©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

THREE DIMENSIONAL GEOMETRY

Others

1. Find the angle between the line whose direction cosines are given by $l+m+n=0 a n d l^{2}+m^{2}-n^{2}-0$.

- Watch Video Solution

2. A line makes angles α, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.
3. $A B C$ is a triangle and $\mathrm{A}=(2,3,5), \mathrm{B}=(-1,3,2)$ and $\mathrm{C}=(\lambda, 5, \mu)$. If the median through A is equally inclined to the axes, then find the value of λ and μ

- Watch Video Solution

4. A line $O P$ through origin O is inclined at 30° and $45^{\circ} \rightarrow O X a n d O Y$, respectivley. Then find the angle at which it is inclined to $O Z$.

- Watch Video Solution

5. If α, β, and γ are the an gles which a directed line makes with the positive directions of the co-ordinates axes, then find the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

6. If the sum of the squares of the distance of a point from the three coordinate axes is 36 , then find its distance from the origin.

- Watch Video Solution

7. If $A(3,2,-4), B(5,4,-6) \operatorname{and} C(9,8,-10)$ are three collinear points, then find the ratio in which point C divides $A B$.

- Watch Video Solution

8. Find the ratio in which the $y-z$ plane divides the join of the points $(-2,4,7) \operatorname{and}(3,-5,8)$.

- Watch Video Solution

9. A line passes through the points $(6,-7,-1) \operatorname{and}(2,-3,1)$. Find te direction cosines off the line if the line makes an acute angle with the
positive direction of the x-axis.

- Watch Video Solution

10. Find the angle between the lines whose direction cosines are connected by the relations $l+m+n=0$ and $2 l m+2 n l-m n=0$.

- Watch Video Solution

11. Find the point where line which passes through point $(1,2,3)$ and is parallel to line $\vec{r}=\hat{i}+\hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+3 \hat{k})$ meets the xy-plane.

- Watch Video Solution

12. Find the equation of the line passing through the points $(1,2,3) \operatorname{and}(-1,0,4)$.

- Watch Video Solution

13. Find the equation of the line passing through the point $(-1,2,3)$
and perpendicular to the lines
$\frac{x}{2}=\frac{y-1}{-3}=\frac{z+2}{-2}$ and $\frac{x+3}{-1}=\frac{y+3}{2}=\frac{z-1}{3}$.

- Watch Video Solution

14. The line joining the points $(-2,1,-8) \operatorname{and}(a, b, c)$ is parallel to the line whose direction ratios are $6,2, a n d 3$. Find the values of a, b and c

- Watch Video Solution

15. A parallelepiped is formed by planes drawn through the points $P(6,8,10) \operatorname{and}(3,4,8)$ parallel to the coordinate planes. Find the length of edges and diagonal of the parallelepiped.

- Watch Video Solution

16. Find the angle between any two diagonals of a cube.

- Watch Video Solution

17. Direction ratios of two lines are $a, b, c a n d 1 / b c, 1 / c a, 1 / a b$. Then the lines are \qquad .

- Watch Video Solution

18. Find the equation of the line passing through the intersection of $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$. and also through the point $(2,1,-2)$.

- Watch Video Solution

19. The straight line $\frac{x-3}{3}=\frac{y-2}{1}=\frac{z-1}{0}$ is (a)Parallel to x-axis (b)Parallel to the y-axis (c)Parallel to the z-axis (d)Perpendicular to the z -

- Watch Video Solution

20. Find the equation of a plane containing the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$.

- Watch Video Solution

21. Find the equation of the plane passing through the points $(1,0,-1) \operatorname{and}(3,2,2)$ and parallel to the line $x-1=\frac{1-y}{2}=\frac{z-2}{3}$.

D Watch Video Solution

22. Find the equation of the sphere described on the joint of points AandB having position vectors $2 \hat{i}+6 \hat{j}-7 \hat{k}$ and $-2 \hat{i}+4 \hat{j}-3 \hat{k}$,
respectively, as the diameter. Find the center and the radius of the sphere.

- Watch Video Solution

23. Find the radius of the circular section in which the sphere $|\vec{r}|=5$ is cut by the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3 \sqrt{3}$.

- Watch Video Solution

24. Find the equation of a sphere which passes through $(1,0,0)(0,1,0) \operatorname{and}(0,0,1)$, and has radius as small as possible.

- Watch Video Solution

25. Find the locus of a point which moves such that the sum of the squares of its distance from the points $A(1,2,3), B(2,-3,5)$ and $C(0,7,4)$ is 120.
26. Find the equation of the sphere which has centre at the origin and touches the line $2(x+1)=2-y=z+3$.

- Watch Video Solution

27. Find the equation of the sphere which passes through $(1,0,0),(0,1,0)$ and $(0,0,1)$ and whose centre lies on the plane $3 x-y+z=2$.

- Watch Video Solution

28. Find the equation of a sphere whose centre is $(3,1,2)$ radius is 5 .

- Watch Video Solution

29. Find the equation of the sphere passing through $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.

- Watch Video Solution

30. Find the image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z-26=0$.

- Watch Video Solution

31. Find the equations of the bisectors of the angles between the planes $2 x-y+2 z+3=0 \operatorname{and} 3 x-2 y+6 z+8=0$ and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.

- Watch Video Solution

32. If the x-coordinate of a point P on the join of $Q(2,2,1) \operatorname{and} R(5,1,-2) i s 4$, then find its $z-$ coordinate.

- Watch Video Solution

33. A sphere of constant radius k passes through the origin and meets the axes at A, B and C. Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

- Watch Video Solution

34. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points A, B, and C. Show that eh locus of the centre of the sphere $O A B C i s \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

- Watch Video Solution

35. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$.

- Watch Video Solution

36. If O is the origin, $O P=3$, with direction ratios $-1,2$ and -2 , then find the coordinates of P .

- Watch Video Solution

37. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4)$ and $\mathrm{R}(3,5,6)$ such that the projection of $\overrightarrow{O P}$ on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides $Q R$ in the ratio:

- Watch Video Solution

38. If \vec{r} is a vector of magnitude 21 and has direction ratios $2,-3$ and 6 , then find \vec{r}.

- Watch Video Solution

39. Find the distance of the point $P(a, b, c)$ from the x -axis.

- Watch Video Solution

40. A line makes angles $\alpha, \beta a n d \gamma$ with the coordinate axes. If $\alpha+\beta=90^{\circ}$, then find γ.

- Watch Video Solution

41. If a line makes angles $\alpha, \beta a n d \gamma$ with threew-dimensional coordinate axes, respectively, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.
42. Find the distance between the parallel planes $x+2 y-2 z+1=0 a n d 2 x+4 y-4 z+5=0$.

- Watch Video Solution

43. A ray of light passing through the point $A(1,2,3)$, strikews the plane $x y+z=12 a t B$ and on reflection passes through point $C(3,5,9)$. Find the coordinate so point B.

- Watch Video Solution

44. The plane $a x+b y=0$ is rotated through an angle α about its line of intersection with the plane $z=0$. Show that he equation to the plane in the new position is $a x+b y \pm z \sqrt{a^{2}+b^{2}} \tan \alpha=0$

- Watch Video Solution

45. Find the equation of a plane containing the line of intersection of the planes $x+y+z-6=0 a n d 2 x+3 y+4 z+5=0$ passing through $(1,1,1)$.

- Watch Video Solution

46. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0$ and $x+y+z=0$ is 36

- Watch Video Solution

47. Find the length and the foot of the perpendicular from the point ($7,14,5$) to the plane $2 x+4 y-z=2$. Also, the find image of the point P in the plane.

- Watch Video Solution

48. Find the angle between the lines $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r}=2 \hat{i}-\hat{j}+\hat{k}=4$.

- Watch Video Solution

49. Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=9$.

- Watch Video Solution

50. Find the equation the plane which contain the line of intersection of the planes $\vec{r} \hat{i}+2 \hat{j}+3 \hat{k}-4=0$ and $\vec{r} 2 \hat{i}+\hat{j}-\hat{k}+5=0$ and which is perpendicular to the plane $\vec{r}(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$.

- Watch Video Solution

51. Find the vector equation of the line passing through ($1,2,3$) and parallel to the planes $\rightarrow r \hat{i}-\hat{j}+2 \hat{k}=5$ and $\rightarrow r 3 \hat{i}+\hat{j}+\hat{k}=6$.

- Watch Video Solution

52. Find the distance of the point $P(3,8,2)$ from the line $\frac{1}{2}(x-1)=\frac{1}{4}(y-3)=\frac{1}{3}(z-2)$ measured parallel to the plane $3 x+2 y-2 z+15=0$.

- Watch Video Solution

53. Find the distance of the point $(1,0,-3)$ from the plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{2}=\frac{z-6}{-6}$.

- Watch Video Solution

54. Show that $a x+b y+r=0, b y+c z+p=0 a n d c z+a x+q=0$ are perpendicular to $x-y, y-z a n d z-x$ planes, respectively.

Watch Video Solution

55. Reduce the equation of line $x-y+2 z=5 a d n 3 x+y+z=6$ in symmetrical form. Or Find the line of intersection of planes $x-y+2 z=5 a n d 3 x+y+z=6$.

- Watch Video Solution

56. Find the angle between the lines $x-3 y-4=0,4 y-z+5=0 a n d x+3 y-11=0,2 y=z+6=0$.

- Watch Video Solution

57. If the line $x=y=z$ intersect the line $\sin A \dot{x}+\sin B \dot{y}+\sin C \dot{z}=2 d^{2}, \sin 2 A \dot{x}+\sin 2 B \dot{y}+\sin 2 C \dot{z}=d^{2}$, then find the value of $\frac{\sin A}{2} \frac{\sin B}{2} \frac{\sin C}{2} w h e r e A, B, C$ are the angles of a triangle.

- Watch Video Solution

58. The point of intersecting of the line passing through $(0,0,1)$ and intersecting the lines
$x+2 y+z=1,-x+y-2 z=2$ and $x+y=2, x+z=2$ with $x y^{-}$ plane is

- Watch Video Solution

59. A horizontal plane $4 x-3 y+7 z=0$ is given. Find a line of greatest slope passes through the point $(2,1,1)$ in the plane $2 x+y-5 z=0$.
60. Find the equation of the plane passing through the points $(-1,1,1)$ and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.

- Watch Video Solution

61. Find ten equation of the plane passing through the point $(0,7,-7)$ and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$.

- Watch Video Solution

62. If a plane meets the equations axes at $A, B a n d C$ such that the centroid of the triangle is $(1,2,4)$, then find the equation of the plane.

- Watch Video Solution

63. Find the equation of the plane which is parallel to the lines $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \quad$ and \quad is passing through the point $(0,1,-1)$.

- Watch Video Solution

64. Show that the plane whose vector equation is $\vec{r} \hat{i}+2 \dot{\hat{j}}=\hat{k}=3$ contains the line whose vector equation is $\vec{r} \hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.

- Watch Video Solution

65. Find the vector equation of the following planes in Cartesian form:
$\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$.

- Watch Video Solution

66. Show that the line of intersection of the planes $\vec{r} \hat{i}+2 \dot{j}+3 \hat{k}=0$ and $\vec{r}=(3 \hat{i}+2 \hat{j}+\hat{k})=0$ is equally inclined to $i a n d k$. Also find the angle it makes with j.

- Watch Video Solution

67. Find the equation of the plane passing through $A(2,2,-1), B(3,4$,
$2)$ and $C(7,0,6)$.

- Watch Video Solution

68. Find the equation of the plane such that image of point $(1,2,3)$ in it is $(-1,0,1)$.

- Watch Video Solution

69. The foot of the perpendicular drawn from the origin to a plane is $(1,2,-3)$. Find the equation of the plane. or If O is the origin and the coordinates of P is $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

- Watch Video Solution

70. Find the angel between the planes
$2 x+y-2 z+3=0$ and $\vec{r} 6 \hat{i}+3 \hat{j}+2 \hat{k}=5$.

- Watch Video Solution

71. Find the equation of the plane passing through $(3,4,-1)$, which is parallel to the plane $\vec{r} 2 \hat{i}-3 \dot{\hat{j}}+5 \hat{k}+7=0$.

- Watch Video Solution

72. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane $x-y+z=5$.

- Watch Video Solution

73. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5 a n d 3 x+3 y+z=0$.

- Watch Video Solution

74. Find the angle between the line $\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{4}$ and the plane $2 x+y-3 z+4=0$.

- Watch Video Solution

75. Find the distance between the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{1}$ and the plane $x+y+z+3=0$.

- Watch Video Solution

76. The extremities of a diameter of a sphere lie on the positive y - and positive z-axes at distance 2 and 4, respectively. Show that the sphere passes through the origin and find the radius of the sphere.

- Watch Video Solution

77. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular to it from the origin is the sphere $x^{2}+y^{2}+z^{2}-a x-b y-c z=0$.

- Watch Video Solution

78. Find the radius of the circular section of the sphere $|\vec{r}|=5$ by the plane $\vec{r} \hat{i}+2 \hat{j}-\hat{k}=4 \sqrt{3}$.

- Watch Video Solution

79. A point $P(x, y, z)$ is such that $3 P A=2 P B$, where $A a n d B$ are the point $(1,3,4) \operatorname{and}(1,-2,-1)$, irrespectivley. Find the equation to the locus of the point P and verify that the locus is a sphere.

- Watch Video Solution

80. Find the shortest distance between lines

$$
\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k}
$$

- Watch Video Solution

81. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.

- Watch Video Solution

82. Determine whether the following pair of lines intersect or not. (1)
$\vec{r}=\hat{i}-5 \hat{j}+\lambda(2 \hat{i}+\hat{k}) ; \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j}) ; \vec{r}=4 \hat{i}-\hat{k}+\mu(2 \hat{i}+3 \hat{k})$

Watch Video Solution

83. Find the equation of plane which is at a distance $\frac{4}{\sqrt{14}}$ from the origin and is normal to vector $2 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

84. Find the unit vector perpendicular to the plane $\vec{r} 2 \hat{i}+\hat{j}+2 \hat{k}=5$.

$$
\begin{aligned}
& \text { 85. } \begin{array}{c}
\text { If } \\
x=-1+s, y=3-\lambda s, z=1+\lambda s a n d x
\end{array}=\frac{t}{2}, y=1+t, z=2-t,
\end{aligned}
$$ with paramerters sandt, respectivley, are coplanar, then find λ.

- Watch Video Solution

86. Find the equation of a line which passes through the point $(1,1,1)$
and intersects the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$.

- Watch Video Solution

87. Find the vector equation of a line passing through $3 \hat{i}-5 \hat{j}+7 \hat{k}$ and perpendicular to the plane $3 x-4 y+5 z=8$.

- Watch Video Solution

88. Find the equation of the plane passing through the point $(2,3,1)$ having $(5,3,2)$ as the direction ratio is of the normal to the plane.

Watch Video Solution

89. Find the equation of the plane through the points $(2,3,1)$ and $(4,-5,3)$ and parallel to the x-axis.

- Watch Video Solution

90. Find the equation of the image of the plane $x-2 y+2 z-3=0$ in plane $x+y+z-1=0$.

- Watch Video Solution

91. Find the equation of a plane which passes through the point $(1,2,3)$
and which is equally inclined to the planes
$x-2 y+2 z-3=0$ and $8 x-4 y+z-7=0$.

- Watch Video Solution

92. Find the equation of a plane which is parallel to the plane $x-2 y+2 z=5$ and whose distance from the point $(1,2,3)$ is 1.

- Watch Video Solution

93. Find the direction ratios of orthogonal projection of line $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z-2}{3}$ in the plane $x-y+2 z-3=0$. Also find the direction ratios of the image of the line in the plane.

- Watch Video Solution

94. Find the equation of the plane which passes through the point $(1,2,3)$ and which is at the minimum distance from the point ($-1,0,2$).
95. Find the angle between the lines $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r}=2 \hat{i}-\hat{j}+\hat{k}=4$.

- Watch Video Solution

96. Find the equation of the plane passing through the line $\frac{x-1}{5}=\frac{y+2}{6}=\frac{z-3}{4}$ and point $(4,3,7)$.

- Watch Video Solution

97. Find the equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin.

- Watch Video Solution

98. Find the equation of the plane passing through the straight line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5} \quad$ and perpendicular to the plane $x-y+z+2=0$.

- Watch Video Solution

99. Find the equation of the line drawn through the point $(1,0,2)$ to meet at right angles to the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$.

- Watch Video Solution

100.

$$
\begin{aligned}
& \text { 100. If } \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \quad \text { and } \\
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(\hat{i}+\hat{j}-\hat{k}) \text { are two lines, then the equation }
\end{aligned}
$$ of acute angle bisector of two lines is

- Watch Video Solution

101. Find the coordinates of a point on the $\frac{x-1}{2}=\frac{y+1}{-3}=z$ atg a distance $4 \sqrt{14}$ from the point $(1,-1,0)$.

- Watch Video Solution

102. Line L_{1} is parallel to vector $\vec{\alpha}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ and passes through a point $A(7,6,2)$ and line L_{2} is parallel vector $\vec{\beta}=2 \hat{i}+\hat{j}+3 \hat{k}$ and point $B(5,3,4)$. Now a line L_{3} parallel to a vector $\vec{r}=2 \hat{i}-2 \hat{j}-\hat{k}$ intersects the lines $L_{1} a n d L_{2}$ at points CandD, respectively, then find $|\vec{C} D|$.

(Watch Video Solution

103. Find the values p so that line $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5} \quad$ are \quad at right angles.

- Watch Video Solution

104. Find the angel between the following pair of lines:
$\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
$\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

- Watch Video Solution

105.

Fid
the
condition
if
lines
$x=a y+b, z=c y+d a n d x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$
are
perpendicular.

- Watch Video Solution

106. Find the acute angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{1}{n}$ and $=\frac{x+1}{m}=\frac{y-3}{n}=\frac{z-1}{l}$ wherel $>m>n$, are the roots of the cubic equation $x^{3}+x^{2}-4 x=4$.

- Watch Video Solution

107. Find the length of the perpendicular drawn from point $(2,3,4)$ to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- Watch Video Solution

108. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.

- Watch Video Solution

109. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{r} 3 \hat{i}+\hat{j}+\hat{k}=6$.

- Watch Video Solution

110. Find the value of m for which thestraight line $3 x-2 y+z+3=0=4 x+3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.
111. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

112. Find the equation of line $x+y-z-3=0=2 x+3 y+z+4$ in symmetric form. Find the direction ratio of the line.

- Watch Video Solution

113. Find the vector equation of line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
114. Find the vector equation of line passing through $A(3,4-7) \operatorname{and} B(1,-1,6)$. Also find its Cartesian equations.

- Watch Video Solution

115. Find Cartesian and vector equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

- Watch Video Solution

116. Find the equation of a line which passes through the point $(2,3,4)$ and which has equal intercepts on the axes.

- Watch Video Solution

117. Find the points where line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects $x y, y z a n d z x$ planes.

- Watch Video Solution

118. A mirror and source of light are situated at the origin O and a point on OX respectively. A ray of light from the source strikes the mirror and is reflected. If the DRs of the normal to the plane of mirror are $1,-1,1$, then DCs for the reflacted ray are :

D Watch Video Solution

119. The Cartesian equation of a line is $\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z-3}{5}$. Find the vector equation of the line.

- Watch Video Solution

120. The Cartesian equations of a line are $6 x-2=3 y+1=2 z-2$.

Find its direction ratios and also find a vector equation of the line.
121. A line passes through the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and is in the direction of $3 \hat{i}+4 \hat{j}-5 \hat{k}$. Find the equations of the line in vector and Cartesian forms.

- Watch Video Solution

122. Find the plane of the intersection of $x^{2}+y^{2}+z^{2}+2 x+2 y+2=0 \quad$ and $4 x^{2}+4 y^{2}+4 z^{2}+4 x+4 y+4 z-1=0$.

- Watch Video Solution

123. Let $l_{1} a n d l_{2}$ be the two skew lines. If P, Q are two distinct points on $l_{1} n d R, S$ are two distinct points on l_{2}, then prove that $P R$ cannot be parallel to $Q S$.
124. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{-2} \quad$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are at right angle, then find the value of k.

- Watch Video Solution

125. Find the angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$

Watch Video Solution

126. Find the length of the perpendicular drawn from the point $(5,4,-1)$ to the line $\vec{r}=\hat{i}+\lambda(2 \hat{i}+9 \hat{j}+5 \hat{k})$, wher λ is a parameter.

- Watch Video Solution

127. The equations of motion of a rocket are $x=2 t, y=-4$ tand $z=4 t$, where timet is given in seconds, and the coordinates of a moving points in kilometers. What is the path of the rocket? At what distance will be the rocket from the starting point $O(0,0,0)$ in $10 s ?$

- Watch Video Solution

128. Find the shortest distance between the lines
$\vec{r}=(1-\lambda) \hat{i}+(\lambda-2) \hat{j}+(3-2 \lambda) \hat{k} \quad$ and
$\vec{r}=(\mu+1) \hat{i}+(2 \mu+1) \hat{k}$.

- Watch Video Solution

129. Find the image of the point $(1,2,3)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.
130. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of k.

- Watch Video Solution

131. Find the shortest distance between the z-axis and the line, $x+y+2 z-3=0,2 x+3 y+4 z-4=0$.

- Watch Video Solution

132. The lines which intersect the skew lines $y=m x, z=c ; y=-m x, z=-c$ and the x -axis lie on the surface:
(a.) $c z=m x y$ (b.) $x y=c m z$ (c.) $c y=m x z$ (d.) none of these

- Watch Video Solution

133. Distance of the point $P(\vec{p})$ from the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is a.

$$
\left\lvert\, \begin{aligned}
& \left.(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{a}) \vec{b}) \vec{b}}{|\vec{b}|^{2}} \right\rvert\, \\
& (\vec{b}-\vec{p})+\frac{((\vec{p}-\vec{a}) \vec{b}) \vec{b}}{|\vec{b}|^{2}} \\
& \left|\begin{array}{l}
(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{b}) \vec{b}) \vec{b}}{|\vec{b}|^{2}}
\end{array}\right| \text { d. none of these }
\end{aligned}\right.
$$

b.
c.

- Watch Video Solution

134. The direction ratios of a normal to the plane through $(1,0,0) \operatorname{and}(0,1,0)$, which makes and angle of $\frac{\pi}{4}$ with the plane $x+y=3$, are a. $\langle 1, \sqrt{2}, 1\rangle$ b. $\langle 1,1, \sqrt{2}\rangle$ c. $\langle 1,1,2\rangle$ d. $\langle\sqrt{2}, 1,1\rangle$

- Watch Video Solution

135. The centre of the circle given by
$\vec{r} \hat{i}+2 \hat{j}+2 \hat{k}=15$ and $|\vec{r}-(\hat{j}+2 \hat{k})|=4$ is a. $(0,1,2)$ b. $(1,3,4)$ c. $(-1,3,4)$ d. none of these

- Watch Video Solution

136. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, cand $a^{\prime}, b^{\prime}, c^{\prime}$ from the origin, then a.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
b.
c.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
d.

- Watch Video Solution

137. Find the equation of a plane which passes through the point $(3,2,0)$ and contains the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$
138. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar if a. $k=1$ or -1 b. $k=0$ or -3 c. $k=3$ or -3 d . $k=0$ or -1

- Watch Video Solution

139. The point of intersection of the lines $\frac{x-5}{3}=\frac{y-7}{-1}$ and $\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$ is

- Watch Video Solution

140.

A tetrahedron has vertices of $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then, the angle between the faces $O A B$ and $A B C$ will be

- Watch Video Solution

141. The radius of the circle in which the sphere $x^{2}=y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is

- Watch Video Solution

142. A sphere of constant radius $2 k$ passes through the origin and meets the axes in $A, B, a n d C$. The locus of a centroid of the tetrahedron
$O A B C$ is
a. $x^{2}+y^{2}+z^{2}=4 k^{2}$
b. $x^{2}+y^{2}+z^{2}=k^{2}$
C.
$2\left(x^{2}+y^{2}+z\right)^{2}=k^{2}$ d. none of these

- Watch Video Solution

143. A plane passes through a fixed point (a,b,c). The locus of the foot of the perpendicular to it from the origin is a sphere of radius

- Watch Video Solution

144. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

- Watch Video Solution

145. The equation of the plane through the intersection of the planes $x+2 y+3 z-4=0$ and $4 x+3 y+2 z+1=0$ and passing through the origin is (a) $17 x+14 y+11 z=0$
(b) $7 x+4 y+z=0 \quad$ (c) $x+14+11 z=0$ (d) $17 x+y+z=0$

- Watch Video Solution

146. The plane $4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $5 x+3 y+10 z=25$. The equation of the plane in its new position is a. $x-4 y+6 z=106 \mathrm{~b}$.

$$
x-8 y+13 z=103 \text { c. } x-4 y+6 z=110 \text { d. } x-8 y+13 z=105
$$

147. The vector equation of the plane passing through the origin and the line of intersection of the planes $\vec{r} \dot{\vec{a}}=\lambda a n d \vec{r} \vec{b}=\mu$ is (a)
$\vec{r} \lambda \vec{a}-\mu \vec{b}=0 \quad$ (b) $\vec{r} \lambda \vec{b}-\mu \vec{a}=0 \quad$ (c) $\vec{r} \lambda \vec{a}+\mu \vec{b}=0$
$\vec{r} \lambda \vec{b}+\mu \vec{a}=0$

- Watch Video Solution

148. The lines $\vec{r}=\vec{a}+\lambda(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ will intersect if a. $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$ b. $\vec{a} \vec{c}=\vec{b} \vec{c}$ c. $b \times \vec{a}=\vec{c} \times \vec{a} \mathrm{~d}$. none of these

- Watch Video Solution

149. The projection of the line $\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}$ on the plane $x-2 y+z=6$ is the line of intersection of this plane with the plane
150. The direction cosines of a line satisfy the relations $\lambda(l+m)=n$ and $m n+n l+l m=0$. The value of λ for which the two lines are perpendicular to each other, is

- Watch Video Solution

151. The intercepts made on the axes by the plane which bisects the line joining the point $(1,2,3)$ and $(-3,4,5)$ at right angles are :

- Watch Video Solution

152. The pair of lines whose direction cosines are given by the equations
$3 l+m+5 n=0 a n d 6 m n-2 n l+5 l m=0 \quad$ are \quad a. parallel b. perpendicular c. inclined at $\cos ^{-1}\left(\frac{1}{6}\right)$ d. none of these
153. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0, i s 5$, then the foot of the perpendicular from P to the plane is a. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$ b. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$ C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3},-\frac{1}{3},-\frac{5}{3}\right)$

- Watch Video Solution

154. A line with positive direction cosines passes through the point $P(2,-1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q . The length of the line segment $P Q$ equals

Watch Video Solution

155. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$ is a. $7 \mathrm{~b} .-7$ c. no real value d. 4
156. The equation of the plane passing through lines $\frac{x-4}{1}=\frac{y-3}{1}=\frac{z-2}{2}$ and $\frac{x-3}{2}=\frac{y-2}{-4}=\frac{z}{5}$ is a. $11 x-y-3 z=35$ b. $11 x+y-3 z=35$ c. $11 x-y+3 z=35$ d. none of these

- Watch Video Solution

157. The line through $\hat{i}+3 \hat{j}+2 \hat{k}$ and \perp to the line
$\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}+6 \hat{j}+\hat{k})+\mu(\hat{i}+2 \hat{j}$
is
a. $\quad \vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(-\hat{i}+5 \hat{j}-3 \hat{k})$
b.
$\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}-5 \hat{j}+3 \hat{k})$
C.
$\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}+5 \hat{j}+3 \hat{k})$
d.
$\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(-\hat{i}-5 \hat{j}-3 \hat{k})$
158. The equation of the plane through the line of intersection of the planes $a x+b y+c z+d=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ parallel to the line $y=0$ and $z=0$ is

- Watch Video Solution

159.

The three
planes
$4 y+6 z=5,2 x+3 y+5 z=5$ and $6 x+5 y+9 z=10$ (a) meet in a point (b) have a line in common (c) form a triangular prism (d) none of these

- Watch Video Solution

160. Given $\vec{\alpha}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{\beta}=\hat{i}-2 \hat{j}-4 \hat{k}$ are the position vectors of the points A and B Then the distance of point $\hat{i}+\hat{j}+\hat{k}$ from the plane passing through B and perpendicular to $A B$ is (a) 5 (b) 10 (c) 15 (d) 20
161. Find the following are equations for the plane passing through the points $P(1,1,-1), Q(3,0,2) \operatorname{and} R(-2,1,0)$?

- Watch Video Solution

162. The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is

- Watch Video Solution

163. $L_{1} a n d L_{2}$ and two lines whose vector equations are $L_{1}: \vec{r}=\lambda((\cos \theta+\sqrt{3}) \hat{i}+(\sqrt{2} \sin \theta) \hat{j}+(\cos \theta-\sqrt{3}) \hat{k})$
$L_{2}: \vec{r}=\mu(a \hat{i}+b \hat{j}+c \hat{k})$, where $\lambda a n d \mu$ are scalars and α is the acute angel between L_{1} and L_{2}. If the angel α is independent of θ, then the value of α is a. $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$
164. Value of λ such that the line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{\lambda}$ is \perp to normal to the plane $\vec{r} \cdot(2 \vec{i}+3 \vec{j}+4 \vec{k})=0$ is a. $-\frac{13}{4}$ b. $-\frac{17}{4}$ c. 4 d. none of these

- Watch Video Solution

165. Equation of the plane passing through the points $(2,2,1) \operatorname{and}(9,3,6)$, and \perp to the plane $2 x+6 y+6 z=9$ is a. $3 x+4 y+5 z=9$ b. $3 x+4 y-5 z=9$ c. $3 x+4 y-5 z=9$ d. none of these

- Watch Video Solution

166. The equation of a plane which passes through the point of intersection of lines $\quad \frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}, \quad$ and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ and at greatest distance from point $(0,0,0)$ is
167. If the foot of the perpendicular from the origin to plane is $P(a, b, c)$, the equation of the plane is a. $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=3 \mathrm{~b} . a x+b y+c z=3 \mathrm{c}$. $a x+b y+c z=a^{2}+b^{2}+c^{2}$ d. $a x+b y+c z=a+b+c$

- Watch Video Solution

168. Equation of a line in the plane $\pi=2 x-y+z-4=0$ which is perpendicular to the line l whose equation is $\frac{x-2}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}$ and which passes through the point of intersection of l and π is (A)

$$
\begin{align*}
& \frac{x-2}{1}=\frac{y-1}{5}=\frac{z-1}{-1} \quad \text { (B) } \quad \frac{x-1}{3}=\frac{y-3}{5}=\frac{z-5}{-1} \tag{C}\\
& \frac{x+2}{2}=\frac{y+1}{-1}=\frac{z+1}{1}
\end{align*}
$$

- Watch Video Solution

169. The intercept made by the plane $\vec{r} \cdot \vec{n}=q$ on the x -axis is a. $\frac{q}{\hat{i} \vec{n}}$ b.
$\frac{\hat{i} \vec{n}}{q}$ c. $\frac{\hat{i} \dot{\vec{n}}}{q}$ d. $\frac{q}{|\vec{n}|}$

- Watch Video Solution

170. The coordinates o the foot of the perpendicular drawn from the origin to the line joining the point $(-9,4,5)$ and $(10,0,-1)$ will be a. $(-3,2,1)$ b. $(1,2,2)$ c. $4,5,3 \mathrm{~d}$. none of these

- Watch Video Solution

171. The point on the line $\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z+5}{-2}$ at a distance of 6 from the point $(2,-3,-5)$ is a. $(3,-5,-3)$ b. $(4,-7,-9)$ c. $(0,2,-1) d$. none of these

- Watch Video Solution

172. Let $A(1,1,1), B(2,3,5) \operatorname{and} C(-1,0,2)$ be three points, then equation of a plane parallel to the plane $A B C$ which is at distance 2 is a.
$2 x-3 y+z+2 \sqrt{14}=0$
b. $\quad 2 x-3 y+z-\sqrt{14}=0$
$2 x-3 y+z+2=0$ d. $2 x-3 y+z-2=0$
C.

- Watch Video Solution

173. Let $A(\vec{a}) \operatorname{andB}(\vec{b})$ be points on two skew lines $\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+u \vec{q}$ and the shortest distance between the skew lines is 1 , where \vec{p} and \vec{q} are unit vectors forming adjacent sides of a parallelogram enclosing an area of $1 / 2$ units. If angle between $A B$ and the line of shortest distance is 60°, then $A B=$ a. $\frac{1}{2}$ b. 2 c .1 d . $\lambda R=\{10\}$

- Watch Video Solution

174. Consider three planes $P_{1}: x-y+z=1, P_{2}: x+y-z=-1$ and $P_{3}: x-3 y+3 z=2$ Let L_{1}, L_{2} and L_{3} be the lines of intersection of the
planes P_{2} and P_{3}, P_{3} and P_{1} and P_{1} and P_{2} respectively.Statement 1: At least two of the lines L_{1}, L_{2} and L_{3} are non-parallel . Statement 2:The three planes do not have a common point

- Watch Video Solution

175. Consider the planes $3 x-6 y-2 z-15=0$ and $2 x+y-2 z-5=0$ Statement 1:The parametric equations of the line intersection of the given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2: The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.

- Watch Video Solution

176. The length of projection of the line segment joining the points
$(1,0,-1)$ and $(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to a.
2 b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$
177. If $\quad P_{1}: \vec{r} \cdot \vec{n}_{1}-d_{1}=0 \quad P_{2}: \vec{r} \cdot \vec{n}_{2}-d_{2}=0 \quad$ and $P_{3}: \vec{r} \cdot \vec{n}_{3}-d_{3}=0$ are three planes and \vec{n}_{1}, \vec{n}_{2} and \vec{n}_{3} are three non-coplanar vectors, then three lines $P_{1}=0, P_{2}=0 ; P_{2}=0, P_{3}=0$; $P_{3}=0 P_{1}=0$ are
a. parallel lines
b. coplanar lines
c. coincident lines
d. concurrent lines

- Watch Video Solution

178. Perpendiculars are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$ The feet of perpendiculars lie on the line (a) $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$
$\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$
(c) $\quad \frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
$\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$
179. The point P is the intersection of the straight line joining the points $Q(2,3,5)$ and $R(1,-1,4)$ with the plane $5 x-4 y-z=1$. If S is the foot of the perpendicular drawn from the point $T(2,1,4)$ to $Q \mathrm{R}$, then the length of the line segment PS is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 2 (D) $2 \sqrt{2}$

- Watch Video Solution

180. A line l passing through the origin is perpendicular to the lines $l_{1}:(3+t) \hat{i}+(-1+2 t) \hat{j}+(4+2 t) \hat{k}, \infty<t<\infty, l_{2}:(3+s) \hat{i}+(3+2$ then the coordinates of the point on l_{2} at a distance of $\sqrt{17}$ from the point of intersection of $l \& l_{1}$ is/are:

- Watch Video Solution

181. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b .2 c .3 d .4

(Watch Video Solution

182. The projection of point $P(\vec{p})$ on the plane $\vec{r} \vec{n}=q$ is (\vec{s}), then
a. $\vec{s}=\frac{(q-\vec{p} \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
b. $\quad \vec{s}=p+\frac{(q-\vec{p} \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
$\vec{s}=p-\frac{(\vec{p} \dot{\vec{n}}) \vec{n}}{|\vec{n}|^{2}} \mathrm{~d} \cdot \vec{s}=p-\frac{(q-\vec{p} \vec{n}) \vec{n}}{|\vec{n}|^{2}}$

(Watch Video Solution

183. The angle between i and line of the intersection of the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}+\hat{k})=0$ is a. $\cos ^{-1}\left(\frac{1}{3}\right) b$. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ c. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ d. none of these

- Watch Video Solution

184. From the point $P(a, b, c)$, let perpendicualars $P L a n d P M$ be drawn to $Y O Z a n d Z O X$ planes, respectively. Then the equation of the plane
$O L M$ is a. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ b. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$ c. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0 \mathrm{~d}$. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$

- Watch Video Solution

185. The plane $\vec{r} \dot{\vec{n}}=q$ will contain the line $\vec{r}=\vec{a}+\lambda \vec{b}$, if a.
b. $n \neq 0, a . n \neq q$
b.
b. $n=, a . n \neq q$
c. $\quad b . n=0, a . n=q$
d.
b. $n \neq 0, a . n=q$

- Watch Video Solution

186. Consider triangle $A O B$ in the $x-y$ plane, where $A \equiv(1,0,0), B \equiv(0,2,0)$ and $O \equiv(0,0,0)$. The new position of O, when triangle is rotated about side $A B$ by 90° can be a. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$
b. $\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$ c. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$ d. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

- Watch Video Solution

187. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$, then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is a. $(3,-1,1)$ b.
$(3,1,-1)$
c. $(-3,1,1)$ d. $(-3,-1,-1)$

- Watch Video Solution

188. The line $\frac{x+6}{5}=\frac{y+10}{3}=\frac{z+14}{8}$ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is $(7,2,4)$. Then which of the following in not the side of the triangle?
a. $\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
b. $\frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
c. $\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$
d. none of these

- Watch Video Solution

189. The equation of the plane which passes through the line of intersection of planes $\vec{r} \cdot \vec{n}_{1}=, q_{1}, \vec{r} \cdot \vec{n}_{2}=q_{2}$ and the is parallel to
the line of intersection of planers $\vec{r} \cdot \vec{n}_{3}=q_{3} a n d \vec{r} \cdot \vec{n}_{4}-q_{4}$ is

- Watch Video Solution

190. The coordinates of the point P on the line $\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-\hat{i}+\hat{j}-\hat{k})$ which is nearest to the origin is a. $\left(\frac{2}{4}, \frac{4}{3}, \frac{2}{3}\right)$ b. $\left(-\frac{2}{3},-\frac{4}{3}, \frac{2}{3}\right)$ c. $\left(\frac{2}{3},-\frac{4}{3}, \frac{2}{3}\right)$ d. none of these

- Watch Video Solution

191. The ratio in which the line segment joining the points whose position vectors are $2 \hat{i}-4 \hat{j}-7 \hat{k}$ and $-3 \hat{i}+5 \hat{j}-8 \hat{k}$ is divided by the plane whose equation is $\hat{r} \hat{i}-2 \hat{j}+3 \hat{k}=13$ is a. $13: 12$ internally b. $12: 25$ externally c. $13: 25$ internally d. 37: 25 internally

- Watch Video Solution

192. The number of planes that are equidistant from four non-coplanar points is

- Watch Video Solution

193. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z$ and $z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) (A) 0 (B) $a^{2}+b^{2}+c^{2}$ (C) $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ (D) none of these

- Watch Video Solution

194. A plane passing through $(1,1,1)$ cuts positive direction of coordinates axes at $A, B a n d C$, then the volume of tetrahedron $O A B C$ satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V=\frac{9}{2}$ d. none of these

- Watch Video Solution

195. If lines $x=y=z a n d x=\frac{y}{2}=\frac{z}{3}$ and third line passing through $(1,1,1)$ form a triangle of area $\sqrt{6}$ units, then the point of intersection of third line with the second line will be a. $(1,2,3)$ b. $2,4,6$ c. $\frac{4}{3}, \frac{6}{3}, \frac{12}{3}$ d. none of these

- Watch Video Solution

196. The point of intersection of the line passing through $(0,0,1)$ and intersecting the lines $x+2 y+z=1,-x+y-2 z=2$ and $x+y=2, x+z=2$ with $x y$ plane is a. $\left(\frac{5}{3},-\frac{1}{3}, 0\right)$ b. $(1,1,0)$ c. $\left(\frac{2}{3}, \frac{1}{3}, 0\right)$ d. $\left(-\frac{5}{3}, \frac{1}{3}, 0\right)$

- Watch Video Solution

197. Shortest distance between the lines

$$
\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1} \text { and } \frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{1} \text { is equal to a. }
$$

$\sqrt{14}$ b. $\sqrt{7}$ c. $\sqrt{2}$ d. none of these
198. Distance of point $P(\vec{p})$ from the plane $\vec{r} \dot{\vec{n}}=0$ is a. $|\vec{p} \dot{\vec{n}}|$ b. $\frac{|\vec{p} \times \vec{n}|}{|\vec{n}|}$ c. $\frac{|\vec{p} \vec{n}|}{|\vec{n}|}$ d. none of these

- Watch Video Solution

199. The reflection of the point \vec{a} in the plane $\vec{r} \vec{n}=q$ is a.
$\vec{a}+\frac{(\vec{q}-\vec{a} \vec{n})}{|\vec{n}|}$
b. $\vec{a}+2\left(\frac{(\vec{q}-\vec{a} \vec{n})}{|\vec{n}|}\right) \vec{n}$
c.
$\vec{a}+\frac{2(\vec{q}+\vec{a} \vec{n})}{|\vec{n}|^{2}} \vec{n}$ d. none of these

- Watch Video Solution

200. Line $\vec{r}=\vec{a}+\lambda \vec{b}$ will not meet the plane $\vec{r} \vec{n}=q$, if a.

$$
\vec{b} \vec{n}=0, \vec{a} \vec{n}=q \text { b. } \vec{b} \vec{n} \neq 0, \vec{a} \vec{n} \neq q \text { c. } \vec{b} \vec{n}=0, \vec{a} \vec{n} \neq q \text { d. }
$$

$$
\vec{b} \dot{\vec{n}} \neq 0, \vec{a} \dot{\vec{n}}=q
$$

- Watch Video Solution

201. If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of each of x axis and y-axis, then the angel that the line makes with the positive direction of the z-axis is a. $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{6}$

- Watch Video Solution

202. A parallelepiped S has base points $A, B, C a n d D$ and upper face points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}. The parallelepiped is compressed by upper face $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to form a new parallepiped T having upper face points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ and $D^{\prime \prime}$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of A is a plane.

- Watch Video Solution

203. Find the equation of the plane containing the lines $2 x-y+z-$ $3=0,3 x+y+z=5$ and a t a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).

- Watch Video Solution

204. A plane which prependicular totwo planes $2 x-2 y+z=0$ and $x-y+2 z=4$ passes through the point $(1,-2,1)$ is:

- Watch Video Solution

205. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4 \mathrm{~b} .-1 / 4 \mathrm{c}$. $1 / 8$ d. $-1 / 8$

- Watch Video Solution

206. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to (1) -1 (2) $\frac{2}{9}$ (3) $\frac{9}{2}$ (4) 0

- Watch Video Solution

207. Consider a set of point R in which is at a distance of 2 units from the line $\frac{x}{1}=\frac{y-1}{-1}=\frac{z+2}{2}$ between the planes $x-y+2 z=3=0$ and $x-y+2 z-2=0$. (a) The volume of the bounded figure by points R and the planes is $\left(\frac{10}{3} \sqrt{3}\right) \pi$ cube units (b) The area of the curved surface formed by the set of points R is $\left(\frac{20}{\sqrt{6}}\right) \pi$ sq. units The volume of the bounded figure by the set of points R and the planes is $\left(\frac{20}{\sqrt{6}}\right) \pi$ cubic units. (d) The area of the curved surface formed
by the set of points R is $\left(\frac{10}{\sqrt{3}}\right) \pi$ sq. units

- Watch Video Solution

208. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then \cos α equals

- Watch Video Solution

209. Statement 1: A plane passes through the point $A(2,1,-3)$. If distance of this plane from origin is maximum, then its equation is $2 x+y-3 z=14$. Statement 2: If the plane passing through the point $A(\vec{a})$ is at maximum distance from origin, then normal to the plane is vector \vec{a}.

- Watch Video Solution

210. Consider the following linear equations: $a x+b y+c z=0$ $b x+c y+a z=0 c x+a y+b z=0$ Match the expression/statements in column I with expression/statements in Column II. Column I, Column II $a+b+c \neq 0 a n d a^{2}+b^{2}+c^{2}=a b+b c+c a \quad, \quad \mathrm{p}$. the equations
represent planes meeting only at a single point $a+b+c=0 a n d a^{2}+b^{2}+c^{2} \neq a b+b c+c a \quad$, q. the equations represent the line $x=y=z$ $a+b+c \neq 0 a n d a^{2}+b^{2}+c^{2} \neq a b+b c+c a \quad, \quad r$. the equations represent identical planes $a+b+c \neq 0 a n d a^{2}+b^{2}+c^{2} \neq a b+b c+c a \quad$, s. the equations represent the whole of the three dimensional space

- Watch Video Solution

211. If the distance between the plane $A x-2 y+z=d$. and the plane containing
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{4-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$, then $|d|$ is

- Watch Video Solution

212. Prove that the volume of tetrahedron bounded by the planes $\vec{r} m \hat{j}+n \hat{k}=0, \vec{r} n \hat{k}+l \hat{i}=0, \vec{r} l \hat{i}+m \hat{j}=0, \vec{r} l \hat{i}+m \hat{j}+n \hat{k}=\pi s \frac{2 f}{3 l n}$

- Watch Video Solution

213. If a variable plane forms a tetrahedron of constant volume $64 k^{3}$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

- Watch Video Solution

214. $O A, O B$ and $O C$, with O as the origin, are three mutually perpendicular lines whose direction cosines are $l_{r} m_{r} a n d n_{r}(r=1,2 a n d 3)$. If the projection of $O A a n d O B$ on the plane $z=0$ make angles φ_{1} and φ_{2}, respectively, with the x-axis, prove that $\tan \left(\varphi_{1}-\varphi_{2}\right)= \pm n_{3} / n_{1} n_{2}$.
215. Prove that for all values of λ and μ, the planes $\frac{2 x}{a}+\frac{y}{b}+\frac{2 z}{c}-1+\lambda\left(\frac{x}{a}-\frac{2 y}{b}-\frac{z}{c}-2\right)=0$ and
$\frac{4 x}{a}-\frac{3 y}{b}-5+\mu\left(\frac{5 y}{b}+\frac{4 z}{c}+3\right)=0$ intersect on the same line.

- Watch Video Solution

216. If P is any point on the plane $l x+m y+n z=p a n d Q$ is a point on the line $O P$ such that $O P . O Q=p^{2}$, then find the locus of the point Q.

- Watch Video Solution

217. find the equation of the plane with intercepts 2,3 and 4 on the x, y and z -axis respectively.

- Watch Video Solution

218. A variable plane $l x+m y+n z=p$ (wherel, m, n are direction cosines of normal) intersects the coordinate axes at points $A, B a n d C$, respectively. Show that the foot of the normal on the plane from the origin is the orthocenter of triangle $A B C$ and hence find the coordinate of the circumcentre of triangle $A B C$.

- Watch Video Solution

219. P is a point and $P M a n d P N$ are the perpendicular form $P \rightarrow z-x a n d x-y$ planes. If $O P$ makes angles $\theta, \alpha, \beta a n d \gamma$ with the plane $O M N$ and the $x-y, y-z a n d z-x$ planes, respectively, then prove that $\cos ^{2} c^{2} \theta=\operatorname{cosec}^{2} \alpha+\operatorname{cosec}^{2} \beta+\operatorname{cosec}^{2} \gamma$.

- Watch Video Solution

220. Let a plane $a x+b y+c z+1=0$, wherea, b, c are parameters, make an angle 60° with the line $x=y=z, 45^{0}$ with the line $x=y-z=0$ and θ with the plane $x=0$. The distance of the plane
from point $(2,1,1)$ is 3 units. Find the value of θ and the equation of the plane.

- Watch Video Solution

221. Let $x-y \sin \alpha-z \sin \beta=0, x \sin \alpha+z \sin \gamma-y=0 \quad$ and $x \sin \beta+y \sin \gamma-z=0$ be the equations of the planes such that $\alpha+\beta+\gamma=\pi / 2$ (where α, β and $\gamma \neq 0$). Then show that there is a common line of intersection of the three given planes.

- Watch Video Solution

222. The position vectors of the four angular points of a tetrahedron OABC are $(0,0,0) ;(0,0,2),(0,4,0)$ and $(6,0,0)$ respectively. A point P inside the tetrahedron is at the same distance r from the four plane faces of the tetrahedron. Find the value of r

- Watch Video Solution

223. Find the distance of the point $(-2,3,-4)$ from the line $\frac{\mathrm{x}+2}{3}=\frac{2 \mathrm{y}+3}{4}=\frac{3 \mathrm{z}+4}{5}$ measured parallel to the plane $4 \mathrm{x}+12 \mathrm{y}-3 \mathrm{z}+1=0$.

- Watch Video Solution

224. The plane $4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $5 x+3 y+10 z=25$. The equation of the plane in its new position is a. $x-4 y+6 z=106 \mathrm{~b}$. $x-8 y+13 z=103$ c. $x-4 y+6 z=110$ d. $x-8 y+13 z=105$

- Watch Video Solution

225. If (a, b, c) is a point on the plane $3 x+2 y+z=7$, then find the least value of $2\left(a^{2}+b^{2}+c^{2}\right)$, using vector method.

- Watch Video Solution

226. Let the equation of the plane containing the line $x-y-z-4=0=x+y+2 z-4$ and is parallel to the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$ be $x+A y+B z+C=0$ Compute the value of $|A+B+C|$.

- Watch Video Solution

227. Let $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots$ be in A.P. and $h_{1}, h_{2}, h_{3} \ldots$. , in H. P. If $a_{1}=2=h_{1}$, and $a_{30}=25=h_{30}$ then $a_{7} h_{24}+a_{14}+a_{17}=$

- Watch Video Solution

228. If the angle between the plane $x-3 y+2 z=1$ and the line $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{-3} i s, \theta$ then the find the value of $\operatorname{cosec} \theta$.
229. The length of projection of the line segment joining the points $(1,0,-1) \operatorname{and}(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to a. 2
b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$

- Watch Video Solution

230. Find the equation of a plane passing through $(1,1,1)$ and parallel to the lines L_{1} and L_{2} direction ratios (1, 0,-1) and (1,-1, 0) respectively. Find the volume of the tetrahedron formed by origin and the points where this plane intersects the coordinate axes.

- Watch Video Solution

231. Find the equation of the plane passing through the points $(2,1,0),(5,0,1)$ and $(4,1,1)$ If P is the point $(2,1,6)$ then find point Q such that $P Q$ is perpendicular to the above plane and the mid point of $P Q$ lies on it.
232. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is incorrect?

- Watch Video Solution

233. The value of m for which straight lein $3 x-2 y+z+3=0=4 x-3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$ is a. -2 b. 8 c. -18 d. 11

- Watch Video Solution

234. Let the equations of a line and plane be $\frac{x+3}{2}=\frac{y-4}{3}=\frac{z+5}{2} a n d 4 x-2 y-z=1$, respectively, then a. the line is parallel to the plane b. the line is perpendicular to the plane c. the line lies in the plane d. none of these
235. The length of the perpendicular form the origin to the plane passing through the point a and containing the line $\vec{r}=\vec{b}+\lambda \vec{c}$ is a.

$$
\begin{aligned}
& \left.\left.\frac{[\vec{a} \vec{b}}{} \vec{c}\right]\right] . \\
& \text { b. } \frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}|} \\
& {[\vec{a} \vec{b} \vec{c}]} \\
& \overline{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|} \text { d. } \overline{|\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}
\end{aligned}
$$

- Watch Video Solution

236. In a three-dimensional $x y z$ space, the equation $x^{2}-5 x+6=0$ represents a. Points b. planes c. curves d. pair of straight lines

- Watch Video Solution

237. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the curve $x y=c^{2}, z=0$ if c is equal to a. $\pm 1 \mathrm{~b} . \pm \frac{1}{3} \mathrm{c} . \pm \sqrt{5} \mathrm{~d}$. none of these
238. A unit vector parallel to the intersection of the planes $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$ and $\vec{r} .(2 \hat{i}+\hat{j}-3 \hat{k})=4$ a. $\frac{2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$ b. $\frac{-2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$ c. $\frac{2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$ d. $\frac{-2 \hat{i}-5 \hat{j}-3 \hat{k}}{\sqrt{38}}$

- Watch Video Solution

239. Let L_{1} be the line $\vec{r}_{1}=2 \hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}+2 \hat{k})$ and let L_{2} be the line $\vec{r}_{2}=3 \hat{i}+\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$. Let π be the plane which contains the line L_{1} and is parallel to L_{2}. The distance of the plane π from the origin is a. $\sqrt{6}$ b. $1 / 7$ c. $\sqrt{2 / 7}$ d. none of these

- Watch Video Solution

240. The distance of point $A(-2,3,1)$ from the line $P Q$ through $P(-3,5,2)$, which makes equal angles with the axes is a. $2 / \sqrt{3} \mathrm{~b}$.
$\sqrt{14 / 3}$ c. $16 / \sqrt{3}$ d. $5 / \sqrt{3}$

- Watch Video Solution

241. The Cartesian equation of the plane $\vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k}$ is a. $2 x+y=5 \mathrm{~b}$.
$2 x-y=5$ c. $2 x+z=5$ d. $2 x-z=5$

- Watch Video Solution

242. Find the angle between the lines
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and $\vec{r}=(5 \hat{j}-2 \hat{k})+\mu(3 \hat{i}+2 \hat{j}+$

- Watch Video Solution

243. The distance between the line
$\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and plane $\vec{r} \hat{i}+5 \hat{j}+\hat{k}=5$.
244. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then \cos α equals

- Watch Video Solution

245. Statement 1: there exists a unique sphere which passes through the three non-collinear points and which has the least radius. Statement 2: The centre of such a sphere lies on the plane determined by the given three points.

- Watch Video Solution

246. Statement 1: There exist two points on the $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ which are at a distance of 2 units from point $(1,2,-4)$ Statement 2 : Perpendicular distance of point $(1,2,-4)$ form the line $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ is 1 unit.

- Watch Video Solution

247. Statement 1: The shortest distance between the lines $\frac{x}{-3}=\frac{y-1}{1}=\frac{z+1}{-1}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\left(\frac{z+(13 / 7)}{-1}\right)$ is zero. Statement 2: The given lines are perpendicular.

- Watch Video Solution

248. Find the number of sphere of radius r touching the coordinate axes.

- Watch Video Solution

249. Find the distance of the z-axis from the image of the point $M(2-3,3)$ in the plane $x-2 y-z+1=0$.

- Watch Video Solution

250. A line with direction cosines proportional to $1,-5$, and -2 meets lines $x=y+5=z+11$ and $x+5=3 y=2 z$. The coordinates of each of the points of the intersection are given by a. $(2,-3,1) \mathrm{b} .(1,2,3) \mathrm{c}$. $(0,5 / 3,5 / 2)$ d. $(3,-2,2)$

- Watch Video Solution

251. If
the
planes
$\vec{r} \hat{i}+\dot{\hat{j}}+\hat{k}=q_{1}, \vec{r} \hat{i}+2 a \hat{j}+\hat{k}=q_{2} a n d \vec{r} a \hat{i}+a^{2} \hat{j}+\hat{k}=q_{3}$ intersect in a line, then the value of a is a. $1 \mathrm{~b} .1 / 2 \mathrm{c} .2 \mathrm{~d} .0$

- Watch Video Solution

252. The equation of a line passing through the point \vec{a} parallel to the plane $\vec{r} \cdot \vec{n}=q$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is a.

$$
\begin{aligned}
& \vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c}) \quad \text { b. } \quad(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c}) \\
& \vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c}) \text { d. none of these }
\end{aligned}
$$

C.
253. A straight line L on the $x y$-plane bisects the angle between OXandOY. What are the direction cosines of L ? a. $\langle(1 / \sqrt{2}),(1 / \sqrt{2}), 0\rangle$ b. $\langle(1 / 2),(\sqrt{3} / 2), 0\rangle$ c. $\langle 0,0,1\rangle$ d. $\left\langle\begin{array}{c}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right\rangle$

- Watch Video Solution

254. Statement 1: Vector $\vec{c}=5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angel between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k} a n d \vec{b}=-8 \hat{i}+\hat{j}-4 \hat{k}$. Statement 2 : \vec{c} is equally inclined to \vec{a} and \vec{b}. Which of the following statements is/are correct ?

- Watch Video Solution

255. The equation of the line $x+y+z-1=0,4 x+y-2 z+2=0$ written in the symmetrical form is
256. The equation of two straight lines are $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{3}=\frac{z+3}{2}$. Statement 1: the given lines are coplanar. Statement 2 : The equations $2 r-s=1, r+3 s=4 a n d 3 r+2 s=5$ are consistent.

- Watch Video Solution

257.

Statement
1:
Lines
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=4 \hat{i}-\hat{k}+\mu(2 \hat{i}++3 \hat{k})$
intersect. Statement $2: \vec{b} \times \vec{d}=0$, then lines
$\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{c}+\lambda \vec{d}$ do not intersect.

- Watch Video Solution

258. Statement 1: Line $\frac{x-1}{1}=\frac{y-0}{2}=\frac{z 2}{-1}$ lies in the plane $2 x-3 y-4 z-10=0$. Statement 2: if line $\vec{r}=\vec{a}+\lambda \vec{b}$ lies in the
plane $\vec{r} \vec{c}=n($ wheren is scalar $)$, then $\vec{b} \vec{c}=0$.

(Watch Video Solution

259. What is the equation of the plane which passes through the z-axis and is perpendicular to the line $\frac{x-a}{\cos \theta}=\frac{y+2}{\sin \theta}=\frac{z-3}{0}$?
$x+y \tan \theta=0$
(B) $y+x \tan \theta=0$
(C) $x \cos \theta-y \sin \theta=0$
$x \sin \theta-y \cos \theta=0$

- Watch Video Solution

260. Statement 1: let $A(\vec{i}+\vec{j}+\vec{k}) \operatorname{andB}(\vec{i}-\vec{j}+\vec{k})$ be two points. Then point $P(2 \vec{i}+3 \vec{j}+\vec{k})$ lies exterior to the sphere with $A B$ as its diameter. Statement 2: If AandB are any two points and P is a point in space such that $\vec{P} A \vec{P} B>0$, then point P lies exterior to the sphere with $A B$ as its diameter.
261. Statement 1: Let θ be the angle between the line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{-2}$ and the plane $x+y-z=5$. Then $\theta=\sin ^{-1}(1 / \sqrt{51}) \cdot$ Statement 2: The angle between a straight line and a plane is the complement of the angle between the line and the normal to the plane. Which of the following statements is/are correct ?

- Watch Video Solution

262. If the volume of tetrahedron $A B C D$ is 1 cubic units, where $A(0,1,2), B(-1,2,1) \operatorname{and} C(1,2,1)$, then the locus of point D is a. $x+y-z=3$ b. $y+z=6$ c. $y+z=0$ d. $y+z=-3$

- Watch Video Solution

263. A rod of length 2 units whose one ends is $(1,0,-1)$ and other end touches the plane $x-2 y+2 z+4=0$, then which statement is false
264. The equation of the plane which is equally inclined to the lines $\frac{x-1}{2}=\frac{y}{-2}=\frac{z+2}{-1}$ and $=\frac{x+3}{8}=\frac{y-4}{1}=\frac{z}{-4} \quad$ and passing through the origin is/are a. $14 x-5 y-7 z=0$ b. $2 x+7 y-z=0$ c. $3 x-4 y-z=0$ d. $x+2 y-5 z=0$

- Watch Video Solution

265. Which of the following lines lie on the plane $x+2 y-z+4=0$? a.
$\frac{x-1}{1}=\frac{y}{-1}=\frac{z-5}{1}$
b. $\quad x-y+z=2 x+y-z=0$
c.
$\hat{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$ d. none of these

- Watch Video Solution

266. The equations of the plane which passes through $(0,0,0)$ and which is equally inclined to the planes $x-y+z-3=0 a n d x+y=z+4=0$ is/are a. $y=0$ b. $x=0$ c. $x+y=0$ d. $x+z=0$
267. The x - y plane is rotated about its line of intersection with the $y-z$ plane by 45^{0}, then the equation of the new plane is/are a. $z+x=0 \mathrm{~b}$. $z-y=0 \mathrm{c} . x+y+z=0 \mathrm{~d} . z-x=0$

- Watch Video Solution

268. Consider the planes $3 x-6 y+2 z+5=0$ and $4 x-12+3 z=3$. The plane $67 x-162 y+47 z+44=0$ bisects the angel between the given planes which a. contains origin b. is acute c. is obtuse d. none of these

- Watch Video Solution

269. A variable plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ at a unit distance from origin cuts the coordinate axes at A, B and C. Centroid (x, y, z) satisfies the equation $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=K$. The value of K is (A) 9 (B) 3 (C) $\frac{1}{9}$ (D) $\frac{1}{3}$
270. Let $P=0$ be the equation of a plane passing through the line of intersection of the planes $2 x-y=0 a n d 3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$. Then the points which lie on the plane $P=0$ is/are a. $(0,9,17)$ b. $(1 / 7,21 / 9)$ c. $(1,3,-4)$ d. $(1 / 2,1,1 / 3)$

- Watch Video Solution

271. The equation of the line $x+y+z-1=0,4 x+y-2 z+2=0$ written in the symmetrical form is

- Watch Video Solution

272. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to $O P$ meets the coordinate axes at $A, B a n d C$. If the planes through $A, B a n d C$ parallel to the planes $x=0, y=0 a n d z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

273.

If
the
planes
$x-c y-b z=0, c x=y+a z=0 a n d b x+a y-z=0$ pass through a straight line, then find the value of $a^{2}+b^{2}+c^{2}+2 a b$.

- Watch Video Solution

274. Find the equation of the plane through the points $(1,0,-1),(3,2,2)$ and parallel to the line $\frac{x-1}{1}=\frac{y-1}{-2}=\frac{z-2}{3}$.

- Watch Video Solution

275. A variable plane passes through a fixed point (α, β, γ) and meets the axes at A, B, and C. show that the locus of the point of intersection of the planes through $A, B a n d C$ parallel to the coordinate planes is $\alpha x^{-1}+\beta y^{-1}+\gamma z^{-1}=1$.
276. Show that the straight lines whose direction cosines are given by the equations $a l+b m+c n=0$ and $u l^{2}+v m^{2}+w n^{2}=0$ are parallel or $\begin{array}{ll}\text { perpendicular } \quad \text { as } & \frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0 \\ a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0\end{array}$ or

- Watch Video Solution

277. The perpendicular distance of a corner of uni cube from a diagonal not passing through it is

- Watch Video Solution

278. If the direction cosines of a variable line in two adjacent points be l, M, n and $l+\delta l, m+\delta m+n+\delta n$ the small angle $\delta \theta$ as between the two positions is given by
279. the image of the point $(-1,3,4)$ in the plane $x-2 y=0$ a. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$ b. $(15,11,4)$ c. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$ d. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$

(Watch Video Solution

280. The ratio in which the plane $\vec{r} \cdot(\vec{i}-2 \vec{j}+3 \vec{k})=17$ divides the line joining the points $-2 \vec{i}+4 \vec{j}+7 \vec{k}$ and $3 \vec{i}-5 \vec{j}+8 \vec{k}$ is a. 1:5 b. 1:10 c. $3: 5$ d. $3: 10$

- Watch Video Solution

281. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then cos α equals a. $\frac{1}{\sqrt{3}}$ b. $\frac{1}{2}$ c. 1 d. $\frac{1}{\sqrt{2}}$

- Watch Video Solution

282. The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\vec{r} \hat{i}+5 \hat{j}+\hat{k}=5$ is a. $\frac{10}{3 \sqrt{3}}$ b. $\frac{10}{9}$ c. $\frac{10}{3}$ d. $\frac{3}{10}$

- Watch Video Solution

283. If angle θ bertween the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=1 / 3$, the value of λ is
a. $-\frac{3}{5}$
b. $\frac{5}{3}$
c. $-\frac{4}{3}$
d. $\frac{3}{4}$

- Watch Video Solution

284. The length of the perpendicular drawn from $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is a. 4 b. 5 c. 6 d. 7
285. A plane makes intercepts $O A, O B a n d O C$ whose measurements are a, b and c on the $O X, O Y a n d O Z$ axes. The area of triangle $A B C$ is a.
$\frac{1}{2}(a b+b c+c a)$
b. $\frac{1}{2} a b c(a+b+c)$
c. $\frac{1}{2}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{1 / 2}$
d. $\frac{1}{2}(a+b+c)^{2}$

Watch Video Solution

$$
\begin{aligned}
& \text { 286. The intersection of } \\
& x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=8
\end{aligned}
$$

is the same as the intersection of one of the spheres and the plane a.
$x-y-z=1$ b. $x-2 y-z=1$ c. $x-y-2 z=1$ d. $2 x-y-z=1$

- Watch Video Solution

287. The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13} \mathrm{~d}$. 13
288. A line makes an angel θ with each of the x -and z -axes. If the angel β, which it makes with the y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$,then $\cos ^{2} \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$

- Watch Video Solution

289. Find the equation of a straight line in the plane $\vec{r} \cdot \vec{n}=d$ which is parallel to $\vec{r}=\vec{a}+\lambda \vec{b}$ and passes through the foot of the perpendicular drawn from point

$$
\begin{aligned}
& P(\vec{a}) \rightarrow \vec{r} \dot{\vec{n}}=d(\text { where } \vec{n} \vec{b}=0) . \\
& \vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n^{2}}\right) n+\lambda \vec{b} \\
& \vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n}\right) n+\lambda \vec{b} \\
& \vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n^{2}}\right) n+\lambda \vec{b} \\
& \vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n}\right) n+\lambda \vec{b}
\end{aligned}
$$

a.
b.
c.
d.
290. What is the nature of the intersection of the set of planes $x+a y+(b+c) z+d=0, x+b y+(c+a) z+d=0 a n d x+c y+(a+b$ (a). they meet at a point (b). they form a triangular prism (c). they pass through a line (d). they are at equal distance from the origin

- Watch Video Solution

291. Let P_{1} denote the equation of a plane to which the vector $(\hat{i}+\hat{j})$ is normal and which contais the line whose equation is $\vec{r}=\hat{i}+\hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}-\hat{k})$ andP P_{2} denote the equation of the plane containing the line L and a point with position vector \hat{j}. Which of the following holds good? a. The equation of P_{1} is $\mathrm{x}+\mathrm{y}=2$. b. The equation of P_{2} is $\vec{r} .(i-2 j+k)=2 \mathrm{c}$. The acute angle between P_{1} and P_{2} is $\cot ^{-1} \sqrt{3} \mathrm{~d}$. The angle between plane P_{2} and the line L is $\tan ^{-1} \sqrt{3}$

- Watch Video Solution

292. Let $P M$ be the perpendicular from the point $P(1,2,3)$ to the $x-y$ plane. If $\vec{O} P$ makes an angle θ with the positive direction of the $z-$ axis and $\vec{O} M$ makes an angle ϕ with the positive direction of $x-$ axis, where O is the origin and $\operatorname{\theta and\phi }$ are acute angels, then a. $\cos \theta \cos \phi=1 / \sqrt{14}$ b. $\sin \theta \sin \phi=2 / \sqrt{14}$ c. $\quad \tan \phi=2$ d. $\tan \theta=\sqrt{5} / 3$

- Watch Video Solution

293. If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$ cuts the axes of coordinates at points, $A, B, a n d C$, then find the area of the triangle $A B C$. a. $18 s q$. unit b. $36 s q$. unit c. $3 \sqrt{14} s q$. unit d. $2 \sqrt{14} s q$. unit

- Watch Video Solution

294. For what value (s) of a will the two points $(1, a, 1)$ and $(-3,0, a)$ lie on opposite sides of the plane $3 x+4 y-12 z+13=0$?
