. ab

B. - *nab*

C. (*n* + 1)*ab*

D. nab

Answer: D

Watch Video Solution

73. The sum $1 + 3 + 7 + 15 + 31 + ... \rightarrow 100$ terms is $2^{100} - 102b$ b.

 2^{99} - 101 c. 2^{101} - 102 d. none of these

A. 2¹⁰⁰ - 102

B. 2⁹⁹ - 101

C. 2¹⁰¹ - 102

D. none of these

Answer: C

74. Consider the sequence 1,2,2,4,4,4,8,8,8,8,8,8,8,8,8,8,... Then 1025th terms will be (a)2⁹ b. 2¹¹ c. 2¹⁰ d. 2¹²

A. 2⁹

B. 2¹¹

C. 2¹⁰

D. 2¹²

Answer: C

75. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = 220$, then the value of *n* equals 11 b. 12 c.10

d. 9

A. 11

B. 12

C. 10

D. 9

Answer: C

Watch Video Solution

76. If $1^2 + 2^2 + 3^2 + 2003^2 = (2003)(4007)(334)$ and (1)(2003) + (2)(2002) + (3)(2001) + (2003)(1) = (2003)(334)(x), then x is equal to a. 2005 b. 2004 c. 2003 d. 2001

A. 2005

B. 2004

C. 2003

D. 2001

Answer: A

Watch Video Solution

77. If t_n denotes the nth term of the series 2+3+6+11+18+..... Then t_{50} is

A. 49² - 1 **B.** 49²

 $C.50^2 + 1$

D. $49^2 + 2$

Answer: D

78. The sum of series $\sum_{r=0}^{r} (-1)^r (n+2r)^2$ (where n is even) is

A. $-n^{2} + 2n$ B. $-4n^{2} + 2n$ C. $-n^{2} + 3n$ D. $-n^{2} + 4n$

Answer: B

Watch Video Solution

79. If
$$(1^2 - t_1) + (2^2 - t_2) \pm - - + (n^2 - t_n) = \frac{n(n^2 - 1)}{3}$$
, then t_n is equal

to a. n^2 b. 2n c. n^2 - 2n d. none of these

A. *n*²

B. 2n

C. *n*² - 2*n*

D. none of these

Answer: D

Watch Video Solution

80. If (1 + 3 + 5 + + p) + (1 + 3 + 5 + + q) = (1 + 3 + 5 + + r) where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of p + q + r(wherep > 6) is 12 b. 21 c. 45 d. 54

A. 12

B. 21

C. 45

D. 54

Answer: B

81. If $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, then the value of $S_n = 1 + \frac{3}{2} + \frac{5}{3} + \dots + \frac{99}{50}$ is a. $H_{50} + 50$ b. 100 - H_{50} c. 49 + H_{50} d. $H_{50} + 100$

A. H_{50} + 50

B. 100 - H₅₀

C. 49 + H_{50}

 $D.H_{50} + 100$

Answer: B

Watch Video Solution

82. The sum to 50 terms of the series

$$\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^+ 2^2 + 3^2} + \dots + \dots is$$

A. $\frac{100}{17}$
B. $\frac{150}{17}$

C.
$$\frac{200}{51}$$

D. $\frac{50}{17}$

Answer: A

83. Let
$$S = \frac{4}{19} + \frac{44}{19^2} + \frac{444}{19^3} + up \rightarrow \infty$$
. Then *s* is equal to a. 40/9 b. 38/81

c. 36/171 d. none of these

A. 40/9

B. 38/81

C. 36/171

D. none of these

Answer: B

84. If $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + = \frac{\pi}{4}$, then	value	of
$\frac{1}{1\times3} + \frac{1}{5\times7} + \frac{1}{9\times11} + \text{ is } \pi/8 \text{ b. } \pi/6 \text{ c. } \pi/4 \text{ d. } \pi/36$		
Α. π/8		
B . <i>π</i> /6		
C . <i>π</i> /4		
D. <i>π</i> /36		

Answer: A

Watch Video Solution

85. If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \rightarrow \infty = \frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \text{ equals } \pi^2/8 \text{ b.}$ $\pi^2/12 \text{ c. } \pi^2/3 \text{ d. } \pi^2/2$

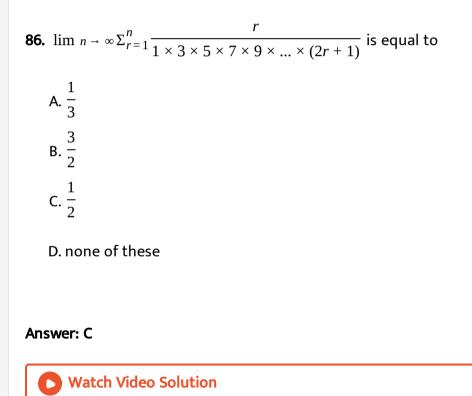
A. $\pi^{2}/8$

B. $\pi^{2}/8$

C. *π*/3

D. $\pi^{2}/2$

Answer: A



87. The greatest interger by which $1 + \sum_{r=1}^{30} r \times r!$ is divisible is

A. composite number

B. odd number

C. divisible by 3

D. none of these

Answer: D

Watch Video Solution

88. If
$$\sum_{r=1}^{n} r^4 = I(n)$$
, then $\sum (r = 1)^n (2r - 1)^4$ is equal to

A. I(2n) - I(n)

B. I(2n) - 16I(n)

C. *I*(2*n*) - 8*I*(*n*)

D. I(2n) - 4I(n)

Answer: B

89. Value of
$$\lim n \to \infty \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{3^2}\right) \left(1 + \frac{1}{3^4}\right) \left(1 + \frac{1}{3^8}\right) \infty$$
 is equal to 3

b. $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these

A. 3 B. $\frac{6}{5}$ C. $\frac{3}{2}$

D. none of these

Answer: C

Watch Video Solution

90. If $x_1, x_2, ..., x_{20}$ are in H.P and $x_1, 2, x_{20}$ are in G.P then $\sum_{r=1}^{19} x_r r_{x+1}$

A. 76

B.80

C. 84

D. none of these

Answer: A

Watch Video Solution

91. The value of
$$\sum_{r=1}^{n} (a + r + ar)(-a)^r$$
 is equal to

A.
$$(-1)^{n}[n+1)a^{n+1} - a$$

B. $(-1)^{n}(n+1)a^{n+1}$
C. $(-1)^{n}\frac{(n+2)a^{n+1}}{2}$
D. $(-1)^{n}\frac{na^{n}}{2}$

Answer: B

92. The sum of series
$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \text{ to infinite terms, if } |x| < 1,$$

is $\frac{x}{1-x}$ b. $\frac{1}{1-x}$ c. $\frac{1+x}{1-x}$ d. 1
A. $\frac{x}{1-x}$
B. $\frac{1}{1-x}$
C. $\frac{1+x}{1-x}$
D. 1

Answer: A

Watch Video Solution

 ${\bf 93.}$ The sum of 20 terms of the series whose rth term s given by k

$$T(n) = (-1)^n \frac{n^2 + n + 1}{n!}$$
 is $\frac{20}{19!}$ b. $\frac{21}{20!} - 1$ c. $\frac{21}{20!}$ d. none of these

A.
$$\frac{20}{19!}$$

B. $\frac{21}{20!}$ - 1

C. $\frac{21}{20!}$

D. none of these

Answer: B

Watch Video Solution

Exerciese Multiple Correct Answer Type

1. For an increasing A.P. a_1, a_2, a_n if $a_1 = a_2 + a_3 + a_5 = -12$ and $a_1a_3a_5 = 80$, then which of the following is/are true? $a_1 = -10$ b. $a_2 = -1$ c. $a_3 = -4$ d. $a_5 = +2$

A. $a_1 = -10$

B. $a_2 = -1$

 $C. a_3 = -4$

D. $a_5 = +2$

Answer: A::C::D

Watch Video Solution

2. If the sum of *n* terms of an A.P. is given by $S_n = a + bn + cn^2$, wherea, b, c are independent of *n*, then a = 0 common difference of A.P. must be 2b common difference of A.P. must be 2c first term of A.P. is b + c

A. a=0

B. common ifferecnce of A.P must be 2 b

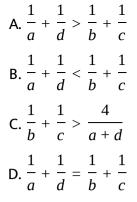
C. common difference of A.P must 2c

D. first term of A.P is b+c

Answer: A::C::D

Watch Video Solution

3. If a,b,c and d are four unequal positive numbers which are in A.P then



Answer: A::C

4. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}$, $\sqrt{50}$, $\sqrt{98}$ c. log2, log16, log128 d. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$

A. 1,6,19

 $\mathsf{B}.\sqrt{2}.\sqrt{50},\sqrt{98}$

C. log 2,log 16, log128

D. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$

Answer: A::B::C

5. In a arithmetic progression whose first term is α and common difference is β , α , $\beta \neq 0$ the ratio r of the sum of the first n terms to the sum of n terms succeending them, does not depend on n. Then which of the following is /are correct ?

A. α : β = 2:1

B. If α and β are roots of the equation $ax^2 + bx + c = 0$ then $2b^2 = 9ac$

C. The sum of infinite G. $P1 + r + r^2 + \dots Is3/2$

D. If $\alpha = 1$, then sum of 10 terms of A.P is 100

Answer: B::C::D

6. If
$$a^2 + 2bc$$
, $b^2 + 2ca$, $c^2 + 2ab$ are in A.P. then :-

B. b-c,c-a,a-b are in H.P

C. a+b,b+c,c+a are in H.P

D. a^2 , b^2 , c^2 are in H.P

Answer: A::B

Watch Video Solution

7. If sum of an indinite G. Pp, 1, 1/p, $1/p^2$...=9/2.. Is then value of p is

A. 2

B.3/2

C. 3

D.9/2

Answer: B::C

8. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth terms is 32/81, then r = 1/3 b. $r = 2\sqrt{2}/3$ c. $S_{\infty} = 6$ d. none of these

A. *r* = 1/3

B. $r = 2\sqrt{2}/3$

C. Sum of infinite terms is 6

D. none of these

Answer: A::B::C

Watch Video Solution

9. Let $a_1, a_2, a_3, \dots, a_n$ be in G.P such that $3a_1 + 7a_2 + 3a_3 - 4a_5 = 0$ Then

common ratio of G.P can be

B.
$$\frac{3}{2}$$

C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

10. If
$$p(x) = \frac{1 + x^2 + x^4 + x^4}{1 + x + x^2 + x^{n-1} \wedge (2n-2)}$$
 is a polynomial in *x*, then *n* can be

a. 5 b. 10 c. 20 d. 17

A. 5

B. 10

C. 20

D. 17

Answer: A::D

11. If n > 1, the value of the positive integer *m* for which $n^m + 1$ divides

 $a = 1 + n + n^2 + n^{63}$ is/are a.8 b. 16 c. 32 d. 64

A. 8

B. 16

C. 32

D. 64

Answer: A::B::C

Watch Video Solution

12. The next term of the G.P. $x, x^2 + 2, andx^3 + 10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

A. $\frac{729}{16}$

B. 6

C. 0

D. 54

Answer: A::D

Watch Video Solution

13. If
$$1 + 2x + 3x^2 + 4x^3 + \dots \infty \ge 4$$
 then

A. least value of x is 1/2

B. greatest value of x is 4/3

C. least value of x is 2/3

D. greatest value of x does not exist

Answer: A::D

14. Let S_1, S_2 , be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of $S_1is10cm$, then for which of the following value of n is the area of S_n less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10

A. 7

B. 8

C. 9

D. 10

Answer: B::C::D

Watch Video Solution

15. If a, b and c are in G.P and x and y, respectively , be arithmetic means

between a,b and b,c then

A. $\frac{a}{x} + \frac{c}{y} = 2$

B.
$$\frac{a}{x} + \frac{c}{y} = \frac{c}{a}$$

C. $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$
D. $\frac{1}{x} + \frac{1}{y} = \frac{2}{a}c$

Answer: A::C

Watch Video Solution

16. Consider a sequence $\{a_n\}$ with $a_1 = 2$ and $a_n = \frac{a_{n-1}^2}{a_{n-2}}$ for all $n \ge 3$, terms of the sequence being distinct. Given that a_1 and a_5 are positive integers and $a_5 \le 162$ then the possible value(s) of a_5 can be (a) 162 (b) 64 (c) 32 (d) 2

A. 162

B. 64

C. 32

D. 2

Answer: A::C

Watch Video Solution

17. The numbers 1, 4, 16 can be three terms (not necessarily consecutive)

of no A.P. only on G.P. infinite number o A.P.s infinite number of G.P.s

A. no. A.P

B. only one G.P

C. infinite number of A.P's

D. infinite nuber of G.P' s

Answer: C::D

18. The sum of an infinite geometric series is 162 and the sum of its first n

terms is 160. If the inverse of its common ratio is an integer, then which of

the following is not a possible first term? 108 b. 144 c. 160 d. none of these

A. 108

B. 120

C. 144

D. 160

Answer: A::C::D

Watch Video Solution

19. If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P and a,b -2c, are in G.P where a,b,c are non-zero then

A.
$$a^3 + b^3 + c^3 = 3abc$$

B. - 2*a*, *b*, - 2*c* are in A.P

C. a^2 , b^2 , $4c^2$ are in G.P

D. Equation $ax^2 + bx + c = 0$ has real roots

Watch Video Solution

20. Sum of an infinite G.P is 2 and sum of its two terms is 1.If its second terms is negative then which of the following is /are true ?

A. one of the possible values of the first terms is $(2 - \sqrt{2})$

B. one of the possible values of the first terms is $\left(2 + \sqrt{2}\right)$

C. one of the possible values of the common ratio is $\left(\sqrt{2} - 1\right)$

D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

21. If
$$0 < \theta < \frac{\pi}{2}, x = \sum_{n=0}^{\infty} n = 0 \cos^{2n}\theta, y = \sum_{n=0}^{\infty} n = 0 \sin^{2n}\theta$$
 and
 $z = \sum_{n=0}^{\infty} n = 0 \cos^{2n}\theta \cdot \sin^{2n}\theta$, then show $xyz = xy + z$.
A. $xyz = xz + y$
B. $xyz = xy + z$
C. $xyz = z + y + z$
D. $xyz = yz + x$
Answer: B::C

22. For the series,

$$S = 1 + \frac{1}{(1+3)}(1+2)^2 + \frac{1}{(1+3+5)}(1+2+3)^2 + \frac{1}{(1+3+5+7)}(1+2+3+4)^2 + \frac{1}{(1+3+5+7)}(1+2+3+5+7) + \frac{1}{(1+3+5+7)}(1+2+3+5+7) + \frac{1}{(1+3+5+7)}(1+2+3+5+7) + \frac{1}{(1+3+5+7)}(1+2+3+5+7) + \frac{1}{(1+3+5+7)}(1+2+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+5+7)}(1+3+5+7) + \frac{1}{(1+3+$$

A. 7th term is 16 B. 7th term is18 C. Sum of first 10 terms is $\frac{505}{4}$ D. Sum of first 10 terms is $\frac{405}{4}$

Answer: A::C

Watch Video Solution

23. If
$$\sum_{r=1}^{n} r(r+1)(2r+3) = an^4 + bn^3 + cn^2 + dn + e$$
 then

A. a-b=d-c

B. e=0

C. *a*, *b* - 2/3, *c* - 1 are in \in *A*. *P*

D. (b + d)/a is an integer

Answer: A::B::C::D

24. If $S_n = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 +$, then $S_{40} = -820$ b. $S_{2n} > S_{2n+2}$ c. $S_{51} = 1326$ d. $S_{2n+1} > S_{2n-1}$ A. $S_{40} = -820$ B. $S_{2n} > S_{2n+2}$ C. $S_{51} = 1326$ D. $S_{2n+1} > S_{2n-1}$

Answer: A::B::C::D

Watch Video Solution

25. Sum of
$$\frac{1}{\sqrt{2} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{14}} + \dots \rightarrow n$$

terms= (A) $\frac{n}{\sqrt{3n+2} - \sqrt{2}}$ (B) $\frac{1}{3} \left(\sqrt{2} - \sqrt{3n+2} \right)$ (C) $\frac{n}{\sqrt{3n+2} + \sqrt{2}}$ (D) none of

these

A.
$$\frac{\left(\sqrt{3n+2}\right) - \sqrt{2}}{3}$$

B.
$$\frac{n}{\sqrt{2+3n} + \sqrt{2}}$$

C. less than n

D. less than $\sqrt{\frac{n}{3}}$

Answer: A::B::C

26. In the 20 th row of the triangle

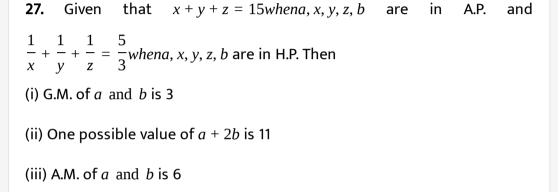
A. last term = 210

B. first term = 191

C. sum = 4010

D. sum =4200

Answer: A::B::C



(iv) Greatest value of a - b is 8

A. G.M of a and b is 3

B. one possible value of a + 2b is 11

C. A.M of a and b is 6

D. greatest value of a-b is 8

Answer: A::B::D

28. If a, b and c are in H.P., then the value of $\frac{(ac + ab - bc)(ab + bc - ac)}{(abc)^2}$ is

A.
$$\frac{(a + c)(3a - c)}{4a^{2}c^{2}}$$

B.
$$\frac{2}{bc} - \frac{1}{b^{2}}$$

C.
$$\frac{2}{bc} - \frac{1}{b^{2}}$$

D.
$$\frac{(a - c)(3a + c)}{4a^{2}c^{2}}$$

Answer: A::B

29. If p,q and r are in A.P then which of the following is / are true ?

A. pth,qth and rth terms of A.P are in A.P

B. pth,qth,and rht terms of G.P are in G.P

C. pth , qth , and rht terms of H.P are in H.P

D. none of these

Answer: A::B::C

30. If
$$x^2 + 9y^2 + 25z^2 = xyz\left(\frac{15}{2} + \frac{5}{y} + \frac{3}{z}\right)$$
, then x, y, and z are in H.P. b.
 $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} = \frac{1}{c}$

A. x,y and z are in H.P

B.
$$\frac{1}{x}$$
, $\frac{1}{y}$, $\frac{1}{z}$ are in G.P

C. x,y,z are in G.P

D.
$$\frac{1}{x}$$
, $\frac{1}{y}$, $\frac{1}{z}$ are in G.P

Answer: A::C

31. If A_1, A_2, G_1, G_2 , ; and H_1, H_2 are two arithmetic, geometric and harmonic means respectively, between two quantities *aandb*, *thenab* is equal to A_1H_2 b. A_2H_1 c. G_1G_2 d. none of these

A. A_H _ 2

 $B.A_{2}H_{1}$

 $C. G_1 G_2$

D. none of these

Answer: A::B::C

Watch Video Solution

32. If $\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, then (A). *a*, *b*, *andc* are in H.P. (B). *a*, *b*, *andc* are in A.P. (C). b = a + c (D). 3a = b + c

A. a,b, and c are in H.P

B. a,b, and c are in A.P

C. b=a+c

D. 3a= b+c

Answer: A::B

Watch Video Solution

33. If a,b,c are three distinct numbers in G.P., b,c,a are in A.P and a,bc, abc,

in H.P then the possible value of b is

A. $3 + 4\sqrt{2}$ B. $3 - 4\sqrt{2}$ C. $4 + 3\sqrt{2}$

D. 4 - $3\sqrt{2}$

Answer: C::D

34. If a,b,c are in A.P and a^2 , b^2 , c^2 are in H.P then which is of the following

is /are possible ?

A.
$$ax^2 + bx + c = 0$$

B. $ax^2bx + c = 0$
C. $a, b - \frac{c}{2}$ form a G.P
D. $a - b, \frac{c}{2}$ from a G.P

Answer: A::C

Watch Video Solution

35. about to only mathematics

A. a=b=c

B. $a \ge be \ge c$

C. a + b = c

D. $ac - b^2 = 0$

Answer: B::D

36. Let
$$E = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} +$$
 Then, $E < 3$ b. $E > 3/2$ c. $E > 2$ d. $E < 2$
A. $E < 3$
B. $E > 3/2$
C. $E > 2$
D. $E < 2$

Answer: A::B::D

37. Sum of certain consecutive odd positive intergers is $57^2 - 13^2$

The greatest interger is

A. $a_1 = -10$ B. $a_2 = -1$ C. $a_3 = -4$ D. $a_5 = +2$

Answer: A::C::D

38. Sum of certain consecutive odd positive intergers is $57^2 - 13^2$

The greatest interger is

A. a=0

B. common ifferecnce of A.P must be 2 b

C. common difference of A.P must 2c

D. first term of A.P is b+c

Answer: A::C::D

39. Sum of certain consecutive odd positive intergers is $57^2 - 13^2$

The least value of the an interger is

A.
$$\frac{1}{a} + \frac{1}{d} > \frac{1}{b} + \frac{1}{c}$$

B.
$$\frac{1}{a} + \frac{1}{d} < \frac{1}{b} + \frac{1}{c}$$

C.
$$\frac{1}{b} + \frac{1}{c} > \frac{4}{a+d}$$

D.
$$\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$$

Answer: A::C

Watch Video Solution

40. Consider three distinct real numbers a,b,c in a G.P with $a^2 + b^2 + c^2 = t^2$ and $a+b+c = \alpha t$. The sum of the common ratio and its reciprocal is denoted by S. Complete set of α^2 is A. 1,6,19

B. $\sqrt{2}$. $\sqrt{50}$, $\sqrt{98}$

C. log 2,log 16, log128

D. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$

Answer: A::B::C

Watch Video Solution

41. Consider three distinct real numbers a,b,c in a G.P with $a^2 + b^2 + c^2 = t^2$ and $a+b+c = \alpha t$. The sum of the common ratio and its reciprocal is denoted by S.

Complete set of α^2 is

A. α : β = 2:1

B. If α and β are roots of the equation $ax^2 + bx + c = 0$ then $2b^2 = 9ac$

C. The sum of infinite G. $P1 + r + r^2 + \dots Is3/2$

D. If $\alpha = 1$, then sum of 10 terms of A.P is 100

Answer: B::C::D

42. If a,b and c also represent the sides of a triangle and a,b,c are in g.p

then the complete set of $\alpha^2 = \frac{r^2 + r + 1}{r^2 - r + 1}$ is

A. (a - b)(c - a), (a - b)(b - c), (b - c)(c - a) are in A.P

B. b-c,c-a,a-b are in H.P

C. a+b,b+c,c+a are in H.P

D. a^2 , b^2 , c^2 are in H.P

Answer: A::B

43. In a G.P the sum of the first and last terms is 66, the product of the second and the last but one is 128, and the sum of the terms is 126

If the decresing G.P is considered , then the sum of infinite terms is

A. 2 B. 3/2 C. 3 D. 9/2

Answer: B::C

Watch Video Solution

44. In a n increasing G.P., the sum of the first and the last term is 66, the product of the second and the last but one is 128 and the sum of the terms is 126. How many terms are there in the progression?

B. $r = 2\sqrt{2}/3$

C. Sum of infinite terms is 6

D. none of these

Answer: A::B::C

45. In a G.P the sum of the first and last terms is 66, the product of the second and the last but one is 128 nd the sum of the terms is 126 in any case, the difference of the least and greatest terms is

A. 2
B.
$$\frac{3}{2}$$

C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

46. Four different integers form an increasing A.P .One of these numbers is equal to the sum of the squares of the other three numbers. Then The product of all numbers is

A. 5 B. 10 C. 20

D. 17

Answer: A::D

47. The sum of four numbers in A.P. is 28 and the sum of their squares is

216. Find the number's.

A. 8

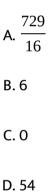
B. 16

C. 32

D. 64

Answer:

48. The common difference of the divisible by



Answer: A::D

View Text Solution

49. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

The 2000th term of the sequence is not divisible by

A. least value of x is 1/2

B. greatest value of x is 4/3

C. least value of x is 2/3

D. greatest value of x does not exist

Answer: A::D

D View Text Solution

50. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

The sum of first 2000 terms is

B. 8

C. 9

D. 10

Answer: B::C::D

Watch Video Solution

51. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

A.
$$\frac{a}{x} + \frac{c}{y} = 2$$

B. $\frac{a}{x} + \frac{c}{y} = \frac{c}{a}$
C. $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$
D. $\frac{1}{x} + \frac{1}{y} = \frac{2}{a}c$

Answer: A::C

52. There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15. D and d are their respective common difference such that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :

A. 162

B. 64

C. 32

D. 2

Answer: A::C

53. There are two sets A and B each of which consists of three numbers in

A.P. whose sum is 15. D and d are their respective common difference such

that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :

A. no. A.P

B. only one G.P

C. infinite number of A.P's

D. infinite nuber of G.P' s

Answer: C::D

Watch Video Solution

54. There are two sets M_1 and M_2 each of which consists of three numbers in arithmetic sequence whose sum is 15. Let d_1 and d_2 be the common differences such that $d_1 = 1 + d_2$ and $8p_1 = 7p_2$ where p_1 and p_2 are the product of the numbers respectively in M_1 and M_2 . If $d_2 > 0$ then find the value of $\frac{p_2 - p_1}{d_1 + d_2}$ A. 108

B. 120

C. 144

D. 160

Answer: A::C::D

Watch Video Solution

55. Let $A_1, A_2, A_3, \ldots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \ldots, G_n$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of `n

56. Let $A_1, A_2, A_3, \ldots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \ldots, G_n$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The n umber of arithmetic means is

A. one of the possible values of the first terms is $(2 - \sqrt{2})$ B. one of the possible values of the first terms is $(2 + \sqrt{2})$ C. one of the possible values of the common ratio is $(\sqrt{2} - 1)$

D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

57. Let $A_1, A_2, A_3, \dots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \dots, G_n$ be the gemetric means between 1 and 1024. The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of `n

A. xyz=xz+y

B. xyz=xy +z

C. xyz = z+y+z

D. xyz =yz +x

Answer: B::C

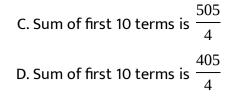
Watch Video Solution

58. Two consecutive numbers from 1, 2, 3, ..., n are removed, then arithmetic mean of the remaining numbers is $\frac{105}{4}$ then $\frac{n}{10}$ must be equal

to

A. 7^{*th*} term is 16

B. 7th term is18



Answer: A::C

Watch Video Solution

59. Two consecutive numbers from 1,2,3, n are removed. The arithmetic

mean of the remaining numbers is 105/4.

The removed numbers

A. a-b=d-c

B. e=0

C. *a*, *b* - 2/3, *c* - 1 are in \in *A*. *P*

D. (b + d)/a is an integer

Answer: A::B::C::D

60. Two consecutive numbers from 1,2,3, n are removed .The arithmetic mean of the remaining numbers is 105/4

The sum of all numbers

A. $S_{40} = -820$ B. $S_{2n} > S_{2n+2}$ C. $S_{51} = 1326$ D. $S_{2n+1} > S_{2n-1}$

Answer: A::B::C::D

Watch Video Solution

61. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio

of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2.

A.
$$\frac{\left(\sqrt{3n+2}\right) - \sqrt{2}}{3}$$

B.
$$\frac{n}{\sqrt{2+3n} + \sqrt{2}}$$

C. less than n

D. less than
$$\sqrt{\frac{n}{3}}$$

Answer: A::B::C

62. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n

terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2.

A. last term = 210

B. first term = 191

C. sum = 4010

D. sum =4200

Answer: A::B::C

Watch Video Solution

63. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of the sum of the n terms of the sum of the n terms of the sum of the second terms of the sum of the n terms of the sum of the second terms of terms of terms of terms of terms of the second terms of terms

progerssion is equal to 2.

The ratio of their first term is

Watch Video Solution

64. Find three numbers a, b,c between 2 & 18 such that; O their sum is 25 (a) the numbers 2, a, b are consecutive terms of an AP & Q.3 the numbers b?c?18 are consecutive terms of a GP

A.
$$\frac{(a + c)(3a - c)}{4a^{2}c^{2}}$$

B.
$$\frac{2}{bc} - \frac{1}{b^{2}}$$

C.
$$\frac{2}{bc} - \frac{1}{b^{2}}$$

D.
$$\frac{(a - c)(3a + c)}{4a^{2}c^{2}}$$

Answer: A::B

65. The number a, b and c are between 2 and 18, such that

(i) their sum is 25

(ii) the numbers 2,a and b are consecutive terms of and A.P

(iii) the numbers b,c 18 are consecutive terms of a G.P

The value of abc is

A. pth,qth and rth terms of A.P are in A.P

B. pth,qth,and rht terms of G.P are in G.P

C. pth , qth , and rht terms of H.P are in H.P

D. none of these

Answer: A::B::C

66. If a, b and c are roots of the equation $x^3 + qx^2 + rx + s = 0$

then the value of r is

A. x,y and z are in H.P

B. $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in G.P C. x,y,z are in G.P D. $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in G.P

Answer: A::C

Watch Video Solution

Exerciese Linked Comprehension Type

1. For an increasing A.P. a_1, a_2, a_n if $a_1 = a_2 + a_3 + a_5 = -12$ and $a_1a_3a_5 = 80$, then which of the following is/are true? $a_1 = -10$ b. $a_2 = -1 \text{ c. } a_3 = -4 \text{ d. } a_5 = +2$

A. 40

B. 37

C. 44

Answer: C

2. If the sum of *n* terms of an A.P. is given by $S_n = a + bn + cn^2$, wherea, b, c are independent of *n*, then a = 0 common difference of A.P. must be 2b common difference of A.P. must be 2c first term of A.P. is b + c

A. 22

B. 27

C. 31

D. 43

Answer: B

3. If a,b,c and d are four unequal positive numbers which are in A.P then

A. divible by 7

B. divisible by 11

C. divisible by 9

D. none of these

Answer: D

Watch Video Solution

4. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}$, $\sqrt{50}$, $\sqrt{98}$ c. log2, log16, log128 d. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{7}$

A.
$$\left(\frac{1}{3}, 3\right)$$

B. $\left[\frac{1}{3}, 3\right]$
C. $\left(\frac{1}{3}, 3\right) - \{1\}$

$$\mathsf{D}.\left(-\infty,\frac{1}{3}\right)\cap(3,\infty)$$

Answer: C

Watch Video Solution

5. In a arithmetic progression whose first term is α and common difference is β , α , $\beta \neq 0$ the ratio r of the sum of the first n terms to the sum of n terms succeending them, does not depend on n. Then which of the following is /are correct ?

A. (- 2, 2)

- B. $(-\infty, -2) \cup (2, \infty)$
- C.(-1,1)
- D. $(-\infty, -1) \cup (1, \infty)$

Answer: B

6. If $a^2 + 2bc$, $b^2 + 2ca$, $c^2 + 2ab$ are in A.P. then :-

A.
$$\left(\frac{1}{3}, 3\right)$$

B. (2,3)
C. $\left[\frac{1}{3}, 2\right]$
D. $\left(\frac{\sqrt{5+3}}{2}, 3\right)$

Answer: D

Watch Video Solution

7. If sum of an indinite G. Pp, 1, 1/p, $1/p^2$...=9/2.. Is then value of p is

A. 9

B. 8

C. 12

Answer: D

Watch Video Solution

8. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth terms is 32/81, then r = 1/3 b. $r = 2\sqrt{2}/3$ c. $S_{\infty} = 6$ d. none of these

A. 64

B. 128

C. 256

D. 729

Answer: B

9. Let $a_1, a_2, a_3, \ldots, a_n$ be in G.P such that $3a_1 + 7a_2 + 3a_3 - 4a_5 = 0$ Then common ratio of G.P can be

A. 78

B. 126

C. 126

D. none of these

Answer: D

Watch Video Solution

10. If
$$p(x) = \frac{1 + x^2 + x^4 + x}{1 + x + x^2 + x^{n-1} \wedge (2n-2)}$$
 is a polynomial in *x*, *thenn* can be

a. 5 b. 10 c. 20 d. 17

A. - 2

B. 1

C. 0

Answer: C

11. If n > 1, the value of the positive integer m for which $n^m + 1$ divides ... $a = 1 + n + n^2 + ... + n^{63}$ is/are a.8 b. 16 c. 32 d. 64

A. 3

B. 0

C. 4

D. 2

Answer: D

12. The next term of the G.P. $x, x^2 + 2, andx^3 + 10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

A. 1 B. 3

C. 2

D. - 2

Answer: A

Watch Video Solution

13. If $1 + 2x + 3x^2 + 4x^3 + \dots \infty \ge 4$ then

A. 3

B. 9

C. 7

D. none of these

Answer: D

Watch Video Solution

14. Let S_1, S_2 , be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of $S_1is10cm$, then for which of the following value of n is the area of S_n less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10

A. 84336

B. 96324

C. 78466

D. none of these

Answer: A

15. If a, b and c are in G.P and x and y, respectively , be arithmetic means

between a,b and b,c then

A. 1088

B. 1008

C. 1040

D. none of these

Answer: B

Watch Video Solution

16. Consider a sequence $\{a_n\}$ with $a_1 = 2$ and $a_n = \frac{a_{n-1}^2}{a_{n-2}}$ for all $n \ge 3$, terms of the sequence being distinct. Given that a_1 and a_5 are positive integers and $a_5 \le 162$ then the possible value(s) of a_5 can be (a) 162 (b) 64

(c) 32 (d) 2

B. 71

C. 74

D. 86

Answer: B

Watch Video Solution

17. The numbers 1, 4, 16 can be three terms (not necessarily consecutive)

of no A.P. only on G.P. infinite number o A.P.s infinite number of G.P.s

A. 74

B. 64

C. 73

D. 81

Answer: A

18. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160. If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b. 144 c. 160 d. none of these

A. 20

B. 30

C. 15

D. 25

Answer: C

> Watch Video Solution

19. If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P and a,b -2c, are in G.P where a,b,c are non-zero then

20. Sum of an infinite G.P is 2 and sum of its two terms is 1.If its second terms is negative then which of the following is /are true ?

A. 442

B. 342

C. 378

D. none of these

Answer: B

Watch Video Solution

21. If
$$0 < \theta < \frac{\pi}{2}, x = \sum_{n=0}^{\infty} n = 0 \cos^{2n}\theta, y = \sum_{n=0}^{\infty} n = 0 \sin^{2n}\theta$$
 and $z = \sum_{n=0}^{\infty} n = 0 \cos^{2n}\theta \cdot \sin^{2n}\theta$, then show $xyz = xy + z$.

A. A.P

B. G.P

C. H.P

D. none of these

Answer: A

22. For the series,

$$S = 1 + \frac{1}{(1+3)}(1+2)^2 + \frac{1}{(1+3+5)}(1+2+3)^2 + \frac{1}{(1+3+5+7)}(1+2+3+4)$$

+... 7th term is 16 7th term is 18 Sum of first 10 terms is $\frac{505}{4}$ Sum of first 10
terms is $\frac{45}{4}$
A. [45,55]
B. [52,60]
C. [41,49]
D. none of these

Answer: A

23. If
$$\sum_{r=1}^{n} r(r+1)(2r+3) = an^4 + bn^3 + cn^2 + dn + e$$
 then

A. lie between 10 and 20

B. are less than 1500

C. are less than 1500

D. none of these

Answer: C

O Watch Video Solution

24. If
$$S_n = 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 +$$
, then $S_{40} = -820$ b. $S_{2n} > S_{2n+2}$ c.
 $S_{51} = 1326$ d. $S_{2n+1} > S_{2n-1}$

A. exceeds 1600

B. is less than 1500

C. lies between 1300 and 1500

D. none of these

Answer: B

25. Sum of
$$\frac{1}{\sqrt{2} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{14}} + \dots \rightarrow n$$

terms= (A) $\frac{n}{\sqrt{3n+2} - \sqrt{2}}$ (B) $\frac{1}{3} \left(\sqrt{2} - \sqrt{3n+2} \right)$ (C) $\frac{n}{\sqrt{3n+2} + \sqrt{2}}$ (D) none of

these

A. 12

B. 24

C. 26

D. 9

Answer: C

26. In the 20 th row of the triangle

A. 6/5

B.7/2

C.9/5

D. none of these

Answer: B

View Text Solution

27. Given that x + y + z = 15 when a, x, y, z, b are in A.P. and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ when a, x, y, z, b are in H.P. Then (i) G.M. of a and b is 3 (ii) One possible value of a + 2b is 11 (iii) A.M. of *a* and *b* is 6
(iv) Greatest value of *a* - *b* is 8
A. 2/7
B. 3/5
C. 4/7
D. 2/5

Answer: A

Watch Video Solution

28. If a, b and c are in H.P., then the value of $\frac{(ac + ab - bc)(ab + bc - ac)}{(abc)^2}$ is

A. 500

B.450

C. 720

D. 480

Answer: D

29. If p,q and r are in A.P then which of the following is / are true ?

A. real and poistive

B. real and negative

C. imaginary

D. real and of oppositve sign

Answer: C

Watch Video Solution

30. If $x^2 + 9y^2 + 25z^2 = xyz\left(\frac{15}{2} + \frac{5}{y} + \frac{3}{z}\right)$, then x, y, and z are in H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} = \frac{1}{c}$ A. 184

B. 196

C. 224

D. none of these

Answer: B

Watch Video Solution

31. Sum of certain consecutive odd positive intergers is 57^2 - 13^2

The greatest interger is

A. 40

B. 37

C. 44

D. 51

Answer: C

32. Sum of certain consecutive odd positive intergers is $57^2 - 13^2$

The greatest interger is

- A. 22
- B. 27
- C. 31
- D. 43

Answer: B

Watch Video Solution

33. Sum of certain consecutive odd positive intergers is $57^2 - 13^2$

The least value of the an interger is

A. divible by 7

B. divisible by 11

C. divisible by 9

D. none of these

Answer: D

Watch Video Solution

34. Consider three distinct real numbers a,b,c in a G.P with $a^2 + b^2 + c^2 = t^2$ and a+b+c = αt . The sum of the common ratio and its reciprocal is denoted by S.

Complete set of α^2 is

A.
$$\left(\frac{1}{3}, 3\right)$$

B. $\left[\frac{1}{3}, 3\right]$
C. $\left(\frac{1}{3}, 3\right) - \{1\}$
D. $\left(-\infty, \frac{1}{3}\right) \cap (3, \infty)$

Answer: C

35. Consider three distinct real numbers a,b,c in a G.P with $a^2 + b^2 + c^2 = t^2$ and $a+b+c = \alpha t$. The sum of the common ratio and its reciprocal is denoted by S.

Complete set of α^2 is

A. (-2, 2)

B. (-∞, -2) U (2,∞)

C. (-1, 1)

D. $(-\infty, -1) \cup (1, \infty)$

Answer: B

36. If a,b and c also represent the sides of a triangle and a,b,c are in g.p

then the complete set of
$$\alpha^2 = \frac{r^2 + r + 1}{r^2 - r + 1}$$
 is

A.
$$\left(\frac{1}{3}, 3\right)$$

C.
$$\left[\frac{1}{3}, 2\right]$$

D. $\left(\frac{\sqrt{5+3}}{2}, 3\right)$

Answer: D

Watch Video Solution

37. In a G.P the sum of the first and last terms is 66, the product of the second and the last but one is 128, and the sum of the terms is 126 If the decresing G.P is considered , then the sum of infinite terms is

B. 8

C. 12

D. 6

Answer: D

Watch Video Solution

38. In a n increasing G.P., the sum of the first and the last term is 66, the product of the second and the last but one is 128 and the sum of the terms is 126. How many terms are there in the progression?

A. 64

B. 128

C. 256

D. 729

Answer: B

39. In a G.P the sum of the first and last terms is 66, the product of the second and the last but one is 128 nd the sum of the terms is 126 in any case, the difference of the least and greatest terms is

A. 78

B. 126

C. 126

D. none of these

Answer: D

> Watch Video Solution

40. Four different integers form an increasing A.P .One of these numbers is equal to the sum of the squares of the other three numbers. Then

The product of all numbers is

A. - 2	
B. 1	
C. 0	
D. 2	

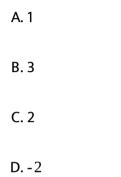
Answer: C

41. The sum of four numbers in A.P. is 28 and the sum of their squares is 216. Find the number's.

A. 3 B. 0 C. 4 D. 2

Answer:

42. The common difference of the divisible by



Answer: A

View Text Solution

43. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

The 2000th term of the sequence is not divisible by

B. 9

C. 7

D. none of these

Answer: D

View Text Solution

44. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

The sum of first 2000 terms is

A. 84336

B. 96324

C. 78466

D. none of these

Answer: A

45. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),

(5,5,5,5,5.....)

A. 1088

B. 1008

C. 1040

D. none of these

Answer: B

Watch Video Solution

46. There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15. D and d are their respective common difference such that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the

number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :

A. 51

B. 71

C. 74

D. 86

Answer: B

Watch Video Solution

47. There are two sets A and B each of which consists of three numbers in

A.P. whose sum is 15. D and d are their respective common difference such

that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :

B. 64

C. 73

D. 81

Answer: A

Watch Video Solution

48. There are two sets M_1 and M_2 each of which consists of three numbers in arithmetic sequence whose sum is 15. Let d_1 and d_2 be the common differences such that $d_1 = 1 + d_2$ and $8p_1 = 7p_2$ where p_1 and p_2 are the product of the numbers respectively in M_1 and M_2 . If $d_2 > 0$ then

find the value of $\frac{p_2 - p_1}{d_1 + d_2}$

A. 20

B. 30

C. 15

D. 25

Answer: C

Watch Video Solution

49. Let $A_1, A_2, A_3, \ldots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \ldots, G_n$ be the gemetric means between 1 and 1024. The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of `n

50. Let $A_1, A_2, A_3, \ldots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \ldots, G_n$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The n umber of arithmetic means is

A. 442

B. 342

C. 378

D. none of these

Answer: B

Watch Video Solution

51. Let $A_1, A_2, A_3, \ldots, A_m$ be the arithmetic means between -2 and 1027 and $G_1, G_2, G_3, \ldots, G_n$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of `n

A. A.P

B. G.P

C. H.P

D. none of these

Answer: A

52. Two consecutive numbers from 1, 2, 3, ..., n are removed, then arithmetic mean of the remaining numbers is $\frac{105}{4}$ then $\frac{n}{10}$ must be equal to

A. [45,55]

B. [52,60]

C. [41,49]

D. none of these

Answer: A

53. Two consecutive numbers from 1,2,3, n are removed. The arithmetic

mean of the remaining numbers is 105/4.

The removed numbers

A. lie between 10 and 20

B. are less than 1500

C. are less than 1500

D. none of these

Answer: C

Watch Video Solution

54. Two consecutive numbers from 1,2,3, n are removed .The arithmetic

mean of the remaining numbers is 105/4

The sum of all numbers

A. exceeds 1600

B. is less than 1500

C. lies between 1300 and 1500

D. none of these

Answer: B

Watch Video Solution

55. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of the first progression to the sum of the n terms of the sum of the second progression is equal to 2.

A. 12

B. 24

C. 26

D. 9

Answer: C

Watch Video Solution

56. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2.

A. 6/5

B. 7/2

C.9/5

D. none of these

Answer: B

Watch Video Solution

57. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of the first progression to the sum of the n terms of the sum of the n terms of the sum of the second progression is equal to 2.

The ratio of their first term is

Watch Video Solution

58. Find three numbers a, b,c between 2 & 18 such that; O their sum is 25

(a) the numbers 2, a, b are consecutive terms of an AP & Q.3 the numbers

b?c?18 are consecutive terms of a GP

A. 500

B.450

C. 720

D. 480

Answer: D

Watch Video Solution

59. The number a, b and c are between 2 and 18, such that

(i) their sum is 25

(ii) the numbers 2,a and b are consecutive terms of and A.P

(iii) the numbers b,c 18 are consecutive terms of a G.P

The value of abc is

A. real and poistive

B. real and negative

C. imaginary

D. real and of oppositve sign

Answer: C

Watch Video Solution

60. If a, b and c are roots of the equation $x^3 + qx^2 + rx + s = 0$

then the value of r is

A. 184

B. 196

C. 224

D. none of these

Answer: B

Watch Video Solution

1. Let a, b, c, d be four distinct real numbers in A.P. Then half of the smallest positive valueof k satisfying $a(a - b) + k(b - c)^2 = (c - a)^3 = 2(a - x) + (b - d)^2 + (c - d)^3$ is _____.

Watch Video Solution

2. Let fourth therm of an arithmetic progression be 6 and m^{th} term be 18. If A.P has intergal terms only then the numbers of such A.P s is

Watch Video Solution

3. The 5th and 8th terms of a geometric sequence of real numbers are 7! And 8! Respectively. If the sum to first *n* tems of the G.P. is 2205, then *n* equals_____.

Watch Video Solution

4. Let
$$a_1, a_2, a_3, \dots, a_{101}$$
 are in G.P with $a_{101} = 25$ and $\sum_{i=1}^{201} a_i = 625$ Then
the value of $\sum_{i=1}^{201} \frac{1}{a_i}$ eaquals _____.
Watch Video Solution

5. Let
$$a, b > 0$$
, let $5a - b, 2a + b, a + 2b$ be in A.P. and $(b + 1)^2, ab + 1, (a - 1)^2$ are in G.P., then the value of $(a^{-1} + b^{-1})$ is _____.

Watch Video Solution

6. Let $a + ar_1 + ar_{12} + wanda + ar_2 + ar_{22} + w$ be two infinite series of positive numbers with the same first term. The sum of the first series is r_1 and the sum of the second series r_2 . Then the value of $(r_1 + r_2)$ is

7. If he equation $x^3 + ax^2 + bx + 216 = 0$ has three real roots in G.P., then

b/a has the value equal to ____.

8. Let $a_n = 16, 4, 1, ...$ be a geometric sequence .Define P_n as the product of the first n terms. The value of $\sum_{n=1}^{\infty} n \sqrt{P_n}$ is _____.

Watch Video Solution

9. The terms a_1 , a_2 , a_3 from an arithmetic sequence whose sum s 18. The terms $a_1 + 1$, a_2 , a_3 , + 2, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is _____.

Watch Video Solution

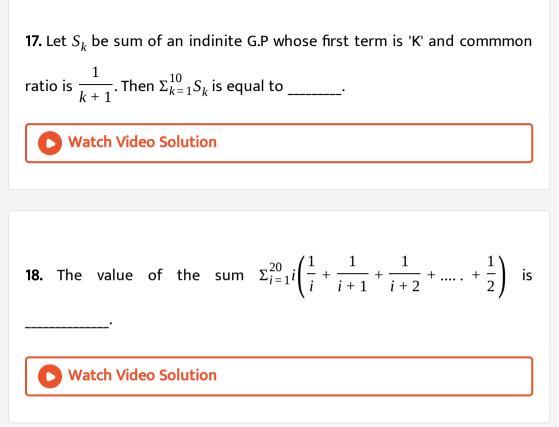
10. Let the sum of first three terms of G.P. with real terms be 13/12 and their product is -1. If the absolute value of the sum of their infinite terms is *S*, then the value of 7*S* is _____.

11. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369. The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.

Watch Video Solution

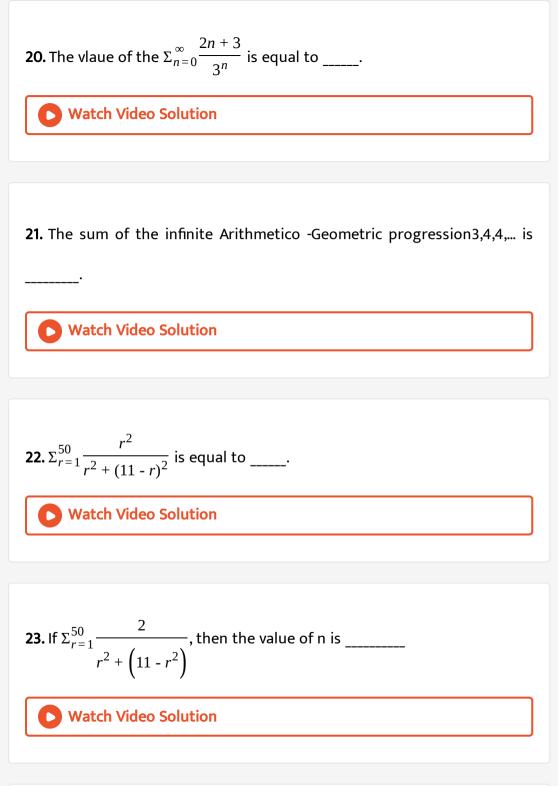
12. A person drops a ball from an 80 m tall building and each time the ball bounces, it rebounds to p% of its previous height. If the ball travels a total distance of 320 m, then the value of p is

13. Metals have conductivity in the order of $ohm^{-1}cm^{-1}$			
Watch Video Solution			
14. The number of positive integral ordered pairs of (<i>a</i> , <i>b</i>) such that 6, <i>a</i> , <i>b</i>			
are in harmonic progression is			
Watch Video Solution			
15. If the roots of $10x^3 - nx^2 - 54x - 27 = 0$ are in harmonic oprogresion,			
then <i>n</i> eqauls			
Watch Video Solution			
16. Given a,b,c are in A.P.,b,c,d are in G.P and c,d,e are in H.P .If a=2 and e=18			
, then the sum of all possible value of c is			
Watch Video Solution			



19. The difference between the sum of the first k terms of the series $1^3 + 2^3 + 3^3 + \dots + n^3$ and the sum of the first k terms of $1 + 2 + 3 + \dots + n$ is 1980. The value of k is :

Watch Video Solution



24. Let $< a_n >$ be an arithmetic sequence of 99 terms such that sum of its

odd numbered terms is 1000 then the value of

$$\Sigma_{r=1}^{50}(-1)^{\frac{r(r+1)}{2}} a_{2r-1}$$
 is _____

Watch Video Solution

25. Find the sum of series upto n terms

$$\left(\frac{2n+1}{2n-1}\right) + 3\left(\frac{2n+1}{2n-1}\right)^2 + 5\left(\frac{2n+1}{2n-1}\right)^3 + \dots$$
Watch Video Solution
26. Let $S = \sum_{n=1}^{999} \frac{1}{(\sqrt{n} + \sqrt{n+1})(4\sqrt{n} + 4\sqrt{n} + 1)}$, then S equals _____.

Watch Video Solution

27. Let S denote sum of the series
$$\frac{3}{2^3} + \frac{4}{2^4.3} + \frac{5}{2^6.3} + \frac{6}{2^7.5} + \infty$$
 Then the value of S⁻¹ is ______.
Watch Video Solution
28. The sum $\frac{7}{2^2 \times 5^2} + \frac{13}{5^2 \times 8^2} + \frac{19}{8^2 \times 11^2} + ...10$ terms is S, then the value of 1024(S) is ______.
Watch Video Solution
Archives Jee Main Single Correct Answer Type

1. The sum to infinity of the series
$$1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4}$$
..... is (1) 2 (2)
3 (3) 4 (4) 6

A. 2

B. 3

C. 4

D. 6

Answer: B

Watch Video Solution

2. A person is to count 4500 currency notes. Let a_n , denote the number of notes he counts in the *nth* minute if $a_1 = a_2 = a_3 = \dots = a_{10} = 150$ and a_{10}, a_{11}, \dots are in an *AP* with common difference -2, then the time taken by him to count all notes is :- (1) 24 minutes 10 11 (2) 34 minutes (3) 125 minutes (4) 135 minutes

A. 135 min

B. 24 min

C. 34 min

D. 125 min

Answer: C

3. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months In each of ther mupienent montha his saving increases by Rs, 40 more than the saving of immediately previous month. His total saving s from the start of service will be Rs. 11040 after

A. 21 months

B. 18 months

C. 19 months

D. 20 months

Answer: A

4. Statement 1:

The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+....+(361 +380 +400) is

8000

Statement 1:

$$\Sigma_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}, \text{ for any natural number n.}$$

A. Statement 1 is fasle ,statement 2 is true

B. Statement 1 is true ,statement 2 is true , statement 2 is a correct

explanation for statement 1.

C. Statement 1 is true, statements 2 is true statement 2 is not a

correct explanation for statement 1

D. Statement 1 is true, statement 2 is false

Answer: B

> Watch Video Solution

5. If 100 times the 100^{th} term of an AP with non zero common difference equals the 50 times its 50^{th} term, then the 150^{th} term of this AP is (1) 150 (2) 150 times its 50^{th} term (3) 150 (4) zero

A. - 150

B. 150 times its 50 th term

C. 150

D. Zero

Answer: D

Watch Video Solution

6. The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, ..., is (1) $\frac{7}{9} \left(99 - 10^{-20}\right) (2) \frac{7}{81} \left(179 + 10^{-20}\right) (3) \frac{7}{9} \left(99 + 10^{-20}\right) (3) \frac{7}{81} \left(179 - 10^{-20}\right)$

A.
$$\frac{7}{81}(179 - 10)^{20}$$

B. $\frac{7}{9}(99 - 10^{20})$
C. $\frac{7}{81}(179 + 10^{-20})$
D. $\frac{7}{9}(99 + 10^{-20})$

Answer: C

7. If $(10)^9 + 2(11)^1(10)^8 + 3(11)^2(10)^7 + \dots + 10(11)^9 = k(10)^9$, then k

is equal to :

A. $\frac{121}{10}$ B. $\frac{441}{100}$ C. 100

D. 110

Answer: C

Watch Video Solution

8. If m is the A.M. of two distinct real numbers l and n(l, n > 1) and G1, G2 and G3 are three geometric means between l and n, then G14 + 2G24 + G34 equals, (1) $4l^2$ mn (2) $4l^m \wedge 2$ mn (3) $4lmn^2$ (4) $4l^2m^2n^2$ A. $4l^2mn$

B. $4lm^2n$

C. $4lmn^2$

D. $4l^2m^n \wedge 2$

Answer: B

Watch Video Solution

9. The sum of the first 9 terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5}$ is : A. 71 B. 96 C. 142 D. 192

Answer: B

10. If the 2nd , 5th and 9th terms of a non-constant A.P. are in G.P., then

the common ratio of this G.P. is : (1) $\frac{8}{5}$ (2) $\frac{4}{3}$ (3) 1 (4) $\frac{7}{4}$

A. $\frac{4}{3}$ B. 1 C. $\frac{7}{4}$ D. $\frac{8}{5}$

Answer: A

Watch Video Solution

11. If the surm of the first ten terms of the series, $\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2 + \dots, \text{ is } \frac{16}{5}m \text{ ,then m is equal}$ to A. 101

B. 100

C. 99

D. 102

Answer: A

Watch Video Solution

12. If, for a positive integer n, the quadratic equation, x(x + 1) + (x - 1)(x + 2) + (x + n - 1)(x + n) = 10n has two consecutive integral solutions, then n is equal to : (1)10 (2) 11 (3) 12 (4) 9

A. 11

B. 12

C. 9

D. 10

Answer: A

13. For any three positive real numbers a, b and c, $9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b(3a + c)$ Then: (1) b, c and a are in G.P. (2) b, c and a are in A.P. (3) a, b and c are in A.P (4) a, b and c are in G.P

A. a,b and c are in G.P

B. b,c and a are in G.P

C. b,c and a are in A.P

D. a,b and c are in A.P

Answer: C

14. Let $a, b, c \in R$. Iff $(x) = ax^2 + bx + c$ is such that a + b + c = 3 and f(x + y) = f(x) + f(y) + xy, $\forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$ is equal to

A. 255

B. 330

C. 165

D. 190

Answer: B

Watch Video Solution

15. Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + ...$ If $B - 2A = 100\lambda$ then λ is equal to (1) 232 (2) 248 (3) 464 (4)496

A. 496

B. 232

C. 248

D. 464

Answer: C

16. Let
$$a_1, a_2, a_3, \dots, a_{49}$$
 be in A.P. Such that $\sum_{k=0}^{12} a_{4k+1} = 416$ and $a_9 + a_{43} = 66$. If $a_1^2 + a_2^2 + \dots + a_{17} = 140$ m then m is equal to

A. 33

B. 66

C. 68

D. 34

Answer: D

Watch Video Solution

1. Let a_1, a_2, a_3, \ldots be a harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$, is

A. 22

B. 23

C. 24

D. 25

Answer: D

2. The value of
$$\sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)}$$
 is equal to

A. 3 - √3

B.
$$2(3 - \sqrt{3})$$

C. $2(3 - \sqrt{3})$
D. $2(\sqrt{3} - 1))$

Answer: C

Watch Video Solution

3. Let $b_i > 1$ for i =1, 2,...,101. Suppose $\log_e b_1, \log_e b_2, \dots, \log_e b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $\log_e 2$. Suppose a_1, a_2, \dots, a_{101} are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + \dots + b_{51}$ and $s = a_1 + a_2 + \dots + a_{51}$ then

A. s > t and $a_{101} > b_{101}$

B. s > t and $a_{101} < b_{101}$

C. s < t and $a_{101} > b_{101} > b_{101}$

D. s < t and $a_{101} < b_{101}$

Answer: B

Archives Multiple Correct Answers Type

1.
$$LetS_n = \sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2$$
. Then S_n can take value (s)

A. 1056

B. 1088

C. 1120

D. 1332

Answer: A::D

Watch Video Solution

Archives Numerical Value Type

1. Let S_k , k = 1, 2, ..., 100 denote the sum of the infinite geometric series

whose first term is
$$\frac{k-1}{K!}$$
 and the common
ration is $\frac{1}{k}$ then the value of $\frac{(100)^2}{100!} + \sum_{k=1}^{100} \left| \left(k^2 - 3k + 1 \right) S_k \right|$ is _____`

Natch Video Solution

2. Let a1,a2,a3 all be real numbers satisfying

$$a_1 = 15, 27 - 2a_2 > 0$$
 and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3, 4, 11$ If
 $\frac{a1^2 + a2^2 \dots a11^2}{11} = 90$ then find the value of $\frac{a_1 + a_2 \dots a_{11}}{11}$

Watch Video Solution

3. Let
$$a_1, a_2, a_3, a_{100}$$
 be an arithmetic progression with
 $a_1 = 3ands_p = \sum_{i=1}^{p} a_i, 1 \le p \le 100$. For any integer n with $1 \le n \le 20$, let
 $m = 5n$ if $\frac{S_m}{S_n}$ does not depend on n , then a_2 is_____.

Watch Video Solution

4. A pack contains *n* cards numbered from 1 to *n*. Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224. If the smaller of het numbers on the removed cards is *k*, then k - 20 =_____.

Watch Video Solution

5. Let a,b,c be positive integers such that $\frac{b}{a}$ is an integer. If a,b,c are in GP and the arithmetic mean of a,b,c, is b+2 then the value of $\frac{a^2 + a - 14}{a + 1}$ is Watch Video Solution

6. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is

7. The sides of a right angled triangle are in arithmetic progression. If the

triangle has area 24, then what is the length of its smallest side?

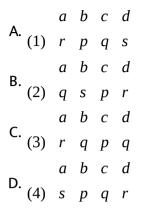
 \\/atah	Video	Colution
vvalcii	video	Solution
,		

8. Let *X* be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, , and *Y* be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, . Then, the number of elements in the set $X \cup Y$ is ____.

Watch Video Solution

Exerciese Matrix Match Type

1. If α and β are roots of the equation $x^2 - 8x + 4 = 0$, then match the following lists :



Answer: A::B::C::D

D View Text Solution

2. Match the following lists :

Answer: A::B::C::D

3. Match the following lists

 a
 b
 c
 d

 A.
 (1)
 r
 p
 q
 s

 a
 b
 c
 d
 d

 B.
 (2)
 q
 s
 p
 r

 C.
 (3)
 r
 q
 p
 q

 A.
 (4)
 s
 p
 q
 r

Answer: C

View Text Solution

Archives Matrix Match Type

1. Match the statements /expression given in List I with the values given

in List II.

View Text Solution