© 「'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

PROPERTIES AND SOLUTIONS OF TRIANGLE

Example

1. In triangle $\mathrm{ABC}<\mathrm{D}$ is on AC such that $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{BD}=\mathrm{DC}, \angle D B C=2 x$ and $\angle B A D=3 x$ where each angle is in degree. Then find x

- Watch Video Solution

2. In a circle of radius r, chords of length aandbcm subtend angles
$\theta a n d 3 \theta$, respectively, at the center. Show that $r=a \sqrt{\frac{a}{3 a-b}} c m$
3. perpendiculars are drawn from the angles $A, B a n d C$ of an acuteangled triangle on the opposite sides, and produced to meet the circumscribing circle. If these produced parts are α, β, γ, respectively, then show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C)$.

- Watch Video Solution

4. D, E, F are three points on the sides $B C, C A, A B$, respectively, such that $\angle A D B=\angle B E C=\angle C F A=\theta \cdot \mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are the points of intersections of the lines $A D, B E, C F$ inside the triangle. Show that area of $\Delta A^{\prime} B^{\prime} C^{\prime}=4 \Delta \cos ^{2} \theta$, where Δ is the area of $\Delta A B C$

D View Text Solution

5. In $A B C$, as semicircle is inscribed, which lies on the side . If x is the lengthof the angle bisector through angle C, then prove that the radius of the semicircle is $x \sin \left(\frac{C}{2}\right)$.

- Watch Video Solution

6. Given the base of a triangle, the opposite angle A , and the product k^{2} of the other two sides, show that it is not possible for a to be less than $2 k \frac{\sin A}{2}$

- Watch Video Solution

7. If in a triangle of base 'a', the ratio of the other two sides is $r(<1)$.Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

8. Let $A B C$ be a triangle with incentre I. If P and Q are the feet of the perpendiculars from A to BI and Cl , respectively, then prove that $\frac{A P}{B I}+\frac{A Q}{C l}=\cot \cdot \frac{A}{2}$
9. Let O be the circumcentre and H be the orthocentre of an acute angled triangle ABC. If $A>B>C$, then show that $\operatorname{Ar}(\Delta B O H)=\operatorname{Ar}(\Delta A O H)+\operatorname{Ar}(\Delta C O H)$

- Watch Video Solution

10. If I is the incenter of $\triangle A B C$ and R_{1}, R_{2}, and R_{3} are, respectively, the radii of the circumcircle of the triangle IBC, ICA, and IAB, then prove that $R_{1} R_{2} R_{3}=2 r R^{2}$

- Watch Video Solution

11. Show that the line joining the incenter to the circumcenter of triangle $A B C$ is inclined to the side $B C$ at an angle $\tan ^{-1}\left(\frac{\cos B+\cos C-1}{\sin C-\sin B}\right)$

- Watch Video Solution

12. In a $\triangle A B C$, the median to the side $B C$ is of length $\frac{1}{\sqrt{11-6 \sqrt{3}}}$ and it divides the $\angle A$ into angles 30° and $45 \circ$. Find the length of the side $B C$.

- Watch Video Solution

13. Three circles touch each other externally. The tangents at their point of contact meet at a point whose distance from a point of contact is 4 . Then, the ratio of their product of radii to the sum of the radii is

- Watch Video Solution

14. Let $A B C$ be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides $B C, C A$ and $A B$, respectively, If r_{2} and r_{3} are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that
$\frac{r_{1}}{r-r_{1}}+\frac{r_{2}}{r-r_{2}}+\frac{r_{3}}{r-r_{3}}=\frac{r_{1} r_{2} r_{3}}{\left(r-r_{1}\right)\left(r-r_{2}\right)\left(r-r_{3}\right)}$
15. In convex quadrilateral $A B C D, A B=a, B C=b, C D=c, D A=d$. This quadrilateral is such that a circle can be inscribed in it and a circle can also be circumscribed about it. Prove that $\frac{\tan ^{2} A}{2}=\frac{b c}{a d}$.

- Watch Video Solution

Illustration

1. If an a triangle $A B C, b=3$ cand $C-B=90^{\circ}$, then find the value of $\tan B$

- Watch Video Solution

2. In a triangle $A B C$ if $B C=1 a n d A C=2$, then what is the maximum possible value of angle A ?
3. The perimeter of a triangle $A B C$ is saix times the arithmetic mean of the sines of its angles. If the side ais1 then find angle A.

- Watch Video Solution

4. If $A=75^{0}, b=45^{0}$, then prove that $b+c \sqrt{2}=2 a$

- Watch Video Solution

5. If the base angles of triangle are $\frac{22}{12} \operatorname{and} 112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.

- Watch Video Solution

6. If a^{2}, b^{2}, c^{2} are in A.P., then prove that $\tan A, \tan B, \tan C$ are in H.P.
7. Prove that $\frac{a^{2} \sin (B-C)}{\sin b+\sin C}+\frac{b^{2} \sin (C-A)}{\sin C+\sin A}+\frac{c^{2} \sin (A-B)}{\sin A+\sin B}=0$

- Watch Video Solution

8. In any triangle. if $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$, then prove that the triangle is either right angled or isosceles.

- Watch Video Solution

9. ABCD is a trapezium such that $A B|\mid C \operatorname{DandCB}$ is perpendicular to them. If $\angle A D B=\theta, B C=p, \operatorname{andCD}=q \quad$, show that $A B=\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$

(Watch Video Solution

10. In a triangle $A B C, \angle c=60^{\circ}$ and $\angle A=75^{\circ}$. If D is a point on $A C$ such that the area of the $B C D$, the $\angle A B D$

- Watch Video Solution

11. In a scalene triangle $A B C, D$ is a point on the side $A B$ such that $C D^{2}=A D \cdot D B, \sin A \cdot \sin B=\sin ^{2}\left(\frac{C}{2}\right)$ then prove that CD is internal bisector of $\angle C$

- Watch Video Solution

12. In a triangle $\mathrm{ABC}, \angle A=60^{\circ}$ and $b: c=(\sqrt{3}+1): 2$, then find the value of $(\angle B-\angle C)$

- Watch Video Solution

13. If the median $A D$ of triangle $A B C$ makes an angle $\frac{\pi}{4}$ with the side $B C$, then find the value of $|\cot B-\cot C|$.

- Watch Video Solution

14. The base of a triangle is divided into three equal parts. If t_{1}, t_{2}, t_{3} are the tangents of the angles subtended by these parts at the opposite vertex, prove that $\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)\left(\frac{1}{t_{2}}+\frac{1}{t_{3}}\right)=4\left(1+\frac{1}{t 22}\right)$.

- Watch Video Solution

15. In any $\triangle A B C$ prove that
$(a-b)^{2} \cos ^{2}\left(\frac{C}{2}\right)+(a+b)^{2} \sin ^{2}\left(\frac{C}{2}\right)=c^{2}$.

- Watch Video Solution

16. In $A B C,=$ if $(a+b+c)(a-b+c)=3 a c$, then find $\angle B$.
17. If $a=\sqrt{3}, b=\frac{1}{2}(\sqrt{6}+\sqrt{2})$, and $c=\sqrt{2}$, then find $\angle A$

- Watch Video Solution

18. The sides of a triangle are $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Prove that the greatest angle is 120°

- Watch Video Solution

19. If the angles A, B, C of a triangle are in A.P. and sides a, b, c, are in G.P., then prove that a^{2}, b^{2}, c^{2} are in A.P.

- Watch Video Solution

20. Let a, bandc be the three sides of a triangle, then prove that the equation $b^{2} x^{2}+\left(b^{2}=c^{2}-\alpha^{2}\right) x+c^{2}=0$ has imaginary roots.

- Watch Video Solution

21. Let $a \leq b \leq c$ be the lengths of the sides of a triangle. If $a^{2}+b^{2}<c^{2}$, thenprovet $\widehat{\angle}$ Cisobtuse.

- Watch Video Solution

22. In a triangle $A B C$, if the sides a, b, c, are roots of $x^{3}-11 x^{2}+38 x-40=0, \quad$ then find the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$

- Watch Video Solution

23. If in a triangle $A B C, \angle C=60^{\circ}$, then prove that $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$.

- Watch Video Solution

24. In a triangle, if the angles A, B, and C are in A.P. show that
$2 \frac{\cos 1}{2}(A-C)=\frac{a+c}{\sqrt{a^{2}-a c+c^{2}}}$

(Watch Video Solution

25. If $a=9, b=4 a n d c=8$ then find the distance between the middle point of BC and the foot of the perpendicular form A.

- Watch Video Solution

26. Three parallel chords of a circle have lengths $2,3,4$ units and subtend angles $\alpha, \beta, \alpha+\beta$ at the centre, respectively '(alpha
27. In a cyclic quadrilateral $P Q R S, P Q=2$ units, $Q R=5$ units, $R S=3$ units and $\angle P Q R=60^{\circ}$, then what is the measure of SP ?

- Watch Video Solution

28. For any triangle ABC , prove that $a(b \cos C-\mathrm{os} B)=b^{2}-c^{2}$

- Watch Video Solution

29. If in a triangle a $\frac{\cos ^{2} C}{2}+\frac{\cos ^{2} A}{2}=\frac{3 b}{2}$, then find the relation between the sides of the triangle.

- Watch Video Solution

30. Prove that $(b+c) \cos A+(c+a) \cos B+(a+b) \cos C=2 s$.
31. If $\frac{\cos A}{2}=\sqrt{\frac{b+c}{2 c}}$, then prove that $a^{2}+b^{2}=c^{2}$.

- Watch Video Solution

32. If the cotangents of half the angles of a triangle are in A.P., then prove that the sides are in A.P.

- Watch Video Solution

33. If the sides a, bandCof $A B C$ are in $A P$; prove that $2 \frac{\sin A}{2} \frac{\sin C}{2}=\frac{\sin B}{2}, a \frac{\cos ^{2} C}{2}+\frac{\cos ^{2} A}{2}=\frac{3 b}{2}$

- Watch Video Solution

34. Prove that $\left(\frac{\cot A}{2}+\frac{\cot B}{2}\right)\left(a \frac{\sin ^{2} B}{2}+b \frac{\sin ^{2} A}{2}\right)=$ ot $\frac{C}{2}$
35. Find the value of $\tan \mathrm{A}$, if area of $\Delta A B C i s a^{2}-(b-c)^{2}$.

- Watch Video Solution

36. Prove that $a^{2} \sin 2 B+b^{2} \sin 2 A=4 \Delta$

- Watch Video Solution

37. Prove that $\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4 b^{2} c^{2}}=\sin ^{2} A$

- Watch Video Solution

38. If the sides of a triangle are $17,25 a n d 28$, then find the greatest length of the altitude.
39. In equilateral triangle $A B C$ with interior point D, if the perpendicular distances from D to the sides of 4,5 , and 6 , respectively, are given, then find the area of $A B C$.

- Watch Video Solution

40. If area of a triangle is 2 sq . units, then find the value of the product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle.

- Watch Video Solution

41. A triangle has sides 6,7 , and 8 . The line through its incenter parallel to the shortest side is drawn to meet the other two sides at P and Q . Then find the length of the segment PQ .
42. Each side of triangle $A B C$ is divided into three equal parts. Find the ratio of the area of hexagon $P Q R S T U$ to the area of the triangle $A B C$.

- Watch Video Solution

43. The two adjacent sides of a cyclic quadrilateral are $2 a n d 5$ and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides.

- Watch Video Solution

44. In triangle $A B C, a: b: c=4: 5: 6$. The ratio of the radius of the circumcircle to that of the incircle is \qquad .

- Watch Video Solution

45. Given a triangle $A B C$ with sides $\mathrm{a}=7, \mathrm{~b}=8$ and $\mathrm{c}=5$. Find the value of expression $(\sin A+\sin B+\sin C)\left(\frac{\cot A}{2}+\frac{\cot B}{2}+\frac{\cot C}{2}\right)$

- Watch Video Solution

46. If $b=3, c=4, a n d B=\frac{\pi}{3}$, then find the number of triangles that can be constructed.

- Watch Video Solution

47. If $A=30^{\circ}, a=7, a n d b=8$ in $A B C$, then find the number of triangles that can be constructed.

- Watch Video Solution

48. If in triangle ABC, $\left(a=(1+\sqrt{3}) c m, b=2 c m\right.$, and $\angle C=60^{\circ}$, then find the other two angles and the third side.
49. In $A B C$, sidesb, c and angle B are given such that a has two valus $a_{1} a n d a_{2}$. Then prove that $\left|a_{1}-a_{2}\right|=2 \sqrt{b^{2}-c^{2} \sin ^{2} B}$

- Watch Video Solution

50. In $A B C, a, c a n d A$ are given and b_{1}, b_{2} are two values of the third side b such that $b_{2}=2 b_{1}$. Then prove that $\sin A=\sqrt{\frac{9 a^{2}-c^{2}}{8 c^{2}}}$

- Watch Video Solution

51. O is the circumcenter of $A B C a n d R_{1}, R_{2}, R_{3}$ are respectively, the radii of the circumcircles of the triangle $O B C, O C A$ and OAB . Prove that $\frac{a}{R_{1}}+\frac{b}{R_{2}}+\frac{c}{R_{3}}=\frac{a b c}{R_{3}}$

- Watch Video Solution

52. In $A B C, C=60^{\circ}$ and $B=45^{\circ}$. Line joining vertex A of triangle and its circumcenter (O) meets the side $B C \in D$ Find the ratio $B D: D C$ Find the ratio $A O: O D$

- Watch Video Solution

53. The diameters of the circumcirle of triangle $A B C$ drawn from A, B and C meet $B C$, $C A$ and $A B$, respectively, in L, M and N. Prove that $\frac{1}{A L}+\frac{1}{B M}+\frac{1}{C N}=\frac{2}{R}$

- Watch Video Solution

54. Find the lengths of chords of the circumcircle of triangle $A B C$, made by its altitudes \qquad
55. Let $A B C$ be a triangle with $\angle B=90^{\circ}$. Let AD be the bisector of $\angle A$ with D on $B C$. Suppose $A C=6 \mathrm{~cm}$ and the area of the triangle $A D C$ is $10 \mathrm{~cm}^{2}$. Find the length of $B D$.

- Watch Video Solution

56. If the distances of the vertices of a triangle $=A B C$ from the points of contacts of the incercle with sides are $\alpha, \beta a n d \gamma$ then prove that $r^{2}=\frac{\alpha \beta \gamma}{\alpha+\beta+\gamma}$

- Watch Video Solution

57. If $x, y a n d z$ are the distances of incenter from the vertices of the triangle $A B C$, respectively, then prove that $\frac{a b c}{x y z}=\cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

58. Prove that $\cos A+\cos B+\cos C=1+\frac{r}{R}$

Watch Video Solution

59. Prove that $\frac{\mathrm{acos} A+b \cos B+\mathrm{os} C}{a+b+c}=\frac{r}{R}$.

- Watch Video Solution

60. Incircle of $A B C$ touches the sides BC, CA and AB at D, E and F , respectively. Let r_{1} be the radius of incircle of $B D F$. Then prove that
$r_{1}=\frac{1}{2} \frac{(s-b) \sin B}{\left(1+\sin \left(\frac{B}{2}\right)\right)}$

- Watch Video Solution

61. In an acute angled triangle $A B C$, a semicircle with radius r_{a} is constructed with its base on $B C$ and tangent to the other two sides.
$r_{b} a n d r_{c}$ are defined similarly. If r is the radius of the incircle of triangle ABC then prove that $\frac{2}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}$.

- Watch Video Solution

62. Let the incircle with center I of $A B C$ touch sides BC, CA and AB at D, E, F, respectively. Let a circle is drawn touching ID, IF and incircle of $A B C$ having radius r_{2} similarly $r_{1} a n d r_{3}$ are defined. Prove that $\frac{r_{1}}{r-r_{1}} \frac{\dot{r_{2}}}{r-r_{2}} \frac{\dot{r_{3}}}{r-r_{3}}=\frac{a+b+c}{8 R}$

- Watch Video Solution

63. In $A B C$, the bisector of the angle A meets the side BC at D andthe circumscribed circle at E. Prove that $D E=\frac{a^{2} \frac{\sec A}{2}}{2(b+c)}$
64. Let I be the incetre of $\triangle \mathrm{ABC}$ having inradius r . Al, BI and Ci intersect incircle at D, E and F respectively. Prove that area of $\Delta D E F$ is $\frac{r^{2}}{2}\left(\cos \cdot \frac{A}{2}+\cos \cdot \frac{B}{2}+\cos . \frac{C}{2}\right)$

- Watch Video Solution

65. In $A B C$, the three bisectors of the angle A, B and C are extended to intersect the circumcircle at D, E and F respectively. Prove that $A D \frac{\cos A}{2}+B E \frac{\cos B}{2}+C F \frac{\cos C}{2}=2 R(\sin A+\sin B+\sin C)$

- Watch Video Solution

66. Given a right triangle with $\angle A=90^{\circ}$. Let M be the mid-point of BC . If the radii of the triangle $A B M$ and $A C M$ are r_{1} and r_{2} then find the range of $\frac{r_{1}}{r_{2}}$.

- Watch Video Solution

67. Prove that the distance between the circumcenter and the incenter of triangle ABC is $\sqrt{R^{2}-2 R r}$

- Watch Video Solution

68. Prove that $a \cos A+b \cos B+\mathrm{os} C \leq s$.

- Watch Video Solution

69. If Δ is the area of a triangle with side lengths a, b, c, then show that as $\Delta \leq \frac{1}{4} \sqrt{(a+b+c) a b c}$ Also, show that the equality occurs in the above inequality if and only if $a=b=c$.

- Watch Video Solution

70. If in $\triangle A B C$, the distance of the vertices from the orthocenter are x, y, and z then prove that $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{a b c}{x y z}$
71. $A B C$ is an acute angled triangle with circumcenter O and orthocentre H. If $A O=A H$, then find the angle A.

- Watch Video Solution

72. In a acute angled triangle $A B C$, proint D, E and F are the feet of the perpendiculars from A, B and C onto $B C, A C$ and $A B$, respectively. H is orthocentre. If $\sin A=\frac{3}{5} a n d B C=39$, then find the length of $A H$

Watch Video Solution

73. Prove that the distance between the circumcenter and the orthocentre of triangle ABC is $R \sqrt{1-8 \cos A \cos B \cos C}$

- Watch Video Solution

74. Let $A B C$ be an acute angled triangle whose orthocentre is at H . If altitude from A is produced to meet the circumcircle of triangle ABC at D , then prove $H D=4 R \cos B \cos C$

- Watch Video Solution

75. In $A B C$, let L, M, N be the feet of the altitudes. The prove that $\sin (\angle M L N)+\sin (\angle L M N)+\sin (\angle M N L)=4 \sin A \sin B \sin C$

- Watch Video Solution

76. The lengths of the medians through acute angles of a right-angled triangle are 3 and 4. Find the area of the triangle.

- Watch Video Solution

77. Two medians drawn from acute angles of a right angled triangles intersect at an angle of $\pi / 6$. If the length of the hypotenuse of the triangle is 3 units, then find the area of the triangle.

- Watch Video Solution

78. Prove that $r_{1}+r_{2}+r_{3}-r=4 R$

- Watch Video Solution

79. If in a triangle $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled.

- Watch Video Solution

80. Prove that $\frac{r_{1+r_{2}}}{1}=2 R$
81. Prove that $(r+r 1) \tan ((B-C) / 2)+(r+r 2) \tan ((C-A) / 2)+(r+r 3) \tan ((A-B) / 2)=0$

- Watch Video Solution

82. If the distance between incenter and one of the excenter of an equilateral triangle is 4 units, then find the inradius of the triangle.

- Watch Video Solution

83. If I_{1}, I_{2}, I_{3} are the centers of escribed circles of $\triangle A B C$, show that the area of $\Delta I_{1} I_{2} I_{3}$ is $(\mathrm{abc}) /(2 \mathrm{r})^{\prime}$

(Watch Video Solution

84. Prove that the sum of the radii of the radii of the circles, which are, respectively, inscribed and circumscribed about a polygon of n sides,
whose side length is a, is $\frac{1}{2} a \frac{\cot \pi}{2 n}$.

- Watch Video Solution

85. If the area of the circle is A_{1} and the area of the regular pentagon inscribed in the circle is A_{2}, then find the ratio $\frac{A_{1}}{A_{2}}$.

- Watch Video Solution

86. Prove that the area of a regular polygon hawing $2 n$ sides, inscribed in a circle, is the geometric mean of the areas of the inscribed and circumscribed polygons of n sides.

- Watch Video Solution

Concept Application Exercise 51

1. Find the value of $\frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ in any right-angled triangle.

(D) Watch Video Solution

2. Let the angles $A, B a n d C$ of triangle $A B C$ be in $A P$. and let $b: c$ be $\sqrt{3}: \sqrt{2}$. Find angle A.

- Watch Video Solution

3. In a triangle ABC , if $(\sqrt{3}-1) a=2 b, A=3 B$, then $\angle C$ is

- Watch Video Solution

4. In a triangle ABC , if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$ and the side $a=2$, then area of triangle is

- Watch Video Solution

5. In triangle ABC , if $\cos ^{2} A+\cos ^{2} B-\cos ^{2} C=1$, then identify the type of the triangle

Watch Video Solution

6. Prove that $b^{2} \cos 2 A-a^{2} \cos 2 B=b^{2}-a^{2}$

- Watch Video Solution

7. In any triangle $A B C$, prove that following :
$\frac{c}{a+b}=\frac{1-\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}{1+\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right)}$

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. For any triangle ABC, prove that } \\
& \left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C=0
\end{aligned}
$$

9. In a triangle ABC , prove that $\frac{b+c}{a} \leq \cos e c . \frac{A}{2}$

- Watch Video Solution

10. In any triangle $A B C$, prove that: $\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$

- Watch Video Solution

11. In a triangle $A B C$, if a, b, c are in A.P. and $\frac{b}{c} \sin 2 C+\frac{c}{b} \sin 2 B+\frac{b}{a} \sin 2 A+\frac{a}{b} \sin 2 B=2$, then find the value of $\sin B$

- Watch Video Solution

12. Prove that $a \cos A+b \cos B+c \cos C=4 R \sin A \sin B \sin C$.

Concept Application Exercise 52

1. If the sides of a triangle are a, b and $\sqrt{a^{2}+a b+b^{2}}$, then find the greatest angle

- Watch Video Solution

2. If the segments joining the points $A(a, b)$ and $B(c, d)$ subtends an angle θ at the origin, prove that: $\theta=\frac{a c+b d}{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$

- Watch Video Solution

3. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x>0, y>0$. The triangle is
4. In $\triangle A B C$, angle A is $120^{\circ}, B C+C A=20$, and $A B+B C=21$

Find the length of the side $B C$

Watch Video Solution

5. In $\triangle A B C, A B=1, B C=1$, and $A C=1 / \sqrt{2}$.
$\Delta M N P, M N=1, N P=1$, and $\angle M N P=2 \angle A B C$. Find the side MP

- Watch Video Solution

6. If in a triangle $A B C, \frac{b c}{2 \cos A}=b^{2}+c^{2}-2 b c \cos A$ then prove that the triangle must be isosceles.

- Watch Video Solution

7. With usual notion, if in triangle $A B C$, $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, thenprovethat $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$

- Watch Video Solution

8. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

- Watch Video Solution

Concept Application Exercise 53

1. In $\triangle A B C$, prove that $c \cos (A-\alpha)+a \cos (C+\alpha)=b \cos \alpha$

- Watch Video Solution

2. Prove that $\frac{\cos C+\cos A}{c+a}+\frac{\cos B}{b}=\frac{1}{b}$

- Watch Video Solution

3.

Prove
$a\left(b^{2}+c^{2}\right) \cos A+b\left(c^{2}+a^{2}\right) \cos B+c\left(a^{2}+b^{2}\right) \cos C=3 a b c$

- Watch Video Solution

Concept Application Exercise 54

1. In a triangle $A B C$ if $b+c=3 a$ then find the value of $\cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

2. Prove that $b c \cos ^{2} \cdot \frac{A}{2}+c a \cos ^{2} \cdot \frac{B}{2}+a b \cos ^{2} \cdot \frac{C}{2}=s^{2}$

- Watch Video Solution

3. If in $\triangle A B C, \tan \cdot \frac{A}{2}=\frac{5}{6}$ and $\tan \frac{C}{2}=\frac{2}{5}$, then prove that a, b, and c are in A.P.

- Watch Video Solution

4. Prove that $(b+c-a)\left(\cot \cdot \frac{B}{2}+\cot \cdot \frac{C}{2}\right)=2 a \cot \cdot \frac{A}{2}$

- Watch Video Solution

5. If $\sin ^{2}\left(\frac{A}{2}\right), \sin ^{2}\left(\frac{B}{2}\right)$, and $\sin ^{2}\left(\frac{C}{2}\right)$ are in H. P., then prove that the sides of triangle are in $H . P$.

- Watch Video Solution

Concept Application Exercise 55

1. If $c^{2}=a^{2}+b^{2}$, then prove that $4 s(s-a)(s-b)(s-c)=a^{2} b^{2}$
2. If the sides of a triangle are in the ratio $3: 7: 8$, then find $R: r$

- Watch Video Solution

3. In triangle ABC , if $\mathrm{a}=2$ and $\mathrm{bc}=9$, then prove that $R=9 / 2 \Delta$

- Watch Video Solution

4. In $\triangle A B C$, if lengths of medians BE and CF are 12 and 9 respectively, find the maximum value of Δ

- Watch Video Solution

5. Let the lengths of the altitudes drawn from the vertices of $\triangle A B C$ to the opposite sides are 2,2 and 3 . If the area of $\triangle A B C$ is Δ, then find
the area of triangle

- Watch Video Solution

6. A triangle with integral sides has perimeter 8 cm . Then find the area of the triangle

- Watch Video Solution

7. The sides of a triangle are in A.P. and its area is $\frac{3}{5}$ th of an equilateral triangle of the same perimeter. Find the greatest angle of the triangle

- Watch Video Solution

Concept Application Exercise 56

1. In which of the following cases, there exists a triangle $A B C$?
(a) $b \sin A=a, A<\pi / 2$
(b) $b \sin A>a, A>\pi / 2$
(c) $b \sin A>a, A<\pi / 2$
(d) $b \sin A<a, A<\pi / 2, b>a$
(e) $b \sin A<a, A>\pi / 2, b=a$

- Watch Video Solution

2. If in $\triangle A B C, b=3 \mathrm{~cm}, c=4 \mathrm{~cm}$ and the length of the perpendicular from A to the side $B C$ is 2 cm , then how many such triangle are possible ?

- Watch Video Solution

3. In a triangle $A B C, \frac{a}{b}=\frac{2}{3}$ and $\sec ^{2} A=\frac{8}{5}$. Find the number of triangle satisfying these conditions

- Watch Video Solution

4. In a triangle, the lengths of the two larger sides are 10 and 9 , respectively. If the angles are in A.P, then the length of the third side can be (a) $5-\sqrt{6}$ (b) $3 \sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

- Watch Video Solution

5. If a, b and A are given in a triangle and c_{1}, c_{2} are possible values of the third side, then prove that $c_{1}^{2}+c_{2}^{2}-2 c_{1} c_{2} \cos 2 A=4 a^{2} \cos ^{2} A$

- Watch Video Solution

6. In $\triangle A B C, a, b$ and A are given and c_{1}, c_{2} are two values of the third side c. Prove that the sum of the area of two triangles with sides a, b, c_{1} and $a, b c_{2}$ is $\frac{1}{2} b^{2} \sin 2 A$

- Watch Video Solution

1. Let f, g and h be the lengths of the perpendiculars from the circumcenter of $\triangle A B C$ on the sides a, b, and c , respectively. Prove that $\frac{a}{f}+\frac{b}{g}+\frac{c}{h}=\frac{1}{4} \frac{a b c}{f g h}$

- Watch Video Solution

2. If AD, BE and CF are the altitudes of $\triangle A B C$ whose vertex A is $(-4,5)$. The coordinates of points E and F are $(4,1)$ and $(-1,-4)$, respectively. Equation of $B C$ is

- Watch Video Solution

3. If the sides of triangle are in the ratio $3: 5: 7$, then prove that the minimum distance of the circumcentre from the side of triangle is half the circmradius
4. If circumradius of triangle $A B C$ is 4 cm , then prove that sum of perpendicular distances from circumcentre to the sides of triangle cannot exceed 6 cm

- Watch Video Solution

Concept Application Exercise 58

1. If the incircle of the triangle $A B C$ passes through its circumcenter, then find the value of $4 \sin$. $\frac{A}{2} \sin$. $\frac{B}{2} \sin$. $\frac{C}{2}$

- Watch Video Solution

2. In $\triangle A B C, a=10, A=\frac{2 \pi}{3}$, and circle through B and C passes through the incenter. Find the radius of this circle

- Watch Video Solution

3. Let $A B C$ be a triangle with $\angle B A C=2 \pi / 3$ and $A B=x$ such that (AB) $(A C)=1$. If x varies, then find the longest possible length of the angle bisector AD

- Watch Video Solution

4. If the incircle of the $\triangle A B C$ touches its sides at L, M and N as shown in the figure and if x, y, z be thecircumradii of the triangles $M I N, N I L$ and $L I M$ respectively, where I is the incentre, then the product $x y z$ is equal to:
(A) $R r^{2}$
(B) $r R^{2}$
(C) $\frac{1}{2} R r^{2}$
(D) $\frac{1}{2} r R^{2}$

- Watch Video Solution

5. In a triangle $A B C, C D$ is the bisector of the angle C. If $\cos \left(\frac{C}{2}\right)$ has the value $\frac{1}{3}$ and $l(C D)=6$, then $\left(\frac{1}{a}+\frac{1}{b}\right)$ has the value equal to -
6. In $\triangle A B C, \angle A=\frac{\pi}{3}$ and its incircle of unit radius. Find the radius of the circle touching the sides AB, AC internally and the incircle of $\triangle A B C$ externally is x, then the value of x is

- Watch Video Solution

7. In triangle ABC, prove that the maximum value of $\frac{\tan A}{2} \frac{\tan B}{2} \frac{\tan C}{2} i s \frac{R}{2 s}$

- Watch Video Solution

Concept Application Exercise 59

1. Line joining vertex A of triangle $A B C$ and orthocenter (H) meets the side $B C$ in D. Then prove that
(a) $B D: D C=\tan C: \tan B$
(b) $A H: H D=(\tan B+\tan C): \tan A$

- Watch Video Solution

2. In a triangle $\mathrm{ABC}, \angle A=30^{2}, B C=2+\sqrt{5}$, then find the distance of the vertex A from the orthocenter

- Watch Video Solution

3. If the perimeter of the triangle formed by feet of altitudes of the triangle ABC is equal to four times the circumradius of $\triangle A B C$, then identify the type of $\triangle A B C$

- Watch Video Solution

4. $A D, B E$ and $C F$ are the medians of triangle $A B C$ whose centroid is G. If the points $\mathrm{A}, \mathrm{F}, \mathrm{G}$ and E are concyclic, then prove that $2 a^{2}=b^{2}+c^{2}$
5. Consider an acute angled $\triangle A B C$. Let AD, BE and CF be the altitudes drawn from the vertice to the opposite sides. Prove that : $\frac{E F}{a}+\frac{F D}{b}+\frac{D E}{\text { © }}=\frac{R+r}{R}$.

- Watch Video Solution

Concept Application Exercise 510

1. In $\triangle A B C$, if $r_{1}<r_{2}<r_{3}$, then find the order of lengths of the sides

- Watch Video Solution

2. The exradii r_{1}, r_{2}, and r_{3} of $\Delta A B C$ are in H.P. show that its sides a, b , and c are in A.P.
3. If in $\Delta A B C,(a-b)(s-c)=(b-c)(s-a)$, prove that r_{1}, r_{2}, r_{3} are in A.P.

- Watch Video Solution

4. Prove that $2 R \cos A=2 R+r-r_{1}$

D Watch Video Solution

5. If the lengths of the perpendiculars from the vertices of a triangle $A B C$ on the opposite sides are p_{1}, p_{2}, p_{3} then prove that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$.

- Watch Video Solution

6. Prove that $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=\frac{1}{4}(a+b+c)^{2}$
7. In any triangle ABC , find the least value of $\frac{r_{1}+r_{2}+r_{3}}{r}$

- Watch Video Solution

8. Prove that $\frac{r_{1}-r}{a}+\frac{r_{2}-r}{b}=\frac{c}{r_{3}}$

- Watch Video Solution

Concept Application Exercise 511

1. Regular pentagons are inscribed in two circles of radius 5 and 2 units respectively. The ratio of their areas is

- Watch Video Solution

2. Let A be a point inside a regular polygon of 10 sides. Let $p_{1}, p_{2} \ldots, p_{10}$ be the distances of A from the sides of the polygon. If each side is of length 2 units, then find the value of $p_{1}+p_{2}+\ldots+p_{10}$

- Watch Video Solution

3. about to only mathematics

- Watch Video Solution

4. If I_{n} is the area of $n-$ sided regular polygon inscribed in a circle of unit radius and O_{n} be the area of the polygon circumscribing the given circle, prove that $I_{n}=\frac{O_{n}}{2}\left(\sqrt{1+\left(\frac{2 I_{n}}{n}\right)^{2}}\right)$

- Watch Video Solution

1. In $\triangle A B C, \frac{\sin A(a-b \cos C)}{\sin C(c-b \cos A)}=$
A. -2
B. -1
C. 0
D. 1

Answer: D

- Watch Video Solution

2.

If
in
a triangle
ABC,
$\frac{1+\cos A}{a}+\frac{1+\cos B}{b}+\frac{1+\cos C}{c}=\frac{k^{2}(1+\cos A)(1+\cos B)(1+\cos }{a b c}$
, then k is equal to
A. $\frac{1}{2 \sqrt{2} R}$
B. 2 R
C. $\frac{1}{R}$
D. none of these

Answer: B

- Watch Video Solution

3. In triangle $A B C, 2 a c \sin \left(\frac{1}{2}(A-B+C)\right)$ is equal to $a^{2}+b^{2}-c^{2}$
(b) $c^{2}+a^{2}-b^{2} b^{2}-c^{2}-a^{2}$ (d) $c^{2}-a^{2}-b^{2}$
A. $a^{2}+b^{2}-c^{2}$
B. $c^{2}+a^{2}-b^{2}$
C. $b^{2}-c^{2}-a^{2}$
D. $c^{2}-a^{2}-b^{2}$

Answer: B

4. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is
A. $\sqrt{3}:(2+\sqrt{3})$
B. 1: 6
C. $1: 2+\sqrt{3}$
D. 2:3

Answer: A

- Watch Video Solution

5. Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $A B C$ (R being the radius of the circumcircle)? (a) $a, \sin A, \sin B(\mathrm{~b}) a, b, c(c) \mathrm{a}, \sin \mathrm{B}, \mathrm{R}(d) \mathrm{a}, \sin \mathrm{A}, \mathrm{R}^{\prime}$
A. $a, \sin A, \sin B$
B. a, b, c
C. $a, \sin B, R$
D. $a, \sin A, R$

Answer: D

- Watch Video Solution

6. The sides of a triangle are in the ratio $1: \sqrt{3}: 2$. Then the angles are in the ratio
A. 1:3:5
B. 2:3:4
C. 3: 2:1
D. 1:2:3

Answer: D

7. In $A B C, a=5, b=12, c=90^{\circ} a n d D$ is a point on $A B$ so that $\angle B C D=45^{0}$. Then which of the following is not true? (a) $C D=\frac{60 \sqrt{2}}{17}$
(b) $B D=\frac{65}{17}$ (c) $A D=\frac{60 \sqrt{2}}{17}$ (d) none of these
A. $C D=\frac{60 \sqrt{2}}{17}$
B. $B D=\frac{65}{17}$
C. $A D=\frac{60 \sqrt{2}}{17}$
D. none of these

Answer: C

- Watch Video Solution

8. In $\triangle A B C,(a+b+c)(b+c-a)=k b c$ if
A. $k<0$
B. $k>0$
C. $0<k<4$
D. $k<4$

Answer: C

- Watch Video Solution

9. Let D be the middle point of the side $B C$ of a triangle $A B C$. If the triangle $A D C$ is equilateral, then $a^{2}: b^{2}: c^{2}$ is equal to $1: 4: 3$ (b) $4: 1: 3$ (c) $4: 3: 1$ (d) $3: 4: 1$
A. 1:4:3
B. 4:1:3
C. 4:3:1
D. 3:4:1

Answer: B

- Watch Video Solution

10. In a triangle $A B C$, the altitude from A is not less than $B C$ andthe altitude from B is not less than $A C .(\mathrm{a})$ The triangle is right angled (b) isosceles obtuse angled (d) equilateral
A. right angled
B. isosceles
C. obtuse angled
D. equilateral

Answer: A

D Watch Video Solution

11. In $\triangle A B C$, if $\frac{\sin A}{c \sin B}+\frac{\sin B}{c}+\frac{\sin C}{b}=\frac{c}{a b}+\frac{b}{a c}+\frac{a}{b c}$, then the value of angle A is
A. 120°
B. 90°
C. 60°
D. 30°

Answer: B

- Watch Video Solution

12. If in $\Delta A B C$, sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. then
A. $B>60^{\circ}$
B. $B<60^{\circ}$
C. $B \leq 60^{\circ}$
D. $B=|A-C|$

Answer: C

13. In a $\triangle A B C, \mathrm{AD}$ is the altitude from A . Given $b>c, \angle C=23^{\circ}$ and $A D=\frac{a b c}{\left(b^{2}-c^{2}\right)}$, find $\angle B$.
A. 83°
B. 97°
C. 113°
D. 127°

Answer: C

- Watch Video Solution

14. If the sides a, b, c of a triangle $A B C$ form successive terms of G.P. with common ratio $r(>1)$ then which of the following is correct? (a) $A>\frac{\pi}{3}{ }^{\prime}(b) \mathrm{B} \geq \pi / 3^{\prime}(c) \mathrm{C}<\pi / 3^{\prime}(d) \mathrm{A}<\mathrm{B}<\pi / 3^{\prime}$
A. $A>\pi / 3$
B. $B \geq \pi / 3$
C. $C<\pi / 3$
D. $A<B<\pi / 3$

Answer: D

- Watch Video Solution

15. In triangle $A B C, b^{2} \sin 2 C+c^{2} \sin 2 B=2 b c$ where $b=20, c=21$, then inradius =
A. 4
B. 6
C. 8
D. 9

Answer: B

16. In a $A B C$, if $A B=x, B C=x+1, \angle C=\frac{\pi}{3}$, then the least integer value of x is 6 (b) 7 (c) 8 (d) none of these
A. 6
B. 7
C. 8
D. none of these

Answer: B

- Watch Video Solution

17. If one side of a triangle is double the other, and the angles on opposite sides differ by 60^{0}, then the triangle is equilateral (b) obtuse angled (c) right angled (d) acute angled
A. equilateral
B. obtus angled
C. right angled
D. acute angled

Answer: C

- Watch Video Solution

18. If the hypotenuse of a right-angled triangle is four times the length of the perpendicular drawn from the opposite vertex to it, then the difference of the two acute angles will be 60° (b) 15^{0} (c) 75^{0}
(d) 30^{0}
A. 60°
B. 15°
C. 75°
D. 30°

Answer: A

19. If P is a point on the altitude $A D$ of the triangle $A B C$ such the $\angle C B P=\frac{B}{3}$, then AP is equal to $2 a \frac{\sin C}{3}$ (b) $2 b \frac{\sin C}{3}$ (c) $2 c \frac{\sin B}{3}$ (d) $2 c \frac{\sin C}{3}$
A. $2 a \sin$. $\frac{C}{3}$
B. $2 b \sin$. $\frac{C}{3}$
C. $2 c \sin$. $\frac{B}{3}$
D. $2 c \sin$. $\frac{C}{3}$

Answer: C

- Watch Video Solution

20. With usual notations, in triangle
$A B C, a \cos (B-C)+b \cos (C-A)+c \cos (A-B)$ is equal to $a b c / R^{2}$
(b) $\frac{a b c}{4 R^{2}} \frac{4 a b c}{R^{2}}$ (d) $\frac{a b c}{2 R^{2}}$
A. $\frac{a b c}{R^{2}}$
B. $\frac{a b c}{4 R^{2}}$
C. $\frac{4 a b c}{R^{2}}$
D. $\frac{a b c}{2 R^{2}}$

Answer: A

- Watch Video Solution

21. If in $\triangle A B C, 8 R^{2}=a^{2}+b^{2}+c^{2}$, then the triangle ABC is
A. right angled
B. isosceles
C. equilateral
D. none of these

Answer: A

22. Let ABC be a triangle with $\angle A=45^{\circ}$. Let P be a point on side BC with $P B=3$ and $P C=5$. If O is circumcenter of triangle $A B C$, then length $O P$ is $\sqrt{18}$ (b) $\sqrt{17}$ (c) $\sqrt{19}$ (d) $\sqrt{15}$
A. $\sqrt{18}$
B. $\sqrt{17}$
C. $\sqrt{19}$
D. $\sqrt{15}$

Answer: B

- Watch Video Solution

23. In any triangle $A B C, \frac{a^{2}+b^{2}+c^{2}}{R^{2}}$ has the maximum value of 3 (b) 6 (c) 9 (d) none of these
A. 3
B. 6
C. 9
D. none of these

Answer: C

- Watch Video Solution

24. In triangle $\mathrm{ABC}, R(b+c)=a \sqrt{b c}$, where R is the circumradius of the triangle. Then the triangle is
A. isosceles but not right
B. right but not isosceles
C. right isosceles
D. equilateral

Answer: C

25. In $A B C$, if $b^{2}+c^{2}=2 a^{2}$, then value of $\frac{\cot A}{\cot B+\cot C}$ is $\frac{1}{2}$ (b) $\frac{3}{2}$
(c) $\frac{5}{2}$ (d) $\frac{5}{2}$
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{5}{3}$

Answer: A

- Watch Video Solution

26. If $\sin \theta$ and $-\cos \theta$ are the roots of the equation $a x^{2}-b x-c=0$, where a, b, and c are the sides of a triangle ABC , then $\cos B$ is equal to
A. $1-\frac{c}{2 a}$
B. $1-\frac{c}{a}$
C. $1+\frac{c}{2 a}$
D. $1+\frac{c}{3 a}$

Answer: C

- Watch Video Solution

27. If D is the mid-point of the side $B C$ of triangle $A B C$ and $A D$ is perpendicular to $A C$, then $3 b^{2}=a^{2}-c$ (b) $3 a^{2}=b^{2} 3 c^{2} b^{2}=a^{2}-c^{2}$
(d) $a^{2}+b^{2}=5 c^{2}$
A. $3 b^{2}=a^{2}-c^{2}$
B. $3 a^{2}=b^{2}-3 c^{2}$
C. $b^{2}=a^{2}-c^{2}$
D. $a^{2}+b^{2}=5 c^{2}$

Answer: A

- Watch Video Solution

28. In a triangle $A B C$, if $\cot A: \cot B: \cot C=30: 19: 6$ then the sides a, b, c are
A. in A.P.
B. in G.P.
C. in H.P.
D. none of these

Answer: A

- Watch Video Solution

29. In $\triangle A B C, \mathrm{P}$ is an interior point such that $\angle P A B=10^{\circ}, \angle P B A=20^{\circ}, \angle P C A=30^{\circ}, \angle P A C=40^{\circ}$ then $\triangle A B C$ is
A. isosceles
B. right angled
C. equilateral
D. obtuse angled

Answer: A

- Watch Video Solution

30. In $\Delta A B C$, if $\mathrm{AB}=\mathrm{c}$ is fixed, and $\cos A+\cos B+2 \cos C=2$ then the locus of vertex C is
A. ellipse
B. hyperbola
C. circle
D. parabola

Answer: A

31. If in $A B C, A=\frac{\pi}{7}, B=\frac{2 \pi}{7}, C=\frac{4 \pi}{7}$ then $a^{2}+b^{2}+c^{2}$ must be R^{2}
(b) $3 R^{2}$ (c) $4 R^{2}$ (d) $7 R^{2}$
A. R^{2}
B. $3 R^{2}$
C. $4 R^{2}$
D. $7 R^{2}$

Answer: D

- Watch Video Solution

32. In $\triangle A B C, \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}$ is equal to
A. $\frac{\Delta}{r^{2}}$
B. $\frac{(a+b+c)^{2}}{a b c} 2 R$
C. $\frac{\Delta}{r}$
D. $\frac{\Delta}{R r}$

- Watch Video Solution

33. In $A B C,\left(\cot \left(\frac{A}{2}\right)+\cot \left(\frac{B}{2}\right)\right)\left(a \sin ^{2}\left(\frac{B}{2}\right)+b \sin ^{2}\left(\frac{A}{2}\right)\right)=$ (a) $\cot C$ (b) $\cot C$ (c) $\cot \left(\frac{C}{2}\right)$ (d) $\cot \left(\frac{C}{2}\right)$
A. $\cot C$
B. $c \cot C$
C. $\cot \cdot \frac{C}{2}$
D. $c \cot . \frac{C}{2}$

Answer: D

- Watch Video Solution

34. In a right-angled isosceles triangle, the ratio of the circumradius and inradius is
A. $2(\sqrt{2}+1): 1$
B. $(\sqrt{2}+1): 1$
C. 2:1
D. $\sqrt{2}: 1$

Answer: B

- Watch Video Solution

35. In a $\triangle A B C$, a semicircle is inscribed, whose diameter lies on the side c.

Then the radius of the semicircle is (Where Δ is the area of the triangle
ABC)

- Watch Video Solution

36.

$\triangle A B C, A=\frac{2 \pi}{3}, b-c=3 \sqrt{3} c m$ and \quad area of $\triangle A B C=\frac{9 \sqrt{3}}{2} \mathrm{~cm}^{2}$, then $B C=$
A. $6 \sqrt{3} \mathrm{~cm}$
B. 9 cm
C. 18 cm
D. 27 cm

Answer: B

- Watch Video Solution

37. In triangle ABC , let $\angle C=\pi / 2$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to
A. $a+b$
B. $b+c$
C. $c+a$
D. $a+b+c$

Watch Video Solution

38. In the given figure, $A B$ is the diameter of the circle, centered at 0 . If $\angle C O A=60^{\circ}, A B=2 r, A c=d$ and $C D=l$, then I is equal to

A. $d \sqrt{3}$
B. $d / \sqrt{3}$
C. 3d
D. $\sqrt{3} d / 2$
39. In triangle $A B C$, if $P Q, R$ divides sides $B C, A C$, and $A B$, respectively, in the ratio $k: 1(\in$ or $d e r)$. If the ratio $\left(\frac{\operatorname{ar} E A P Q R}{\operatorname{area} A B C}\right)$ IS $\frac{1}{3}$, thenk is equal to $\frac{1}{3}$ (b) 2 (c) 3 (d) none of these
A. $1 / 3$
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

40. If the angles of a triangle are 30° and 45°, and the included side is $(\sqrt{3}+1) \mathrm{cm}$, then
A. $\frac{\sqrt{3}+1}{2}$ sq. units
B. $(\sqrt{3}+1)$ sq. units
C. $2(\sqrt{3}-1)$ sq. units
D. $\frac{2 \sqrt{3}-1}{2}$ sq. units

Answer: A

- Watch Video Solution

41. In triangle $A B C$, base $B C$ and area of triangle are fixed. The locus of the centroid of triangle $A B C$ is a straight line that is parallel to side $B C$ right bisector of side $B C$ perpendicular to $B C$ inclined at an angle $\sin ^{-1}\left(\frac{\sqrt{ }}{B C}\right)$ to side $B C$
A. parallel to side $B C$
B. right bisector of side $B C$
C. prependicular to BC
D. inclined at an angle $\sin ^{-1}(\sqrt{\Delta} / B C)$ to side BC

Answer: A

- Watch Video Solution

42. let the area of triangle $A B C$ be $\frac{(\sqrt{3}-1)}{2}, b=2$, and $c=(\sqrt{3}-1)$, and $\angle A$ be acute. The measure of the angle C is 15^{0} 30^{0} (c) 60^{0} (d) 75^{0}
A. 15°
B. 30°
C. 60°
D. 75°

Answer: A

43. In $\Delta A B C, \Delta=6, a b c=60, r=1$. Then the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is nearly
A. 0.5
B. 0.6
C. 0.4
D. 0.8

Answer: D

- Watch Video Solution

44. Triangle $A B C$ is isosceles with $A B=A C$ and $B C=65 \mathrm{~cm}$. P is a point on $B C$ such that the perpendiculardistances from P to $A B$ and $A C$ are 24 cm and 36 cm , respectively. The area of triangle $A B C$ (in sq cm is)
B. 1950
C. 2535
D. 5070

Answer: C

- Watch Video Solution

45. In an equilateral triangle, the inradius, circumradius, and one of the exradii are in the ratio
A. 2: $4: 5$
B. 1:2:3
C. 1:2:4
D. 2: 4: 3

Answer: B

46. In triangle ABC , if $\cos A+\cos B+\cos C=\frac{7}{4}$, then $\frac{R}{r}$ is equal to
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

47. If two sides of a triangle are roots of the equation $x^{2}-7 x+8=0$ and the angle between these sides is 60° then the product of inradius and circumradius of the triangle is
A. $\frac{8}{7}$
B. $\frac{5}{3}$
C. $\frac{5 \sqrt{2}}{3}$
D. 8

Answer: B

- Watch Video Solution

48. Given $b=2, c=\sqrt{3}, \angle A=30^{\circ}$, then inradius of $\triangle A B C$ is
A. $\frac{\sqrt{3}-1}{2}$
B. $\frac{\sqrt{3}+1}{2}$
C. $\frac{\sqrt{3}-1}{4}$
D. none of these

Answer: A

49. In triangle ABC, if $A-B=120^{2}$ and $R=8 r$, where R and r have their usual meaning, then $\cos C$ equals
A. $3 / 4$
B. $2 / 3$
C. $5 / 6$
D. $7 / 8$

Answer: D

- Watch Video Solution

50. $A B C$ is an equilateral triangle of side 4 cm . If R, r and h are the circumradius, inradius, and altitude, respectively, then $\frac{R+r}{h}$ is equal to
A. 4
B. 2
C. 1
D. 3

Answer: C

- Watch Video Solution

51. A circle is inscribed in a triangle $A B C$ touching the side $A B$ at D such that $A D=5, B D=3$, if $\angle A=60^{0}$ then length $B C$ equals. 9
(b) $\frac{120}{13}$ (c) 13 (d) 12
A. 9
B. $\frac{120}{13}$
C. 13
D. 12

Answer: C

- Watch Video Solution

52. The rational number which equals the number 2.357 with recurring decimal is $\frac{2355}{1001}$ b. $\frac{2379}{997}$ c. $\frac{2355}{999}$ d. none of these
A. $\frac{25}{9}$
B. $\frac{25}{3}$
C. $\frac{25}{18}$
D. $\frac{10}{3}$

Answer: B

- Watch Video Solution

53. Let AD be a median of the $\triangle A B C$. If AE and AF are medians of the triangle $A B D$ and $A D C$, respectively, and $B D=a / 2 \quad A D=$ $m_{1}, A E=m_{2}, A F=m_{3}$, then $a^{2} / 8$ is equal to
A. $m_{2}^{2}+m_{3}^{2}-2 m_{1}^{2}$
B. $m_{1}^{2}+m_{2}^{2}-2 m_{3}^{2}$
C. $m_{1}^{2}+m_{3}^{2}-2 m_{2}^{2}$
D. none of these

Answer: A

D Watch Video Solution

54. For a triangle $A B C, R=\frac{5}{2}$ and $r=1$. Let D, E and F be the feet of the perpendiculars from incentre I to BC, CA and AB , respectively. Then the value of $\frac{(I A)(I B)(I C)}{(I D)(I E)(I F)}$ is equal to
A. $\frac{5}{2}$
B. $\frac{5}{4}$
C. $\frac{1}{10}$
D. $\frac{1}{5}$

Answer: C

55. In triangle $A B C, \angle A=60^{\circ}, \angle B=40^{\circ}$, and $\angle C=80^{\circ}$. If P is the center of the circumcircle of triangle $A B C$ with radius unity, then the radius of the circumcircle of triangle $B P C$ is (a) 1 (b) $\sqrt{3}$ (c) 2 (d) $\sqrt{3} 2$
A. 1
B. $\sqrt{3}$
C. 2
D. $\sqrt{3} / 2$

Answer: A

- Watch Video Solution

56. If H is the othrocenter of an acute angled triangle $A B C$ whose circumcircle is $x^{2}+y^{2}=16$, then circumdiameter of the triangle HBC is

1 (b) 2 (c) 4 (d) 8
A. 1
B. 2
C. 4
D. 8

Answer: D

- Watch Video Solution

57. In triangle $A B C$, the line joining the circumcenter and incenter is parallel to side AC, then $\cos A+\cos C$ is equal to
A. $\frac{1}{2}$
B. 1
C. $\sqrt{3}$
D. 2

Answer: B

58. In triangle $A B C$, line joining the circumcenter and orthocenter is parallel to side $A C$, then the value of $\tan A \tan C$ is equal to
A. $\sqrt{3}$
B. 3
C. $3 \sqrt{3}$
D. none of these

Answer: B

- Watch Video Solution

59. In triangle $A B C, \angle C=\frac{2 \pi}{3}$ and $C D$ is the internal angle bisector of $\angle C$, meeting the side $A B a t D$. If Length $C D$ is 1 , the H.M. of aandb is equal to: 1 (b) 2 (c) 3 (d) 4
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

60. In the given figure $\triangle A B C$ is equilateral on side $A B$ produced. We choose a point such that A lies between P and B . We now denote 'a' as the length of sides of $\triangle A B C, r_{1}$ as the radius of incircle $\triangle P A C$ and r_{2} as the ex-radius of $\triangle P B C$ with respect to side BC . Then $r_{1}+r_{2}$ is equal to
A. (a) $\frac{1}{2}$
B. (b) $\frac{3}{2} a$
C. (c) $\frac{\sqrt{3}}{2} a$
D. (d) $a \sqrt{2}$

Answer: C

D Watch Video Solution

61. A variable triangle $A B C$ is circumscribed about a fixed circle of unit radius. Side $B C$ always touches the circle at D and has fixed direction. If B and C vary in such a way that $(B D)(C D)=2$, then locus of vertex A will be a straight line. parallel to side BC perpendicular to side BC making an angle $\left(\frac{\pi}{6}\right)$ with BC making an angle $\sin ^{-1}\left(\frac{2}{3}\right)$ with $B C$
A. parallel to side BC
B. perpendicular to side $B C$
C. making an angle ($\pi / 6$) with BC
D. making an angle $\sin ^{-1}(2 / 3)$ with $B C$

Answer: A

62. In $\triangle A B C$, if $\mathrm{a}=10$ and $b \cot B+c \cot C=2(r+R)$ then the maximum area of $\triangle A B C$ will be
A. 50
B. $\sqrt{50}$
C. 25
D. 5

Answer: C

- Watch Video Solution

63. Let C be incircle of $\triangle A B C$. If the tangents of lengths t_{1}, t_{2} and t_{3} are drawn inside the given triangle parallel to side a, b, and c , respectively, then $\frac{t_{1}}{a}+\frac{t_{2}}{b}+\frac{t_{3}}{c}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

64. A park is in the form of a rectangle 120 mx 100 m . At the centre of the park there is a circular lawn. The area of park excluding lawn is $8700 \mathrm{~m}^{2}$.
Find the radius of the circular lawn. $\left(U \operatorname{se\pi } \frac{22}{7}\right)$
A. c^{2}
B. $\frac{c^{2}}{2}$
C. $\frac{c^{2}}{4}$
D. none of these

Answer: C

65. In triangle ABC , if $r_{1}=2 r_{2}=3 r_{3}$, then $a: b$ is equal to
A. $\frac{5}{4}$
B. $\frac{4}{5}$
C. $\frac{7}{4}$
D. $\frac{4}{7}$

Answer: A

Watch Video Solution

66. If in a triangle, $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$, then the triangle is
A. right angled
B. isosceles
C. equilateral
D. none of these

- Watch Video Solution

67. If in a triangle $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$, then
A. $A=90^{\circ}$
B. $B=90^{\circ}$
C. $C=90^{\circ}$
D. none of these

Answer: C

- Watch Video Solution

68. In $\triangle A B C, \mathrm{I}$ is the incentre, Area of $\triangle I B C, \triangle I A C$ and $\triangle I A B$ are, respectively, Δ_{1}, Δ_{2} and Δ_{3}. If the values of Δ_{1}, Δ_{2} and Δ_{3} are in A.P., then the altitudes of the $\triangle A B C$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

69. In an acute angled triangle $\mathrm{ABC}, r+r_{1}=r_{2}+r_{3}$ and $\angle B>\frac{\pi}{3}$, then
A. $b+2 c<2 a<2 b+2 c$
B. $b+4<4 a<2 b+4 c$
C. $b+4 c<4 a<4 b+4 c$
D. $b+3 c<3 a<3 b+3 c$
70. If in triangle $A B C, \sum \frac{\sin A}{2}=\frac{6}{5}$ and $\sum I I_{1}=9 \quad$ (where I_{1}, I_{2} and $_{3}$ are excenters and I is incenter, then circumradius R is equal to $\frac{15}{8}$ (b) $\frac{15}{4}$ (c) $\frac{15}{2}$ (d) $\frac{4}{12}$
A. $\frac{15}{8}$
B. $\frac{15}{4}$
C. $\frac{15}{2}$
D. $\frac{4}{12}$

Answer: A

- Watch Video Solution

71. The radii r_{1}, r_{2}, r_{3} of the escribed circles of the triangle $A B C$ are in H.P. If the area of the triangle is $24 \mathrm{~cm}^{2}$ and its perimeter is 24 cm , then the length of its largest side is
A. 10
B. 9
C. 8
D. none of these

Answer: A

- Watch Video Solution

72. In $A B C$ with usual notations, if $r=1, r_{1}=7$ and $R=3$, the (a) $A B C$ is equilateral (b) acute angled which is not equilateral (c) obtuse angled (d) right angled
A. equilateral
B. acute angled which is not equilateral
C. obtuse angled
D. right angled

- Watch Video Solution

73. Which of the following expresses the circumference of a circle inscribed in a sector $O A B$ with radius $R a n d A B=2 a ? 2 \pi \frac{R a}{R+a}$
$\frac{2 \pi R^{2}}{a} 2 \pi(r-a)^{2}$ (d) $2 \pi \frac{R}{R-a}$
A. $2 \pi \frac{R a}{R+a}$
B. $\frac{2 \pi R^{2}}{a}$
C. $2 \pi(R-a)^{2}$
D. $2 \pi \frac{R}{R-a}$

Answer: A

- Watch Video Solution

74. In $A B C$, the median $A D$ divides $\angle B A C$ such that $\angle B A D: \angle C A D=2: 1$. Then $\cos \left(\frac{A}{3}\right)$ is equal to $\frac{\sin B}{2 \sin C}$ (b) $\frac{\sin C}{2 \sin B}$ $2 \sin B$
(d) noneofthese
A. $\frac{\sin B}{2 \sin C}$
B. $\frac{\sin C}{2 \sin B}$
C. $\frac{2 \sin B}{\sin C}$
D. none of these

Answer: A

- Watch Video Solution

75. The area of the circle and the area of a regular polygon of n sides and the perimeter of polygon equal to that of the circle are in the ratio of $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$ (b) $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n} \frac{\sin \pi}{n}: \frac{\pi}{n}$ (d) $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
A. $\tan \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
B. $\cos \left(\frac{\pi}{n}\right): \frac{\pi}{n}$
C. $\sin . \frac{\pi}{n}: \frac{\pi}{n}$
D. $\cot \left(\frac{\pi}{n}\right): \frac{\pi}{n}$

Answer: A

- Watch Video Solution

76. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is 6 (b) 4 (c) 8 (d) 12
A. 6
B. 4
C. 8
D. 12
77. In any triangle, the minimum value of $r_{1} r_{2} r_{3} / r^{3}$ is equal to
A. 1
B. 9
C. 27
D. none of these

Answer: C

- Watch Video Solution

78. If R_{1} is the circumradius of the pedal triangle of a given triangle ABC , and R_{2} is the circumradius of the pedal triangle of the pedal triangle formed, and so on $R_{3}, R_{4} \ldots$, then the value of $\sum_{i=1}^{\infty} R_{i}$, where R (circumradius) of $\triangle A B C$ is 5 is
A. 8
B. 10
C. 12
D. 15

Answer: B

- Watch Video Solution

79. A sector $O A B O$ of central angle θ is constructed in a circle with centre O and of radius 6 . The radius of the circle that is circumscribed about the triangle $O A B$, is $6 \frac{\cos \theta}{2}$ (b) $6 \frac{\sec \theta}{2} 3 \frac{\sec \theta}{2}$ (d) $3\left(\frac{\cos \theta}{2}+2\right)$
A. $6 \cos \frac{\theta}{2}$
B. 6 sec . $\frac{\theta}{2}$
C. 3 sec. $\frac{\theta}{2}$
D. $3\left(\cos \cdot \frac{\theta}{2}+2\right)$

Answer: C

D Watch Video Solution

80. There is a point P inside an equilateral $\triangle A B C$ of side a whose distances from vertices A, B and C are 3, 4 and 5, respectively. Rotate the triangle and P through 60° about C. Let A go to A^{\prime} and P to P^{\prime}. Then the area of $\Delta P A P^{\prime}$ (in sq. units) is
A. 8
B. 12
C. 16
D. 6

Answer: D

1. The sides of $A B C$ satisfy the equation $2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$ Then a) the triangle is isosceles
b) the triangle is obtuse c)
$B=\cos ^{-1}\left(\frac{7}{8}\right)$ d) $A=\cos ^{-1}\left(\frac{1}{4}\right)$
A. the triangle is isosceles
B. the triangle is obtuse
C. $B=\cos ^{-1}(7 / 8)$
D. $A=\cos ^{-1}(1 / 4)$

Answer: A::C::D

- Watch Video Solution

2. If sides of triangle ABC are a, b, and c such that $2 b=a+c$, then
A. $\frac{b}{c}>\frac{2}{3}$
B. $\frac{b}{c}>\frac{1}{3}$
C. $\frac{b}{c}<2$
D. $\frac{b}{c}<\frac{3}{2}$

Answer: A::C

- Watch Video Solution

3. If the sines of the angle A and B of a triangle $A B C$ satisfy the equation $c^{2} x^{2}-c(a+b) x+a b=0$, then the triangle
A. is acute angled
B. is right angled
C. is obtus angled
D. satisfies the equation $\sin A+\cos A=\frac{(a+b)}{c}$

Answer: B::D

4. There exist a triangle $A B C$ satisfying
A. $\tan A+\tan B+\tan C=0$
B. $\frac{\sin A}{2}=\frac{\sin B}{3}=\frac{\sin C}{7}$
C. $(a+b)^{2}=c^{2}+a b$ and $\sqrt{2}(\sin A+\cos A)=\sqrt{3}$
D. $\sin A+\sin B=\frac{\sqrt{3}+1}{2}, \cos A \cos B=\frac{\sqrt{3}}{4}=\sin A \sin B$

Answer: C::D

- Watch Video Solution

5. In triangle, ABC if $2 a^{2} b^{2}+2 b^{2} c^{2}=a^{4}+b^{4}+c^{4}$, then angle B is equal to
A. 45°
B. 135°
C. 120°
D. 60°

Answer: A::B

- Watch Video Solution

6. If in triangle $\mathrm{ABC}, \mathrm{a}, \mathrm{c}$ and angle A are given and $c \sin A<a<c$, then (
b_{1} and b_{2} are values of b)
A. $b_{1}+b_{2}=2 c \cos A$
B. $b_{1}+b_{2}=c \cos A$
C. $b_{1} b_{2}=c^{2}-a^{2}$
D. $b_{1} b_{2}=c^{2}+a^{2}$

Answer: A: C

7. If area of $\Delta A B C(\Delta)$ and angle C are given and if c opposite to given angle is minimum, then
A. $a=\sqrt{\frac{2 \Delta}{\sin C}}$
B. $b=\sqrt{\frac{2 \Delta}{\sin C}}$
C. $a=\frac{4 \Delta}{\sin C}$
D. $b=\frac{4 \Delta}{\sin ^{2} C}$

Answer: A::B

- Watch Video Solution

8. If Δ represents the area of acute angled triangle $A B C$ $\sqrt{a^{2} b^{2}-4 \Delta^{2}}+\sqrt{b^{2} c^{2}-4 \Delta^{2}}+\sqrt{c^{2} a^{2}-4 \Delta^{2}}=$
A. $a^{2}+b^{2}+c^{2}$
B. $\frac{a^{2}+b^{2}+c^{2}}{2}$
C. $a b \cos C+b c \cos A+c a \cos B$
D. $a b \sin C+b c \sin A+c a \sin B$

Answer: B::C

- Watch Video Solution

9. Sides of $\Delta A B C$ are in A.P. If $a<\min \{b, c\}$, then \cos A may be equal to
A. $\frac{4 b-3 c}{2 b}$
B. $\frac{3 c-4 b}{2 c}$
C. $\frac{4 c-3 b}{2 b}$
D. $\frac{4 c-3 b}{2 c}$

Answer: A: D

- Watch Video Solution

10. If the angles of a triangle are 30° and 45°, and the included side is
$(\sqrt{3}+1) \mathrm{cm}$, then
A. area of the triangle is $\frac{1}{(\sqrt{3}+1)}$ sq. units
B. area of the triangle is $\frac{1}{2}(\sqrt{3}-1)$ sq. units
C. ratio of greater side to smaller side is $\frac{\sqrt{3}+1}{\sqrt{2}}$
D. ratio of greater side to smaller side is $\frac{1}{4 \sqrt{3}}$

Answer: A: C

- Watch Video Solution

11. Lengths of the tangents from A, B and C to the incircle are in A.P., then
A. $r_{1}, r_{2} r_{3}$ are in H.P
B. r_{1}, r_{2}, r_{3} are in AP
C. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P
D. $\cos A=\frac{4 c-3 b}{2 c}$

- Watch Video Solution

12. $C F$ is the internal bisector of angle C of $A B C$, then $C F$ is equal to
(a) $\frac{2 a b}{a+b} \cos \left(\frac{C}{2}\right)$ (b) $\frac{a+b}{2 a b} \frac{\cos C}{2}$ (c) $\frac{a \sin B}{\sin \left(B+\frac{C}{2}\right)}$ (d) none of these
A. $\frac{2 a b}{a+b} \cos \cdot \frac{C}{2}$
B. $\frac{a+b}{2 a b} \cos \cdot \frac{C}{2}$
C. $\frac{b \sin A}{\sin \left(B+\frac{C}{2}\right)}$
D. none of these

Answer: A:C

- Watch Video Solution

13. The incircle of $\triangle A B C$ touches side BC at D . The difference between BD and $\mathrm{CD}(\mathrm{R}$ is circumradius of $\triangle A B C)$ is
A. $\left|4 R \sin . \frac{A}{2} \sin . \frac{B-C}{2}\right|$
B. $\left|4 R \cos . \frac{A}{2} \sin . \frac{B-C}{2}\right|$
C. $|b-c|$
D. $\left|\frac{b-c}{2}\right|$

Answer: A:C

- Watch Video Solution

14. A circle of radius 4 cm is inscribed in $\triangle A B C$, which touches side BC at
D. If $\mathrm{BD}=6 \mathrm{~cm}, \mathrm{DC}=8 \mathrm{~cm}$ then
A. the triangle is necessarily acute angled
B. $\tan \frac{A}{2}=\frac{4}{7}$
C. perimeter of the triangle $A B C$ is 42 cm
D. area of $\triangle A B C$ is $84 \mathrm{~cm}^{2}$

Answer: A::B::C::D

- Watch Video Solution

15. If H is the orthocentre of triangle $A B C, R=$ circumradius and $P=A H+B H+C H$, then
A. $P=2(R+r)$
B. max. of P is $3 R$
C. min. of P is $3 R$
D. $P=2(R-r)$
16. Let $A B C$ be an isosceles triangle with base $B C$. If r is the radius of the circle inscribsed in $\triangle A B C$ and r_{1} is the radius of the circle ecribed opposite to the angle A , then the product $r_{1} r$ can be equal to (where R is the radius of the circumcircle of $\triangle A B C$)
A. $R^{2} \sin ^{2} A$
B. $R^{2} \sin ^{2} 2 B$
C. $\frac{1}{2} a^{2}$
D. $\frac{a^{2}}{4}$

Answer: A::B::D

- Watch Video Solution

17. If inside a big circle exactly $n(n \leq 3)$ small circles, each of radius r, can be drawn in such a way that each small circle touches the big circle and also touches both its adjacent small circles, then the radius of big
circle is $r\left(1+\operatorname{cosec} \frac{\pi}{n}\right)$
(b) $\left(\frac{1+\frac{\tan \pi}{n}}{\frac{\cos \pi}{\pi}}\right) r\left[1+\operatorname{cosec} \frac{2 \pi}{n}\right]$
$\frac{r\left[s \in \frac{\pi}{2 n}+\frac{\cos (2 \pi)}{n}\right]^{2}}{\frac{\sin \pi}{n}}$
A. $r\left(1+\cos e c \cdot \frac{\pi}{n}\right)$
B. $\left(\frac{1+\tan \pi / n}{\cos \pi / n}\right)$
C. $r\left[1+\cos e c . \frac{2 \pi}{n}\right]$
D. $\frac{r\left[\sin . \frac{\pi}{2 n}+\cos \cdot \frac{2 \pi}{n}\right]^{2}}{\sin \pi / n}$

Answer: A:D

- Watch Video Solution

18. The area of a regular polygon of n sides is (where r is inradius, R is circumradius, and a is side of the triangle) $\frac{n R^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
$n r^{2} \tan \left(\frac{\pi}{n}\right) \frac{n a^{2}}{4} \frac{\cot \pi}{n}$ (d) $n R^{2} \tan \left(\frac{\pi}{n}\right)$
A. $\frac{n R^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$
B. $n r^{2} \tan \left(\frac{\pi}{n}\right)$
C. $\frac{n a^{2}}{4} \cot \cdot \frac{\pi}{n}$
D. $n R^{2} \tan \left(\frac{\pi}{n}\right)$

Answer: A::B::C

- Watch Video Solution

19. In acute angled triangle $A B C, A D$ is the altitude. Circle drawn with $A D$ as its diameter cuts $A B a n d A C a t P a n d Q$, respectively. Length of $P Q$ is equal to $/(2 R)$ (b) $\frac{a b c}{4 R^{2}} 2 R \sin A \sin B \sin C$ (d) Δ / R
A. $\frac{\Delta}{2 R}$
B. $\frac{a b c}{4 R^{2}}$
C. $2 R \sin A \sin B \sin C$
D. $\frac{\Delta}{R}$

Answer: C::D

20. If A is the area and $2 s$ is the sum of the sides of a triangle, then $A \leq \frac{s^{2}}{4}$ (b) $A \leq \frac{s^{2}}{3 \sqrt{3}} 2 R \sin A \sin B \sin C$ (d) noneofthese
A. $A \leq \frac{s^{2}}{4}$
B. $A \leq \frac{s^{2}}{3 \sqrt{3}}$
C. $A<\frac{s^{2}}{\sqrt{3}}$
D. none of these

Answer: A: B

- Watch Video Solution

21. In $A B C$, internal angle bisector of $\angle A$ meets side $B C$ in D. $D E \perp A D$ meets $A C$ at E and $A B$ at F. Then (a) $A E$ is in $H . P$. of b and c (b) $A D=\frac{2 b c}{b+c} \frac{\cos A}{2}$ (c) $E F=\frac{4 b c}{b+c} \frac{\sin A}{2}$ (d) $A E F$ is isosceles
A. AE in H.M of b and c
B. $A D=\frac{2 b c}{b+c} \cos \cdot \frac{A}{2}$
C. $E F=\frac{4 b c}{b+c} \sin . \frac{A}{2}$
D. $\triangle A E F$ is isosceles

Answer: A::B::C::D

D Watch Video Solution

22. In a triangle $A B C, A B=5, B C=7, A C=6$. A point P is in the plane such that it is at distance ' 2 ' units from $A B$ and 3 units form $A C$ then its distance from BC
A. is $\frac{12 \sqrt{6}-28}{7}$ when P is inside the trinagle
B. may be $\frac{12 \sqrt{6}-8}{7}$ when P is outside the triangle
C. may be $\frac{12 \sqrt{6}+14}{7}$ when P is inside the triangle
D. may be $\frac{12 \sqrt{6}+14}{7}$ when P is outside the triangle

- Watch Video Solution

23. The base $B C$ of $A B C$ is fixed and the vertex A moves, satisfying the condition $\cot \left(\frac{B}{2}\right)+\cot \left(\frac{C}{2}\right)=2 \cot \left(\frac{A}{2}\right)$, then (a) $b+c=a$
$b+c=2 a$ (c) vertex A moves along a straight line (d) Vertex A moves along an ellipse
A. $b+c=a$
B. $b+c=2 a$
C. vertex A moves along a straight line
D. vertex A moves along an ellipse

Answer: B::D

- Watch Video Solution

24. If D, E and F are the middle points of the sides $B C, C A$ and $A B$ of the
$\triangle A B C$, then $\mathrm{AD}+\mathrm{BE}+\mathrm{CF}$ is
A. centroid of the triangle DEF is the same as that of ABC
B. orthocenter of the triangle DEF is the circumcentre of $A B C$
C. orthocenter of the triangle DEF is the incenter of $A B C$
D. centroid of the triangle DEF is not the same as that of ABC

Answer: A::B

- Watch Video Solution

Linked Comprehension Type

1. Given that $\Delta=6, r_{1}=3, r_{3}=6$

Circumradius R is equal to
B. 3.5
C. 1.5
D. none of these

Answer: A

D Watch Video Solution

2. Given that $\Delta=6, r_{1}=3, r_{3}=6$

Inradius is equal to
A. 2
B. 1
C. 1.5
D. 2.5

Answer: B

3. Given that $\Delta=6, r_{1}=2, r_{2}=3, r_{3}=6$ Difference between the greatest and the least angles is
A. $\cos ^{-1} \cdot \frac{4}{5}$
B. $\tan ^{-1} \cdot \frac{3}{4}$
C. $\cos ^{-1} \cdot \frac{3}{5}$
D. none of these

Answer: C

- Watch Video Solution

4. Let $\mathrm{a}=6, \mathrm{~b}=3$ and $\cos (A-B)=\frac{4}{5}$

Area (in sq. units) of the triangle is equal to
A. 9
B. 12
C. 11
D. 10

Answer: A

- Watch Video Solution

5. Let $\mathrm{a}=6, \mathrm{~b}=3$ and $\cos (A-B)=\frac{4}{5}$

Angle C is equal to
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. none of these

Answer: C

6. Let $\mathrm{a}=6, \mathrm{~b}=3$ and $\cos (A-B)=\frac{4}{5}$

Value of $\sin A$ is equal to
A. $\frac{1}{2 \sqrt{5}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{5}}$
D. $\frac{2}{\sqrt{5}}$

Answer: D

- Watch Video Solution

7. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A, B, and C, respectively, on opposite sides. Also, let R be the circumradius of $\triangle A B C$. Given

$$
A H . B H . C H=3 \text { and }(A H)^{2}+(B H)^{2}+(C H)^{2}=7
$$

Then answer the following
Value of $\frac{\cos A \cdot \cos B \cdot \cos C}{\cos ^{2} A+\cos ^{2} B+\cos ^{2} C}$ is
A. $\frac{3}{14 R}$
B. $\frac{3}{7 R}$
C. $\frac{7}{3 R}$
D. $\frac{14}{3 R}$

Answer: A

- Watch Video Solution

8. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A, B, and C, respectively, on opposite sides. Also, let R be the circumradius of $\triangle A B C$. Given $A H . B H . C H=3$ and $(A H)^{2}+(B H)^{2}+(C H)^{2}=7$

Then answer the following
Value of R is
A. 1
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. none

Answer: B

- Watch Video Solution

9. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A, B, and C, respectively, on opposite sides. Also, let R be the circumradius of $\triangle A B C$. Given $A H . B H . C H=3$ and $(A H)^{2}+(B H)^{2}+(C H)^{2}=7$

Then answer the following
Value of $H D . H E . H F$ is
A. $\frac{9}{64 R^{3}}$
B. $\frac{9}{8 R^{3}}$
C. $\frac{8}{9 R^{3}}$
D. $\frac{64}{9 R^{3}}$

Answer: B

- Watch Video Solution

10. Let O be a point inside a triangle $A B C$ such that $\angle O A B=\angle O B C=\angle O C A=\omega \quad$, then show that: $\cot \omega=\cot A+\cot B+\cot C$ $\cos e c^{2} \omega=\cos e c^{2} A+\cos e c^{2} B+\cos ^{2} c^{2} C$
A. $\tan ^{2} \theta$
B. $\cot ^{2} \theta$
C. $\tan \theta$
D. $\cot \theta$

Answer: D

11. find the principle value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

- Watch Video Solution

12. Let O be a point inside $\triangle A B C$ such that
$\angle A O B=\angle B O C=\angle C O A=\theta$
Area of $\triangle A B C$ is equal to
A. $\left(\frac{a^{2}+b^{2}+c^{2}}{4}\right) \tan \theta$
B. $\left(\frac{a^{2}+b^{2}+c^{2}}{4}\right) \cot \theta$
C. $\left(\frac{a^{2}+b^{2}+c^{2}}{2}\right) \tan \theta$
D. $\left(\frac{a^{2}+b^{2}+c^{2}}{2}\right) \cot \theta$

Answer: A

- View Text Solution

13. Given an isoceles triangle with equal side of length b and angle $\alpha<\pi / 4$, then
the circumradius R is given by
A. $\frac{1}{2} b \cos e c \alpha$
B. $b \cos e c \alpha$
C. $2 b$
D. none of these

Answer: A

- Watch Video Solution

14. Given an isoceles triangle with equal side of length b and angle $\alpha<\pi / 4$, then
the inradius r is given by
A. $\frac{b \sin 2 \alpha}{2(1-\cos \alpha)}$
B. $\frac{b \sin 2 \alpha}{2(1+\cos \alpha)}$
C. $\frac{b \sin \alpha}{2}$
D. $\frac{b \sin \alpha}{2(1+\sin \alpha)}$

Answer: B

- Watch Video Solution

15. Given an isoceles triangle with equal side of length b and angle $\alpha<\pi / 4$, then
the distance between circumcenter O and incenter I is
A. $\left|\frac{b \cos (3 \alpha / 2)}{2 \sin \alpha \cos (\alpha / 2)}\right|$
B. $\left|\frac{b \cos 3 \alpha}{\sin 2 \alpha}\right|$
C. $\left|\frac{b \cos 3 \alpha}{\cos \alpha \sin (\alpha / 2)}\right|$
D. $\left|\frac{b}{\sin \alpha \cos \alpha / 2}\right|$
16. Incircle of $\triangle A B C$ touches the sides BC, AC and AB at D, E and F , respectively. Then answer the following question
$\angle D E F$ is equal to
A. $\frac{\pi-B}{2}$
B. $\pi-2 B$
C. $A-C$
D. none of these

Answer: A

- Watch Video Solution

17. Incircle of $\triangle A B C$ touches the sides BC, AC and AB at D, E and F , respectively. Then answer the following question
$\angle D E F$ is equal to
A. $2 r^{2} \sin (2 A) \sin (2 B) \sin (2 C)$
B. $2 r^{2} \cos \cdot \frac{A}{2} \cos \cdot \frac{B}{2} \cos \cdot \frac{C}{2}$
C. $2 r^{2} \sin (A-B) \sin (B-C) \sin (C-A)$
D. none of these

Answer: B

- Watch Video Solution

18. Incircle of $\triangle A B C$ touches the sides BC, AC and AB at D, E and F , respectively. Then answer the following question

The length of side EF is
A. $r \sin \frac{A}{2}$
B. $2 r \sin$. $\frac{A}{2}$
C. $r \cos \frac{A}{2}$
D. $2 r \cos \frac{A}{2}$

D Watch Video Solution

19. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} A, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} C$
A. $2 R \cos \frac{A}{2}$
B. $2 R \sin \left(\frac{A}{2}\right)$
C. $R \cos \left(\frac{A}{2}\right)$
D. $2 R \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$

Answer: A

- Watch Video Solution

20. Internal bisectors of $\Delta A B C$ meet the circumcircle at point D, E, and F Area of $\triangle D E F$ is
A. $2 R^{2} \cos ^{2}\left(\frac{A}{2}\right) \cos ^{2}\left(\frac{B}{2}\right) \cos ^{2}\left(\frac{C}{2}\right)$
B. $2 R^{2} \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$
C. $2 R^{2} \sin ^{2}\left(\frac{A}{2}\right) \sin ^{2}\left(\frac{B}{2} \sin ^{2}\left(\frac{C}{2}\right)\right.$
D. $2 R^{2} \cos \left(\frac{A}{2}\right) \cos \left(\frac{B}{2}\right) \cos \left(\frac{C}{2}\right)$

Answer: D

- Watch Video Solution

21. Internal bisectors of $\triangle A B C$ meet the circumcircle at point D, E, and F Area of $\triangle D E F$ is
A. ≥ 1
B. ≤ 1
C. $\geq 1 / 2$
D. $\leq 1 / 2$

Answer: B

- Watch Video Solution

22. The area of any cyclic quadrilateral $A B C D$ is given by
$A^{2}=(s-a)(s-b)(s-c)(s-d)$, where
$2 s=a+b++c+d, a, b, c$ and d are the sides of the quadrilateral
Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question

The minium perimeter of the quadrilateral is
A. 4
B. 2
C. 1
D. none of these

Answer: A

- Watch Video Solution

23. The area of any cyclic quadrilateral $A B C D$ is given by
$A^{2}=(s-a)(s-b)(s-c)(s-d)$,
where
$2 s=a+b++c+d, a, b, c$ and d are the sides of the quadrilateral
Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question

The minimum value of the sum of the lenghts of diagonals is
A. $2 \sqrt{2}$
B. 2
C. $\sqrt{2}$
D. none of these

Answer: A

- Watch Video Solution

24. The area of any cyclic quadrilateral $A B C D$ is given by
$A^{2}=(s-a)(s-b)(s-c)(s-d)$,
$2 s=a+b++c+d, a, b, c$ and d are the sides of the quadrilateral
Now consider a cyclic quadrilateral ABCD of area 1 sq. unit and answer the following question

When the perimeter is minimum, the quadrilateral is necessarily
A. a square
B. a rectangle but not a square
C. a rhombus but not a square
D. none of these

Answer: A

- Watch Video Solution

25. In $\triangle A B C, R, r, r_{1}, r_{2}, r_{3}$ denote the circumradius, inradius, the exradii opposite to the vertices A, B, C respectively. Given that
$r_{1}: r_{2}: r_{3}=1: 2: 3$

The sides of the triangle are in the ratio
A. $1: 2: 3$
B. 3:5:7
C. 1:5:9
D. $5: 8: 9$

Answer: D

- Watch Video Solution

26. In $\triangle A B C, R, r, r_{1}, r_{2}, r_{3}$ denote the circumradius, inradius, the exradii opposite to the vertices A, B, C respectively. Given that $r_{1}: r_{2}: r_{3}=1: 2: 3$

The value of $R: r$ is
A. 5: 2
B. 5: 4
C. 5:3
D. 3:2

Answer: A

- Watch Video Solution

27. In $\triangle A B C, R, r, r_{1}, r_{2}, r_{3}$ denote the circumradius, inradius, the exradii opposite to the vertices A, B, C respectively. Given that $r_{1}: r_{2}: r_{3}=1: 2: 3$

The greatest angle of the triangle is given by
A. $\cos ^{-1}\left(\frac{1}{30}\right)$
B. $\cos ^{-1}\left(\frac{1}{3}\right)$
C. $\cos ^{-1}\left(\frac{1}{10}\right)$
D. $\cos ^{-1}\left(\frac{1}{5}\right)$

Answer: C

28. In $\triangle A B C, P, Q, R$ are the feet of angle bisectors from the vertices to their opposite sides as shown in the figure. $\triangle P Q R$ is constructed

If $\angle B A C=120^{\circ}$, then measusred of $\angle R P Q$ will be
A. 60°
B. 90°
C. 120°
D. 150°

Answer: B

- Watch Video Solution

29. In $\triangle A B C, P, Q, R$ are the feet of angle bisectors from the vertices to their opposite sides as shown in the figure. $\triangle P Q R$ is constructed

If $A B=7$ units, $\mathrm{BC}=8$ units, $\mathrm{AC}=5$ units, then the side PQ will be
A. $\frac{\sqrt{28}}{3}$ units
B. $\frac{\sqrt{88}}{3}$ units
C. $\frac{\sqrt{78}}{3}$ units
D. $\frac{\sqrt{84}}{3}$ units

Answer: D

- Watch Video Solution

30. Let G be the centroid of triangle $A B C$ and the circumcircle of triangle AGC touches the side $A B$ at A

If $B C=6, A C=8$, then the length of side AB is equal to
A. $\frac{1}{2}$
B. $\frac{2}{\sqrt{3}}$
C. $5 \sqrt{2}$
D. none of these

Answer: C

- Watch Video Solution

31. Let G be the centroid of triangle $A B C$ and the circumcircle of triangle AGC touches the side AB at A If $\angle G A C=\frac{\pi}{3}$ and $a=3 b$, then $\sin \mathrm{C}$ is equal to
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{\sqrt{3}}$
D. none of these

Answer: B

- Watch Video Solution

32. Let G be the centroid of triangle $A B C$ and the circumcircle of triangle AGC touches the side $A B$ at A

If $A C=1$, then the length of the median of triangle $A B C$ through the vertex
A is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{5}{\sqrt{2}}$

Answer: A

33. The inradius in a right angled triangle with integer sides is r If $r=4$, the greatest perimeter (in units) is
A. 96
B. 90
C. 60
D. 48

Answer: B

- Watch Video Solution

34. The inradius in a right angled triangle with integer sides is r If $r=5$, the greatest area (in sq. units) is
A. 150
B. 210
C. 330
D. 450

Answer: C

- Watch Video Solution

Matrix Match Type

1. Show that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$

- Watch Video Solution

2. find the value of $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
3.

$\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),|x|<\frac{1}{\sqrt{3}}$

- Watch Video Solution

4. Show that $\frac{\sin ^{-1} 3}{5}-\frac{\sin ^{-1} 8}{17}=\frac{\cos ^{-1}(84)}{85}$.

(Watch Video Solution

5. simplify $\cos ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right), \frac{\pi}{4}<\mathrm{x}<\frac{5 \pi}{4}$

- Watch Video Solution

6. In a triangle $\mathrm{ABC}, a=7, b=8, c=9, B D$ is the median and BE the altitude from the vertex B. Match the following lists
a. $B D=p .2$
b. $B E=$ q. 7
c. $E D=r . \sqrt{45}$
d. $A E=s .6$
A. $\begin{array}{llll}a & b & c & d\end{array}$
$\begin{array}{llll}p & r & q & q\end{array}$
B. $\begin{array}{llll}a & b & c & d \\ r & q & s & p\end{array}$
c. $\begin{array}{llll}a & b & c & d\end{array}$
$q \quad r \quad s$
D. $\begin{array}{llll}a & b & c & d\end{array}$
$s p q r$

Answer: C

- Watch Video Solution

Numerical Value Type

1. Suppose α, β, γ and δ are the interior angles of regular pentagon, hexagon, decagon, and dodecagon, respectively, then the value of $|\cos \alpha \sec \beta \cos \gamma \cos e c \delta|$ is \qquad
2. Let ABCDEFGHIJKL be a regular dodecagon. Then the value of $\frac{A B}{A F}+\frac{A F}{A B}$ is equal to \qquad

- Watch Video Solution

3. In a $\Delta A B C, b=12$ units, $\mathrm{c}=5$ units and $\Delta=30$ sq. units. If d is the distance between vertex A and incentre of the triangle then the value of d^{2} is \qquad

- Watch Video Solution

4. In $\triangle A B C$, if $r=1, R=3$, and $s=5$, then the value of $a^{2}+b^{2}+c^{2}$ is \qquad
5. Consider a $\triangle A B C$ in which the sides are $a=(n+1), b=(n+1), c=n$ with $\tan C=4 / 3$, then the value of Δ is \qquad

- Watch Video Solution

6. In $\triangle A E X, T$ is the midpoint of $X E$ and P is the midpoint of ET . If $\triangle A P E$ is equilateral of side length equal to unity, then the vaue of $(A X)^{2}$ is

- Watch Video Solution

7. In $\triangle A B C$, the incircle touches the sides BC, CA and AB , respectively, at D, E,and F. If the radius of the incircle is 4 units and $B D, C E$, and $A F$ are consecutive integers, then
A. Sides are also consecutive integers
B. Perimeter of the triangle is 42 units
C. Area of triangle is 84 sq. units
D. Diameter of circumcircle is 65 units

Answer: 21

- Watch Video Solution

8. The altitudes from the angular points A, B, and C on the opposite sides BC, CA and AB of $\triangle A B C$ are 210, 195 and 182 respectively. Then the value of a is \qquad

- Watch Video Solution

9. In $\triangle A B C$, If $\angle C=3 \angle A, B C=27$, and $A B=48$. Then the value of $A C$ is \qquad

- Watch Video Solution

10. The area of a right triangle is 6864 sq. units. If the ratio of its legs is $143: 24$, then the value of r is \qquad

- Watch Video Solution

11. In $\triangle A B C$, if $\cos A+\sin A-\frac{2}{\cos B+\sin B}=0$, then the value of $\left(\frac{a+b}{c}\right)^{4}$ is

- Watch Video Solution

12. In $\triangle A B C, \angle C=2 \angle A$, and $A C=2 B C$, then the value of $\frac{a^{2}+b^{2} c^{2}}{R^{2}}$ (where R is circumradius of triangle) is \qquad

- Watch Video Solution

13. In $\triangle A B C$, if $b(b+c)=a^{2}$ and $c(c+a)=b^{2}$, then $|\cos A \cdot \cos B \cdot \cos C|$ is \qquad
14. The sides of triangle $A B C$ satisfy the relations $a+b-c=2$ and $2 a b-c^{2}=4$, then the square of the area of triangle is \qquad

Watch Video Solution
15. prove that $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}\left(\cot ^{-1} 3\right)=15$

- Watch Video Solution

16. If a, b and c represent the lengths of sides of a triangle then the possible integeral value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$ is

- Watch Video Solution

$\sin A \sin B+\sin B \sin C+\sin C \sin A=9 / 4$ and $a=2$, then the value of $\sqrt{3} \Delta$, where Δ is the area of triangle, is \qquad

- Watch Video Solution

18. In a $\triangle A B C, A B=52, B C=56, C A=60$. Let D be the foot of the altitude from A and E be the intersection of the internal angle bisector of $\angle B A C$ with BC . Find the length DE .

- Watch Video Solution

19. Point D, E are taken on the side $B C$ of an acute angled triangle $A B C$,, such that $B D=D E=E C$ If
$\angle B A D=x, \angle D A E=y$ and $\angle E A C=z$ then the value of $\frac{\sin (x+y) \sin (y+z)}{\sin x \sin z}$ is \qquad

- Watch Video Solution

20. For a triangle $A B C, R=\frac{5}{2}$ and $r=1$. Let D, E and F be the feet of the perpendiculars from incentre I to BC, CA and AB , respectively. Then the value of $\frac{(I A)(I B)(I C)}{(I D)(I E)(I F)}$ is equal to \qquad

- Watch Video Solution

21. Circumradius of $\triangle A B C$ is 3 cm and its area is $6 \mathrm{~cm}^{2}$. If DEF is the triangle formed by feet of the perpendicular drawn from A, B and C on the sides BC, CA and AB , respectively, then the perimeter of $\triangle D E F$ (in cm) is

- Watch Video Solution

22. The distance of incentre of the right-angled triangle ABC (right angled at A) from B and C are $\sqrt{10}$ and $\sqrt{5}$, respectively. The perimeter of the triangle is \qquad

Archives Single Correct Answer Type

1. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$ (17) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$ (30) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$ (47) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$ (60)
A. There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$
B. There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
C. There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
D. There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$

Answer: D

- Watch Video Solution

2. ABCD is a trapezium such that AB and CD are parallel and $B C \perp C D$. If
$\angle A D B=\theta, B C=p$ and $C D=q$, then AB is equal to
A. $\left(\frac{p^{2}+q^{2} \sin \theta}{p \cos \theta+q \sin \theta}\right.$
B. $\frac{\left(p^{2}+q^{2}\right) \cos \theta}{p \cos \theta+q \sin \text { thet }}$
C. $\frac{p^{2}+q^{2}}{p^{2} \cos \theta+q^{2} \sin \theta}$
D. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{(p \cos \theta+q \sin \theta)}$

Answer: A

- Watch Video Solution

Archives Jee Advanced

1. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and c denote the lengths of the side opposite to A, B, and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$, and $c=2 x+1$

$$
\text { is(are) }-(2+\sqrt{3}) \text { (b) } 1+\sqrt{3} \text { (c) } 2+\sqrt{3} \text { (d) } 4 \sqrt{3}
$$

A. $-(2+\sqrt{3})$
B. $1+\sqrt{3}$
C. $2+\sqrt{3}$
D. $4 \sqrt{3}$

Answer: B

- Watch Video Solution

2. If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\sqrt{3}$

- Watch Video Solution

3. Let PQR be a triangle of area Δ with $a=2, b=7 / 2$, and $c=5 / 2$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R , respectively. Then $\frac{2 \sin P-\sin 2 P}{2 \sin P+\sin 2 P}$ equals
A. $\frac{3}{4 \Delta}$
B. $\frac{45}{4 \Delta}$
C. $\left(\frac{3}{4 \Delta}\right)^{2}$
D. $\left(\frac{45}{4 \Delta}\right)^{2}$

Answer: C

- Watch Video Solution

1. In a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \sin ^{2} A / 2$

If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of point A is an ellipse
D. locus of point A is a pair of straight lines

Answer: B::C

- Watch Video Solution

2. In a triangle $P Q R, P$ is the largest angle and $\cos P=1 / 3$. Further the incircle of the triangle touches the sides $P Q . Q R$ and $P R$ at N, L and M, respectively, such that the length of PN, QL, and RM are consecutive even integers. Then possible length (s) of the side(s) of the triangle is (are)
A. 16
B. 18
C. 24
D. 22

Answer: B::D

- Watch Video Solution

3. In a triangle XYZ , let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the lengths of sides opposite to the angles $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, respectively, and $2 \mathrm{~s}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. If $\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$ of incircle of the triangle $X Y Z$ is $\frac{8 \pi}{3}$
A. (a) area of the triangle XYZ is $6 \sqrt{6}$
B. (b) the radius of circumcircle of the triangle XYZ is $\frac{35}{6} \sqrt{6}$
C. (c) \sin. $\frac{X}{2} \sin . \frac{Y}{2} \sin . \frac{Z}{2}=\frac{4}{35}$
D. (d) $\sin ^{2}\left(\frac{X+Y}{2}\right)=\frac{3}{5}$

D Watch Video Solution

4. In a triangle PQR , let $\angle P Q R=30^{\circ}$ and the sides PQ and QR have lengths $10 \sqrt{3}$ and 10 , respectively. Then, which of the following statement(s) is (are) TRUE ?
A. $\angle Q P R=45^{\circ}$
B. The area of the triangle PQR is $25 \sqrt{3}$ and $\angle Q R P=120^{\circ}$
C. The radius of the incircle of the triangle PQR is $10 \sqrt{3}-15$
D. The area of the circumcircle of the triangle PQR is 100π

Answer: B::C::D

- Watch Video Solution

1. Solve equation $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$

- Watch Video Solution

Archives Numerical Value Type

1. Let $A B C a n d A B C$ ' be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

2. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chord subtend angles $\frac{\pi}{k}$ and $\frac{\pi}{2 k}$ at the center, where $k>0$, then the value of $[k]$ is \qquad

- Watch Video Solution

3. Consider a triangle $A B C$ and let a, b and c denote the lengths of the sides opposite to vertices A, B and C, respectivelu. Suppose $a=6, b=10$ and the triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtus and if r denotes than radius of the incircle of the triangle, then the value of r^{2} is \qquad
