©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

THREE-DIMENSIONAL GEOMETRY

Illustration

1. If α, β, and γ are the an gles which a directed line makes with the positive directions of the co-ordinates axes, then find the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

2. A line $O P$ through origin O is inclined at 30^{0} and $45^{0} \rightarrow O X a n d O Y$, respectivley. Then find the angle at which it is inclined to $O Z$.
3. $A B C$ is a triangle and $A=(235) B=(-1,3,2)$ and $C=(\lambda, 5, \mu)$. If the median through A is equally inclined to the axes, then find the value of $\lambda a n d \mu$.

- Watch Video Solution

4. A line passes through the points $(6,-7,-1) \operatorname{and}(2,-3,1)$. Find te direction cosines off the line if the line makes an acute angle with the positive direction of the x-axis.

- Watch Video Solution

5. Find the ratio in which the $y-z$ plane divides the join of the points $(-2,4,7) \operatorname{and}(3,-5,8)$.
6. If $A(3,2,-4), B(5,4,-6) \operatorname{and} C(9,8,-10)$ are three collinear points, then find the ratio in which point C divides $A B$.

Watch Video Solution

7. If the sum of the squares of the distance of a point from the three coordinate axes is 36 , then find its distance from the origin.

- Watch Video Solution

8. A line makes angles α, β, γ and δ with the diagonals of a cube, then find the value of $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$.
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

9. Find the angle between the line whose direction cosines are given by $l+m+n=0$ and $2 l^{2}+2 m^{2}-n^{2}-0$.
A. 60°
B. $\cos ^{-1}\left(\frac{1}{3}\right)$
C. $\cos ^{-1}\left(-\frac{1}{3}\right)$
D. none of these

Answer: C

- Watch Video Solution

10. A mirror and a source of light are situated at the origin O and at a point on $O X$, respectively. A ray of light from the source strikes the
mirror and is reflected. If the direction ratios of the normal to the plane are $1,-1,1$, then find the $D C s$ of the reflected ray.

- Watch Video Solution

11. The Cartesian equation of a line is $\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z-3}{5}$. Find the vector equation of the line.

- Watch Video Solution

12. The Cartesian equations of a line are $6 x-2=3 y+1=2 z-2$.

Find its direction ratios and also find a vector equation of the line.

- Watch Video Solution

13. A line passes through the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and is in the direction of $3 \hat{i}+4 \hat{j}-5 \hat{k}$. Find the equations of the line in vector and Cartesian forms.

- Watch Video Solution

14. Find the vector equation of line passing through $A(3,4-7) \operatorname{and} B(1,-1,6)$. Also find its Cartesian equations.

- Watch Video Solution

15. Find Cartesian and vector equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

- Watch Video Solution

16. Find the equation of a line which passes through the point $(2,3,4)$ and which has equal intercepts on the axes.

- Watch Video Solution

17. Find the points where line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects $x y, y z a n d z x$ planes.

- Watch Video Solution

18. Find the equation of line $x+y-z-3=0=2 x+3 y+z+4$ in symmetric form. Find the direction ratio of the line.

- Watch Video Solution

19. Find the vector equation of the line passing through the point $(1,2,4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

- Watch Video Solution

20.

$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(\hat{i}+\hat{j}$
are two lines, then find the equation of acute angle bisector of two lines.

- Watch Video Solution

21. Find the equation of the line drawn through point $(1,0,2)$ to meet the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z 1}{-1}$ at right angles.

- Watch Video Solution

22. Line L_{1} is parallel to vector $\vec{\alpha}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ and passes through a point $A(7,6,2)$ and line L_{2} is parallel vector $\vec{\beta}=2 \hat{i}+\hat{j}+3 \hat{k}$ and point $B(5,3,4)$. Now a line L_{3} parallel to a vector $\vec{r}=2 \hat{i}-2 \hat{j}-\hat{k}$ intersects the lines $L_{1} a n d L_{2}$ at points CandD, respectively, then find $|\vec{C} D|$.

- Watch Video Solution

23. Find the coordinates of a point on the $\frac{x-1}{2}=\frac{y+1}{-3}=z$ atg a distance $4 \sqrt{14}$ from the point $(1,-1,0)$.

- Watch Video Solution

24. Find the angle between the following pair of lines:
i.
$\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k}$
ii. $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Watch Video Solution

right angles.

- Watch Video Solution

26. Find the acute angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{1}{n}$ and $=\frac{x+1}{m}=\frac{y-3}{n}=\frac{z-1}{l}$ wherel $>m>n$, are the roots of the cubic equation $x^{3}+x^{2}-4 x=4$.

- Watch Video Solution

27.

Fid
the
condition
if
lines
$x=a y+b, z=c y+d a n d x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$
perpendicular.

- Watch Video Solution

28. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.

- Watch Video Solution

29. Find the length of the perpendicular drawn from point $(2,3,4)$ to line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

- Watch Video Solution

30. Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.

- Watch Video Solution

31. Determine whether the following pair of lines intersect or not. i.
$\vec{r}=\hat{i}-\hat{j}+\lambda(2 \hat{i}+\hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$

- Watch Video Solution

32. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ and $\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}$

- Watch Video Solution

33. If the straighat lines $x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$ with parameters s and t respectively, are coplanar, then λ equals (A) $-\frac{1}{2}$ (B) -1 (C) -2 (D) 0

Watch Video Solution

34. Find the equation of a line which passes through the point $(1,1,1)$ and intersects the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4}$.

- Watch Video Solution

35. Find the equation of plane which is at a distance $\frac{4}{\sqrt{14}}$ from the origin and is normal to vector $2 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

36. Find the unit vector perpendicular to the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=5$.

- Watch Video Solution

37. Find the distance of the plane $2 x-y-2 z-9=0$ from the origin.

- Watch Video Solution

38. Find the vector equation of a line passing through $3 \hat{i}-5 \hat{j}+7 \hat{k}$ and perpendicular to theplane $3 x-4 y+5 z=8$.
39. Find the equation of the plane passing through the point $(2,3,1)$ having $(5,3,2)$ as the direction ratio is of the normal to the plane.

- Watch Video Solution

40. If O be the origin and the coordinates of P be $(1,2, \quad 3)$, then find the equation of the plane passing through P and perpendicular to OP.

- Watch Video Solution

41. Find the equation of the plane such that image of point $(1,2,3)$ in it is $(-1,0,1)$.

- Watch Video Solution

42. Find the equation of the plane passing through $A(2,2,-1), B(3,4, \quad 2)$ and $C(7,0,6)$. Also find a unit vector perpendicular to this plane.

- Watch Video Solution

43. Show that the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{i}+2 \hat{j}+\hat{k})=0$ is equally inclined to \hat{i} and \hat{k}. Also find the angleit makes with \hat{j}.

- Watch Video Solution

44. Find the vector equation of the following planes in cartesian form :

$$
\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k}) .
$$

- Watch Video Solution

45. Prove that the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ contains the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.

- Watch Video Solution

46. Find the equation of the plane which parallel to the lines
$\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$ and $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and is passing through the point $(0,1,-1)$.

- Watch Video Solution

47. If a plane meets the equations axes at $A, B a n d C$ such that the centroid of the triangle is $(1,2,4)$, then find the equation of the plane.

- Watch Video Solution

48. Find the equation of the plane through $(3,4,-1)$ which is parallel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+7=0$

Watch Video Solution

49. Find the angle between the planes
$2 x+y-2 x+3=0$ and $\vec{r} \cdot(6 \hat{i}+3 \hat{j}+2 \hat{k})=5$.

- Watch Video Solution

50. Show that $a x+b y+r=0, b y+c z+p=0 a n d c z+a x+q=0$ are perpendicular to $x-y, y-z a n d z-x$ planes, respectively.

- Watch Video Solution

51. Reduce the equation of line $x-y+2 z=5 a d n 3 x+y+z=6$ in symmetrical form. Or Find the line of intersection of planes
$x-y+2 z=5 a n d 3 x+y+z=6$.

- Watch Video Solution

52. Find the angle between the lines
$x-3 y-4=0,4 y-z+5=0 a n d x+3 y-11=0,2 y=z+6=0$.

Watch Video Solution

53. If the line $x=y=z$ intersect the line $\sin A \dot{x}+\sin B \dot{y}+\sin C \dot{z}=2 d^{2}, \sin 2 A \dot{x}+\sin 2 B \dot{y}+\sin 2 C \dot{z}=d^{2}$, then find the value of $\frac{\sin A}{2} \frac{\sin B}{2} \frac{\sin C}{2}$ where A, B, C are the angles of a triangle.

- Watch Video Solution

54. Find the point of intersection of line passing through $(0,0,1)$ and the intersection lines
$x+2 u+z=1,-x+y-2 z a n d x+y=2, x+z=2$ with the $x y$ plane.

- Watch Video Solution

55. A horizontal plane $4 x-3 y+7 z=0$ is given. Find a line of greatest slope passes through the point $(2,1,1)$ in the plane $2 x+y-5 z=0$.

- Watch Video Solution

56. Find the equation of the plane passing through the points ($-1,1,1$) and $(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$.

- Watch Video Solution

57. Find ten equation of the plane passing through the point $(0,7,-7)$ and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$.
58. Find the distance of the point $P(3,8,2)$ from the line $\frac{1}{2}(x-1)=\frac{1}{4}(y-3)=\frac{1}{3}(z-2)$ measured parallel to the plane $3 x+2 y-2 z+15=0$.

- Watch Video Solution

59. Find the distance of the point $(1,0,-3)$ from plane $x-y-z=9$ measured parallel to the line $\frac{x-2}{2}=\frac{y+2}{2}=\frac{z-6}{-6}$

- Watch Video Solution

60. Find the equation of the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ on the plane $x+2 y+z=9$.

- Watch Video Solution

61. Find the angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane ver. $(2 \hat{i}-\hat{j}+\hat{k})=4$

- Watch Video Solution

62. Find the vector equation of the line passing through ($1,2,3$) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.

- Watch Video Solution

63. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

64. Find the equation of a plane containing the line of intersection of the planes $x+y+z-6=0 a n d 2 x+3 y+4 z+5=0$ passing through $(1,1,1)$.

- Watch Video Solution

65. If the plane $a x+b y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α then prove that the equation of the plane in its new position is $a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$.

- Watch Video Solution

66. Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.

- Watch Video Solution

67. Find the locus of a point, the sum of squares of whose distance from the planes $x-z=0, x-2 y+z=0$ and $x+y+z=0 i s 36$.

Watch Video Solution

68. A ray of light passing through the point $A(1,2,3)$, strikews the plane $x y+z=12 a t B$ and on reflection passes through point $C(3,5,9)$. Find the coordinate so point B.

- Watch Video Solution

69. Find the distance between the parallel planes $x+2 y-2 z+1=0$ and $2 x+4 y-4 z+5=0$.

- Watch Video Solution

70. Find the image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z-26=0$.

- Watch Video Solution

71. Find the equations of the bisectors of the angles between the planes $2 x-y+2 z+3=0$ and $3 x-2 y+6 z+8=0$ and specify the plane which bisects the acute angle and the plane which bisects the obtuse angle.

- Watch Video Solution

72. Find the equation of a sphere whose centre is $(3,1,2)$ radius is 5 .

- Watch Video Solution

73. Find the equation of the sphere passing through $(0,0,0),(1,0,0)$ and ($0,0,1$).

Watch Video Solution

74. Find the equation of the sphere which has centre at the origin and touches the line $2(x+1)=2-y=z+3$.

- Watch Video Solution

75. Find the equation of the sphere which passes through $(1,0,0),(0,1,0)$ and $(0,0,1)$ and whose centre lies on the plane $3 x-y+z=2$.

- Watch Video Solution

76. Find the equation of a sphere which passes through $(1,0,0)(0,1,0) \operatorname{and}(0,0,1)$, and has radius as small as possible.

Watch Video Solution

77. Find the locus of appoint which moves such that the sum of the squares of its distance from the points $A(1,2,3), B(2,-3,5)$ and $C(0,7,4) i s 120$.

- Watch Video Solution

78. Find the equation of the sphere described on the joint of points AandB having position vectors $2 \hat{i}+6 \hat{j}-7 \hat{k} a n d-2 \hat{i}+4 \hat{j}-3 \hat{k}$, respectively, as the diameter. Find the center and the radius of the sphere.

- Watch Video Solution

79. Find the radius of the circular section in which the sphere $|\vec{r}|=5$ is cut by the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3 \sqrt{3}$

- Watch Video Solution

80. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4+2 z-3=0$.

- Watch Video Solution

81. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points $A, B, a n d C$. Show that eh locus of the centre of the sphere OABCis $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

- Watch Video Solution

82. A sphere of constant radius k, passes through the origin and meets the axes at $A, B a n d C$. Prove that the centroid of triangle $A B C$ lies on
the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

- Watch Video Solution

Concept Application Exercise 31

1. If the x-coordinate of a point P on the join of $Q(22,1) \operatorname{and} R(5,1,-2) i s 4$, then find its $z-$ coordinate.

- Watch Video Solution

2. Find the distance of the point $P(a, b, c)$ from the x -axis.

- Watch Video Solution

3. If \vec{r} is a vector of magnitude 21 and has direction ratios $2,-3 a n d 6$, then find \vec{r}.
4. If $P(x, y, z)$ is a point on the line segment joining $Q(2,2,4)$ and $\mathrm{R}(3,5,6)$ such that the projection of $\overrightarrow{O P}$ on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides $Q R$ in the ratio:

- Watch Video Solution

5. If O is the origin, $O P=3$ with direction ratios $-1,2$, and -2 , then find the coordinates of P.

- Watch Video Solution

6. A line makes angles α, β and γ with the coordinate axes. If $\alpha+\beta=90^{\circ}$, then find γ.

- Watch Video Solution

7. The line joining the points $(-2,1,-8) \operatorname{and}(a, b, c)$ is parallel to the line whose direction ratios are 6,2 , and 3 . Find the values of a, b and c.

- Watch Video Solution

8. If a line makes angles $\alpha, \beta a n d \gamma$ with three-dimensional coordinate axes, respectively, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

- Watch Video Solution

9. A parallelepiped is formed by planes drawn through the points $P(6,8,10) \operatorname{and}(3,4,8)$ parallel to the coordinate planes. Find the length of edges and diagonal of the parallelepiped.

- Watch Video Solution

10. Find the angel between any two diagonals of a cube.

- Watch Video Solution

11. Direction ratios of two lines are $a, b, c a n d 1 / b c, 1 / c a, 1 / a b$. Then the lines are \qquad .

- Watch Video Solution

12. Find the angle between the lines whose direction cosines are connected by the relations $l+m+n=0 a n d 2 / m+2 n l-m n=0$.

- Watch Video Solution

1. Find the point where line which passes through point $(1,2,3)$ and is parallel to line $\vec{r}=\hat{i}-\hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+3 \hat{k})$ meets the $x y$-plane.

Watch Video Solution

2. Find the equation of the line passing through the points $(1,2,3)$ and $(-1$, $0,4)$.

- Watch Video Solution

3. Find the vector equation of the line passing through the point $(2,-1,-1)$ which is parallel to the line $6 x-2=3 y+1=2 z-2$.

- Watch Video Solution

4. Find the equation of the line passing through the point $(-1,2,3)$
and perpendicular to the lines

$$
\frac{x}{2}=\frac{y-1}{-3}=\frac{z+2}{-2} \text { and } \frac{x+3}{-1}=\frac{y+3}{2}=\frac{z-1}{3} .
$$

- Watch Video Solution

5. Find the equation of the line passing through the intersection $(-1,3,-2)$ and perpendicular to the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \operatorname{and} \frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.

- Watch Video Solution

6. The straight line $\frac{x-3}{3}=\frac{y-2}{1}=\frac{z-1}{0}$ is (A) Parallel to x -axis

Parallel to the y-axis (C) Parallel to the z-axis (D) Perpendicular to the z axis
A. (A) Parallel to x-axis
B. (B) Parallel to the y-axis
C. (C) Parallel to the z-axis
D. (D) Perpendicular to the z-axis

Answer: (D) Perpendicular to the z-axis

- Watch Video Solution

7. Find the angel between the lines
$2 x=3 y=-z a n d 6 x=-y=-4 z$.

- Watch Video Solution

8. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are at right angel, then find the value of k.

- Watch Video Solution

9. The equations of motion of a rocket are $x=2 t, y=-4 t a n d z=4 t$, where timet is given in seconds, and the coordinates of a moving points in kilometers. What is the path of the rocket? At what distance will be the rocket from the starting point $O(0,0,0)$ in $10 s$?

- Watch Video Solution

10. Find the length of the perpendicular drawn from the point (5, 4, -1) to the line $\vec{r}=\hat{i}+\lambda(2 \hat{i}+9 \hat{j}+5 \hat{k})$, where λ is a parameter.

D Watch Video Solution

11. Find the image of point $(1,2,3)$ in the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.

(Watch Video Solution

12. Find the shortest distance between the two lines whose vector

$$
\begin{aligned}
& \text { equations } \\
& \vec{r}=(1-\lambda) \hat{i}+(-2 \lambda-2) \hat{j}+(3-2 \lambda) \hat{k} \text { and } \vec{r}=(1+\mu) \hat{i}+(2 \mu-1)
\end{aligned}
$$

(Watch Video Solution

13. Find the shortest distance between the z-axis and the line, $x+y+2 z-3=0,2 x+3 y+4 z-4=0$.

- Watch Video Solution

14. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of k.

- Watch Video Solution

15. Let l_{1} and l_{2} be the two skew lines. If P, Q are two distinct points on l_{1} and R, S are two distinct points on l_{2}, then prove that PR cannot be parallel to QS.

- Watch Video Solution

1. Find the angle between the line $\frac{x-1}{3}=\frac{y-1}{2}=\frac{z-1}{4}$ and the plane $2 x+y-3 z+4=0$.

Watch Video Solution

2. Find the distance between the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{1}$ and the plane $x+y+z+3=0$.

- Watch Video Solution

3. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and plane $x-y+z=5$.

- Watch Video Solution

4. Find the equation of the plane passing through the point $(1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and
$3 x+3 y+z=0$.

- Watch Video Solution

5. Find the equation of the plane passing through the points $(1,0,-1) \operatorname{and}(3,2,2)$ and parallel to the line
$x-1=\frac{1-y}{2}=\frac{z-2}{3}$.

- Watch Video Solution

6. Find the equation of the plane containing the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$.

- Watch Video Solution

7. Find the equation of the plane passing through the straight line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5} \quad$ and perpendicular to the plane $x-y+z+2=0$.
8. Find the equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{2}$ and passing through the origin.

- Watch Video Solution

9. Find the equation of the plane passing through the line $\frac{x-1}{5}=\frac{y+2}{6}=\frac{z-3}{4}$ and point $(4,3,7)$.

- Watch Video Solution

10. Find the angle between the line $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.

- Watch Video Solution

11. Find the equation of the plane which passes through the point $(12,3)$ and which is at the maxixum distance from the point ($-1,0,2$).

- Watch Video Solution

12. Find the direction ratios of orthogonal projection of line $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z-2}{3}$ in the plane $x-y+2 y-3=0$. also find the direction ratios of the image of the line in the plane.

- Watch Video Solution

13. Find the equation of a plane which is parallel to the plane $x-2 y+2 z=5$ and whose distance from thepoint $(1,2,3)$ is 1.

- Watch Video Solution

14. Find the equation of a plane which passes through the point $(1,2,3)$ and which is equally inclined to the planes $x-2 y+2 z-3=0 a n d 8 x-4 y+z-7=0$.

- Watch Video Solution

15. Find the equation of the image of the plane $x-2 y+2 z=3$ in the plane $x+y+z=1$.

- Watch Video Solution

16. Find the equation of the plane through the points $(23,1) \operatorname{and}(4,-5,3)$ and parallel to the x-axis.

- Watch Video Solution

17. Find the distance of the point \vec{a} from the plane $\vec{r} \cdot \widehat{n}=d$ measured parallel to the line $\vec{r}=\vec{b}+\overrightarrow{t c}$.

- Watch Video Solution

18. Find the value of m for which thestraight line $3 x-2 y+z+3=0=4 x=3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.

- Watch Video Solution

19. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

(Watch Video Solution

1. Find the plane of the intersection of $x^{2}+y^{2}+z^{2}+2 x+2 y+2=0$ and $4 x^{2}+4 y^{2}+4 z^{2}+4 x+4 y+4 z-1=0$.

- Watch Video Solution

2. Find the radius of the circular section in which the sphere $|\vec{r}|=5$ is cut by the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=3 \sqrt{3}$

- Watch Video Solution

3. A point $P(x, y, z)$ is such that $3 P A=2 P B$, where $A a n d B$ are the point $(1,3,4) \operatorname{and}(1,-2,-1)$, erespectivley. Find the equation to the locus of the point P and verify that the locus is a sphere.

- Watch Video Solution

4. The extremities of a diameter of a sphere lie on the positive y - and positive z-axes at distance 2 and 4 , respectively. Show that the sphere
passes through the origin and find the radius of the sphere.

- Watch Video Solution

5. A plane passes through a fixed point (a, b, c). Show that the locus of the foot of the perpendicular to it from the origin is the sphere $x^{2}+y^{2}+z^{2}-a x-b y-c z=0$.

- Watch Video Solution

Subjective Type

1. If a variable line in two adjacent positions has direction cosines l, m, n and $l+\delta l, m+\delta m, n+\delta n$, then show that the small angle $\delta \theta$ between the two positions is given by $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$.

- Watch Video Solution

2. Find the equation of the plane containing the line $\frac{y}{b}+\frac{z}{c}=1, x=0$, and parallel to the line $\frac{x}{a}-\frac{z}{c} 1, y=0$.

- Watch Video Solution

3. A variable plane passes through a fixed point (a, b, c) and meets the axes at A, B, and C. The locus of the point commom to the planes through $A, B a n d C$ parallel to the coordinate planes is

- Watch Video Solution

4. Show that the straight lines whose direction cosines are given by the equations $a l+b m+c n=0$ and $u l^{2}+v m^{2}+w n^{2}=0$ are parallel or perpendicular as

$$
\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0 \text { or } a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0 .
$$

- Watch Video Solution

5. The perpendicular distance of a corner of uni cube from a diagonal not passing through it is

- Watch Video Solution

6. A point P moves on a plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. A plane through P and perpendicular to $O P$ meets the coordinate axes at $A, B a n d C$. If the planes through $A, B a n d C$ parallel to the planes $x=0, y=0 a n d z=0$, respectively, intersect at Q, find the locus of Q.

- Watch Video Solution

7. If the planes $x-c y-b z=0, c x=y+a z=0 a n d b x+a y-z=0$ pass through a straight line, then find the value of $a^{2}+b^{2}+c^{2}+2 a b$.

- Watch Video Solution

8. P is a point and $P M a n d P N$ are the perpendicular form $P \rightarrow z-x a n d x-y$ planes. If $O P$ makes angles $\theta, \alpha, \beta a n d \gamma$ with the plane $O M N$ and the $x-y, y-z a n d z-x$ planes, respectively, then prove that $\cos e c^{2} \theta=\cos e c^{2} \alpha+\cos ^{2} e c^{2} \beta+\cos ^{2} e c^{2} \gamma$.

- Watch Video Solution

9. A variable plane $l x+m y+n z=p(w h e r e l, m, n$ are direction cosines of normal) intersects the coordinate axes at points $A, B a n d C$, respectively. Show that the foot of the normal on the plane from the origin is the orthocenter of triangle $A B C$ and hence find the coordinate of the circumcentre of triangle $A B C$.

- Watch Video Solution

10. Let $x-y \sin \alpha-z \sin \beta=0, x \sin \alpha+z \sin \gamma-y=0 \quad$ and $x \sin \beta+y \sin \gamma-z=0$ be the equations of the planes such that
$\alpha+\beta+\gamma=\pi / 2$ (where α, β and $\gamma \neq 0$). Then show that there is a common line of intersection of the three given planes.

- Watch Video Solution

11. find the angle between the pair of lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

- Watch Video Solution

12. find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane is $10 x+2 y-11 z=3$

- Watch Video Solution

13. $O A, O B$ and $O C$, with O as the origin, are three mutually perpendicular lines whose lines whose direction cosines are l_{r}, m_{r} and $n_{r}(r=1,2$ and 3$)$. If the projections of OA and OB on the
plane $\mathrm{z}=0$ make angles ϕ_{1} and ϕ_{2}, respectively, with the x -axis, prove that $\tan \left(\phi_{1}-\phi_{2}\right)= \pm n_{3} / n_{1} n_{2}$.

- Watch Video Solution

14. O is the origin and lines $O A, O B$ and $O C$ have direction cosines l_{r}, m_{r} and $n_{r}(r=1,2$ and 3$)$. If lines $\mathrm{OA}^{\prime}, \mathrm{OB}^{\prime}$ and OC^{\prime} bisect angles $B O C, C O A$ and $A O B$, respectively, prove that planes $A O A ', B O B$ ' and $C O C '$ pass through the line $\frac{x}{l_{1}+l_{2}+l_{3}}=\frac{y}{m_{1}+m_{2}+m_{3}}=\frac{z}{n_{1}+n_{2}+n_{3}}$.

- Watch Video Solution

15. If P is any point on the plane $l x+m y+n z=\operatorname{pand} Q$ is a point on the line $O P$ such that $O P \dot{O} Q=p^{2}$, then find the locus of the point Q.

- Watch Video Solution

16. If a variable plane forms a tetrahedron of constant volume $64 k^{3}$ with the co-ordinate planes, then the locus of the centroid of the tetrahedron is:

- Watch Video Solution

17. Prove that the volume of tetrahedron bounded by the planes
$\vec{r} \cdot(m \hat{j}+n \hat{k})=0, \vec{r} \cdot(n \hat{k}+l \hat{i})=0, \vec{r} \cdot(l \hat{i}+m \hat{j})=0, \vec{r} \cdot(l \hat{i}+m \hat{j}$

- Watch Video Solution

Single Correct Answer Type

1. In a three-dimensional $x y z$ space, the equation $x^{2}-5 x+6=0$ represents a. Points b. planes c. curves d. pair of straight lines
A. points
B. planes
C. curves
D. pair of straight lines

Answer: b

D Watch Video Solution

2. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{1} \quad$ intersects the curve $x y=c^{2}, z=0$ then c is equal to $\mathrm{a} . \pm 1 \mathrm{~b} . \pm 1 / 3 \mathrm{c} . \pm \sqrt{5} \mathrm{~d}$. none of these
A. $\neq 1$
B. $\pm 1 / 3$
C. $\pm \sqrt{5}$
D. none of these

Answer: c

3. Let the equations of a line and plane be $\frac{x+3}{2}=\frac{y-4}{3}=\frac{z+5}{2} a n d 4 x-2 y-z=1$, respectively, then a. the line is parallel to the plane b. the line is perpendicular to the plane c. the line lies in the plane d. none of these
A. the line is parallel to the plane
B. the line is parpendicular to the plane
C. the line lies in the plane
D. none of these

Answer: a

- Watch Video Solution

4. The length of the perpendicular from the origin to the plane passing through the points \vec{a} and containing the line $\vec{r}=\vec{b}+\lambda \vec{c}$ is
A. $\left.\left.\frac{[\vec{a} \vec{b}}{\mathbf{c}}\right]\right]$.
B. $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}|}$
C. $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
D. $\frac{[\vec{a} \vec{b} \vec{c}]}{|\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}$

Answer: c

D Watch Video Solution

5. The distance of point $A(-2,3,1)$ from the line $P Q$ through $P(-3,5,2)$, which makes equal angles with the axes is
A. $2 / \sqrt{3}$
B. $\sqrt{14 / 3}$
C. $16 / \sqrt{3}$
D. $5 / \sqrt{3}$

- Watch Video Solution

6. The Cartesian equation of the plane $\vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k}$ is a. $2 x+y=5$ b. $2 x-y=5$ c. $2 x+z=5 \mathrm{~d} .2 x-z=5$
A. $2 x+y=5$
B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$

Answer: c

7. A unit vector parallel to the intersection of the planes $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-3 \hat{k})=4$ is
A. $\frac{2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$
B. $\frac{2 \hat{i}-5 \hat{j}+3 \hat{k}}{\sqrt{38}}$
c. $\frac{-2 \hat{i}-5 \hat{j}-3 \hat{k}}{\sqrt{38}}$
D. $\frac{-2 \hat{i}+5 \hat{j}-3 \hat{k}}{\sqrt{38}}$

Answer: C

- Watch Video Solution

8. Let L_{1} be the line $\vec{r}_{1}=2 \hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}+2 \hat{k})$ and let L_{2} be the line $\vec{r}_{2}=3 \hat{i}+\hat{j}-\hat{k}+\mu(\hat{i}+\hat{j}+\hat{k})$. Let π be the plane which contains the line L_{1} and is parallel to L_{2}. The distance of the plane π from the origin is
A. $\sqrt{2 / 7}$
B. $1 / 7$
C. $\sqrt{6}$
D. none

Answer: a

- Watch Video Solution

9. For the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$, which one of the following is correct? a. it lies in the plane $x-2 y+z=0 \mathrm{~b}$. it is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ c. it passes through $(2,3,5) \mathrm{d}$. it is parallel t the plane $x-2 y+z-6=0$
A. It lies in the plane $x-2 y+z=0$
B. It is same as line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
C. It passes through ($2,3,5$)
D. It is parallel to the plane $x-2 y+z-6=0$

Answer: c

- Watch Video Solution

10. Find the value of m for which the straight line $3 x-2 y+z+3=0=4 x-3 y+4 z+1$ is parallel to the plane $2 x-y+m z-2=0$.
A. -2
B. 8
C. -18
D. 11

Answer: A

11. The intercept made by the plane $\vec{r} \vec{n}=q$ on the x -axis is a. $\frac{q}{\hat{\mathrm{i}} \dot{\vec{n}}}$ b.
$\frac{\hat{i} \vec{n}}{q}$ c. $\frac{\hat{i} \vec{n}}{q}$ d. $\frac{q}{|\vec{n}|}$
A. $\frac{q}{\hat{i} . \vec{n}}$
B. $\frac{\hat{i} \cdot \vec{n}}{q}$
C. $\frac{\hat{i} \cdot \vec{n}}{q}$
D. $\frac{q}{|\vec{n}|}$

Answer: a

- Watch Video Solution

12. Equation of a line in the plane $\pi \equiv 2 x-y+z-4=0$ which is perpendicular to the line l whse equation is $\frac{x-2}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}$ and which passes through the point of intersection of l and π is

$$
\text { A. } \frac{x-2}{1}=\frac{y-1}{5}=\frac{z-1}{-1}
$$

B. $\frac{x-1}{3}=\frac{y-3}{5}=\frac{z-1}{-5}$
C. $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z+1}{1}$
D. $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-1}{1}$

Answer: B

- Watch Video Solution

13. If the foot of the perpendicular from the origin to plane is $P(a, b, c)$, the equation of the plane is a. $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=3 \mathrm{~b} . a x+b y+c z=3 \mathrm{c}$. $a x+b y+c z=a^{2}+b^{2}+c^{2}$ d. $a x+b y+c z=a+b+c$
A. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$
B. $a x+b y+c z=3$
C. $a x+b y+c z=a^{2}+b^{2}+c^{2}$
D. $a x+b y+c z=a+b+c$
14. The equation of the plane which passes through the point of intersection of lines
$\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$, and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3} \quad$ and \quad at greatest distance from point $(0,0,0)$ is a. $4 x+3 y+5 z=25 \mathrm{~b}$. $4 x+3 y=5 z=50$ c. $3 x+4 y+5 z=49$ d. $x+7 y-5 z=2$
A. $4 x+3 y+5 z=25$
B. $4 x+3 y+5 z=50$
C. $3 x+4 y+5 z=49$
D. $x+7 y+5 z=2$

Answer: b

- Watch Video Solution

15. Let $A(\vec{a}) \operatorname{and} B(\vec{b})$ be points on two skew lines $\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+u \vec{q}$ and the shortest distance between the skew lines is 1 , where \vec{p} and \vec{q} are unit vectors forming adjacent sides of a parallelogram enclosing an area of $1 / 2$ units. If angle between $A B$ and the line of shortest distance is 60°, then $A B=$ a. $\frac{1}{2}$ b. 2 c .1 d . $\lambda R=\{0\}$
A. $\frac{1}{2}$
B. 2
C. 1
D. $\lambda \varepsilon R-\{0\}$

Answer: b

- Watch Video Solution

16. Let $A(1,1,1), B(2,3,5) \operatorname{and} C(-1,0,2)$ be three points, then equation of a plane parallel to the plane $A B C$ which is at distance 2 units

(Watch Video Solution

17. The point on the line $\frac{x-2}{1}=\frac{y+3}{-2}=\frac{z+5}{-2}$ at a distance of 6 from the point $(2,-3,-5)$ is $(a) .(3,-5,-3)(b) .(4,-7,-9)$ (c). $0,2,-1(\mathrm{~d})$. none of these
A. $(3,-5,-3)$
B. $(4,-7,-9)$
C. $(0,2,-1)$
D. $(-3,5,3)$

Answer: b
18. The coordinates of the foot of the perpendicular drawn from the origin to the line joining the point $(-9,4,5)$ and $(10,0,-1)$ will be
A. $(-3,2,1)$
B. $(1,2,2$,
C. $(4,5,3)$
D. none of these

Answer: D

- Watch Video Solution

19. If $\quad P_{1}: \vec{r} \cdot \vec{n}_{1}-d_{1}=0 \quad P_{2}: \vec{r} \cdot \vec{n}_{2}-d_{2}=0 \quad$ and
$P_{3}: \vec{r} \cdot \vec{n}_{3}-d_{3}=0$ are three non-coplanar vectors, then three lines $P_{1}=0, P_{2}=0 ; P_{2}=0, P_{3}=0 ; P_{3}=0 P_{1}=0$ are
A. parallel lines
B. coplanar lines
C. coincident lines
D. concurrent lines

Answer: d

D Watch Video Solution

20. The length of projection of the line segment joining the points
$(1,0,-1)$ and $(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to
A. 2
B. $\sqrt{\frac{271}{53}}$
C. $\sqrt{\frac{472}{31}}$
D. $\sqrt{\frac{474}{35}}$

Answer: d

21. The number of planes that are equidistant from four non-coplanar points is a. 3 b .4 c .7 d .9
A. 3
B. 4
C. 7
D. 9

Answer: c

- Watch Video Solution

22. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b. $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. none of these

Answer: a

D Watch Video Solution

23. A plane passing through $(1,1,1)$ cuts positive direction of coordinates axes at $A, B a n d C$, then the volume of tetrahedron $O A B C$ satisfies a. $V \leq \frac{9}{2}$ b. $V \geq \frac{9}{2}$ c. $V=\frac{9}{2}$ d. none of these
A. $V \leq \frac{9}{2}$
B. $V \geq \frac{9}{2}$
C. $V=\frac{9}{2}$
D. none of these
24. If lines $x=y=\operatorname{zandx}=\frac{y}{2}=\frac{z}{3}$ and third line passing through $(1,1,1)$ form a triangle of area $\sqrt{6}$ units, then the point of intersection of third line with the second line will be a. $(1,2,3)$ b. $2,4,6$ c. $\frac{4}{3}, \frac{6}{3}, \frac{12}{3}$ d. none of these
A. $(1,2,3)$
B. $(2,4,6)$
C. $\left(\frac{4}{3}, \frac{8}{3}, \frac{12}{3}\right)$
D. none of these

Answer: b

- Watch Video Solution

25. Find the point of intersection of line passing through $(0,0,1)$ and the intersection
$x+2 u+z=1,-x+y-2 z$ and $x+y=2, x+z=2$ with the $x y$ plane.
A. $\left(\frac{5}{3},-\frac{1}{3}, 0\right)$
B. $(1,1,0)$
C. $\left(\frac{2}{3},-\frac{1}{3}, 0\right)$
D. $\left(-\frac{5}{3}, \frac{1}{3}, 0\right)$

Answer: a

- Watch Video Solution

26.

distance between
the
lines
$\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}$ and $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{1}$ is equal to
A. $\sqrt{14}$
B. $\sqrt{7}$
C. $\sqrt{2}$
D. none of these

Answer: c

- Watch Video Solution

27. Distance of point $P(\vec{P})$ from the plane $\vec{r} \cdot \vec{n}=0$ is
A. $|\vec{p} \cdot \vec{n}|$
B. $\frac{|\vec{p} \times \vec{n}|}{|\vec{n}|}$
C. $\frac{|\vec{p} \cdot \vec{n}|}{|\vec{n}|}$
D. none of these

Answer: c
28. The reflection of the point \vec{a} in the plane $\vec{r} \cdot \vec{n}=q$ is (A)
$\vec{a}+\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|}$

$$
\begin{equation*}
\vec{a}+2\left(\frac{\vec{q}-\vec{a} \cdot \vec{n}}{|\vec{n}|^{2}}\right) \vec{n} \tag{B}
\end{equation*}
$$

$\vec{a}+\frac{2(\vec{q}+\vec{a} \cdot \vec{n})}{|\vec{n}|}$
(D) none of these
A. $\vec{a}+\frac{(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|}$
B. $\vec{a}+2\left(\frac{(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|^{2}}\right) \vec{n}$
c. $\vec{a}+\frac{2(\vec{q}-\vec{a} \cdot \vec{n})}{|\vec{n}|} \vec{n}$
D. none of these

Answer: b

- Watch Video Solution

29. The line $\vec{r}=\vec{a}+\lambda \vec{b}$ will not meet the plane
$\vec{r} \cdot \vec{n}=q$, if a $\cdot \vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n}=q \mathrm{~b} \cdot \vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$ c.
$\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n} \quad \neq q$ d $\cdot \vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$
A. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n}=q$
B. $\vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$
c. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n} \quad \neq q$
D. $\vec{b} \cdot \vec{n} \quad \neq 0, \vec{a} \cdot \vec{n} \quad \neq q$

Answer: c

- Watch Video Solution

30. If a line makes an angle of $\frac{\pi}{4}$ with the positive direction of each of x axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is a. $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{6}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: c

- Watch Video Solution

31. The ratio in which the plane $\vec{r} \cdot(\vec{i}-2 \vec{j}+3 \vec{k})=17$ divides the line joining the points $-2 \vec{i}+4 \vec{j}+7 \vec{k}$ and $\overrightarrow{3} i-5 \vec{j}+8 \vec{k}$ is
A. 1:5
B. 1: 10
C. 3:5
D. $3: 10$

Answer: d
32. the image of the point $(-1,3,4)$ in the plane $x-2 y=0$ a. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$ b. $(15,11,4)$ c. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$ d. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$
A. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$
B. $(15,11,4)$
C. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$
D. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$

Answer: d

- Watch Video Solution

33. The perpendicular distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is :
A. $\frac{10}{3 \sqrt{3}}$
B. $\frac{10}{9}$
C. $\frac{10}{3}$
D. $\frac{3}{10}$

Answer: a

- Watch Video Solution

34. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then \cos α equals a. $\frac{1}{\sqrt{3}}$ b. $\frac{1}{2}$ c. 1 d. $\frac{1}{\sqrt{2}}$
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: d

35. The length of the perpendicular drawn from $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is a. 4 b. 5 c. 6 d. 7
A. 4
B. 5
C. 6
D. 7

Answer: d

- Watch Video Solution

36. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{p z}+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the values of p is (A) O (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{5}{3}$
A. $\frac{-3}{5}$
B. $\frac{5}{3}$
C. $\frac{-4}{3}$
D. $\frac{3}{4}$

Answer: b

- Watch Video Solution

$$
\begin{aligned}
& \text { 37. The intersection of } \\
& x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=8
\end{aligned}
$$ is the same as the intersection of one of the spheres and the plane a.

$x-y-z=1$ b. $x-2 y-z=1$
c. $x-y-2 z=1$ d. $2 x-y-z=1$
A. $x-y-z=1$
B. $x-2 y-z=1$
C. $x-y-2 z=1$
D. $2 x-y-z=1$

D Watch Video Solution

38. If a plane cuts off intercepts $O A=a, O B=b, O C=c$ from the coordinate axes 9 where ' O ' is the origin). then the area of the triangle $A B C$ is equal to
A. $\frac{1}{2}(a b+b c+a c)$
B. $\frac{1}{2} a b c$
C. $\frac{1}{2}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{1 / 2}$
D. $\frac{1}{2}(a+b+c)^{2}$

Answer: c

39. A line makes an angle θ with each of the x -and z -axes. If the angle β, which it makes with the y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$
A. $\frac{2}{3}$
B. $\frac{1}{5}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

Answer: c

- Watch Video Solution

40. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is
A. 39
B. 26
C. $41 \frac{4}{13}$
D. 13

Answer: d

- Watch Video Solution

41. A
$O(0,0,0), A(1,2,1), B(2,1,3)$, $\operatorname{and} C(-1,1,2)$, then angle between face $O A B a n d A B C$ will be a. $\cos ^{-1}\left(\frac{17}{31}\right)$ b. 30° c. 90° d. $\cos ^{-1}\left(\frac{19}{35}\right)$
A. $\cos ^{-1}\left(\frac{17}{31}\right)$
B. 30°
C. 90°
D. $\cos ^{-1}\left(\frac{19}{35}\right)$

Answer: d

42. The radius of the circle in which the sphere $x^{I 2}+y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is a. 2 b. 3 c. 4 d. 1
A. 2
B. 3
C. 4
D. 1

Answer: b

Watch Video Solution

43. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar if a. $k=1$ or -1 b. $k=0$ or -3 c. $k=3$ or -3 d.
$k=0$ or -1
A. $k=1$ or -1
B. $\mathrm{k}=0$ or -3
C. $\mathrm{k}=3$ or -3
D. $k=0$ or -1

Answer: b

- Watch Video Solution

44. The point of intersection of the lines
$\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}$ and $=\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4} \quad$ is \quad a.
$\left(21, \frac{5}{3}, \frac{10}{3}\right)$ b. $(2,10,4)$ c. $(-3,3,6)$ d. $(5,7,-2)$
A. $\left(21, \frac{5}{3}, \frac{10}{3}\right)$
B. $(2,10,4)$
C. $(-3,3,6)$
D. $(5,7,-2)$

Answer: a

Watch Video Solution

45. A particle just clears a wall of height b at distance a and strikes the ground at a distance c from the point of projection. The angle of projection is (1) $\frac{\tan ^{-1} b}{a c}$ (2) 45° (3) $\frac{\tan ^{-1}(b c)}{a(c-a)}$ (4) $\frac{\tan ^{-1}(b c)}{a}$
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
B. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{2}}-\frac{1}{c^{\prime 2}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{2}}-\frac{1}{c^{\prime 2}}=0$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{2}}+\frac{1}{c^{\prime 2}}=0$

Answer: c

- Watch Video Solution

46. Find the equation of a plane which passes through the point $(3,2,0)$ and contains the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$
A. $x-y+z=1$
B. $x+y+z=5$
C. $x+2 y-z=1$
D. $2 x-y+z=5$

Answer: a

- Watch Video Solution

47. The dr. of normal to the plane through $(1,0,0),(0,1,0)$ which makes an angle $\frac{\pi}{4}$ with plane , $x+y=3$ are
A. $\langle 1, \sqrt{2}, 1\rangle$
B. $\langle 1,1, \sqrt{2}\rangle$
C. $\langle 1,1,2\rangle$
D. $\langle\sqrt{2}, 1,1\rangle$
48. The centre of the circle given by
$\vec{r} \cdot(\hat{i}+2 \hat{j}+2 \hat{k})=15$ and $\mid \vec{r}-(\hat{j}+2 \hat{k})=4$ is
A. $(0,1,2)$
B. $(1,3,4)$
C. (-1,3,4)
D. none of these

Answer: b

- Watch Video Solution

49. The lines which intersect the skew lines $y=m x, z=c ; y=-m x, z=-c$ and the x-axis lie on the surface
a. $c z=m x y$ b. $x y=c m z$ c. $c y=m x z$ d. none of these
A. $c z=m x y$
B. $x y=c m z$
C. $c y=m x z$
D. none of these

Answer: c

- Watch Video Solution

50. Distance of the point $P(\vec{p})$ from the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is
(a) $\left|(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
$\left|(\vec{b}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
(c) $\left|(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{b}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$ (d)none of these
A. $\left|(\vec{a}=\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
B. $\left|(\vec{b}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
c. $\left|(\vec{a}-\vec{p})+\frac{((\vec{p}-\vec{a}) \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}\right|$
D. none of these

Answer: c

- Watch Video Solution

51. From the point $P(a, b, c)$, let perpendicualars $P L a n d P M$ be drawn to $Y O Z a n d Z O X$ planes, respectively. Then the equation of the plane $O L M$ is a. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ b. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$ c. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0 \mathrm{~d}$. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$
A. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
B. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$
C. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0$
D. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$

Answer: b

- Watch Video Solution

52. The plane $\vec{r} \cdot \vec{n}=q$ will contain the line $\vec{r}=\vec{a}+\lambda \vec{b}$ if
A. $\vec{b} \cdot \vec{n} \neq 0, \vec{a} \cdot \vec{n} \neq q$
B. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n} \neq q$
C. $\vec{b} \cdot \vec{n}=0, \vec{a} \cdot \vec{n}=q$
D. $\vec{b} \cdot \vec{n} \neq 0, \vec{a} \cdot \vec{n}=q$

Answer: c

53. The projection of point $P(\vec{p})$ on the plane $\vec{r} \cdot \vec{n}=q$ is (\vec{s}), then
A. $\vec{s}=\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
B. $\vec{s}=\vec{p}+\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
c. $\vec{s}=\vec{p}-\frac{(\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$
D. $\vec{s}=\vec{p}-\frac{(q-\vec{p} \cdot \vec{n}) \vec{n}}{|\vec{n}|^{2}}$

Answer: b

- Watch Video Solution

54. The angle between \hat{i} and line of the intersection of the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=0$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}+\hat{k})=0$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. none of these

Answer: d

- Watch Video Solution

55. The line $\frac{x+6}{5}=\frac{y+10}{3}=\frac{z+14}{8}$ is the hypotenuse of an isosceles right-angled triangle whose opposite vertex is $(7,2,4)$. Then which of the following is not the side of the triangle? a. $\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6} \quad$ b. $\quad \frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
C.
$\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$ d. none of these
A. $\frac{x-7}{2}=\frac{y-2}{-3}=\frac{z-4}{6}$
B. $\frac{x-7}{3}=\frac{y-2}{6}=\frac{z-4}{2}$
C. $\frac{x-7}{3}=\frac{y-2}{5}=\frac{z-4}{-1}$
D. none of these

Answer: c

D Watch Video Solution

56. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by
A. $\left[\vec{n}_{2} \vec{n}_{3} \vec{n}_{4}\right]\left(\vec{r} \cdot \vec{n}_{1}-q_{1}\right)=\left[\vec{n}_{1} \vec{n}_{3} \vec{n}_{4}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
B. $\left[\vec{n}_{1} \vec{n}_{2} \vec{n}_{3}\right]\left(\vec{r} \cdot \vec{n}_{4}-q_{4}\right)=\left[\vec{n}_{4} \vec{n}_{3} \vec{n}_{1}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
C. $\left[\vec{n}_{4} \vec{n}_{3} \vec{n}_{1}\right]\left(\vec{r} \cdot \vec{n}_{4}-q_{4}\right)=\left[\vec{n}_{1} \vec{n}_{2} \vec{n}_{3}\right]\left(\vec{r} \cdot \vec{n}_{2}-q_{2}\right)$
D. none of these

Answer: a

- Watch Video Solution

57. Consider triangle $A O B$ in the $x-y$ plane, where $A \equiv(1,0,0), B \equiv(0,2,0)$ and $O \equiv(0,0,0)$. The new position of O, when triangle is rotated about side $A B$ by 90^{0} can be a. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$
b. $\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$ c. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$ d. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$
A. $\left(\frac{4}{5}, \frac{3}{5}, \frac{2}{\sqrt{5}}\right)$
B. $\left(\frac{-3}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}\right)$
C. $\left(\frac{4}{5}, \frac{2}{5}, \frac{2}{\sqrt{5}}\right)$
D. $\left(\frac{4}{5}, \frac{2}{5}, \frac{1}{\sqrt{5}}\right)$

Answer: c

- Watch Video Solution

58. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) $(3,-1,10$
(B) $(3,1,-1)$
(C) $(-3,1,1)$
(D) $(-3,-1,-1)$
A. $(3,-1,1)$
B. $(3,1,-1)$
C. $(-3,1,1)$
D. $(-3,-1,-1)$

Answer: b

- Watch Video Solution

59. The co-ordinates of the point P on the line
$\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(-\hat{i}+\hat{j}-\hat{k})$ which is nearest to the origin is
A. $\left(\frac{2}{3} \frac{4}{3}, \frac{2}{3}\right)$
B. $\left(-\frac{2}{3}-\frac{4}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{3} \frac{4}{3},-\frac{2}{3}\right)$
D. none of these

Answer: a

- Watch Video Solution

60. The ratio in which the line segment joining the points whose position vectors are $2 \hat{i}-4 \hat{j}-7 \hat{k}$ and $-3 \hat{i}+5 \hat{j}-8 \hat{k}$ is divided by the plane whose equation is $\hat{r} .(\hat{i}-2 \hat{j}+3 \hat{k})=13$ is
A. 13:12 internally
B. 12:25 externally
C. 13:25 internally
D. 37:25 internally

Answer: b

- Watch Video Solution

61. Which of the following are equation for the plane passing through the points $\quad P(1,1,-1), Q(3,0,2)$ and $R(-2,1,0)$?
$(2 \hat{i}-3 \hat{j}+3 \hat{k}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$
$x=3-t, y=-11 t, z=2-3 t \quad$ (c) $\quad(x+2)+11(y-1)=3 z$
$(2 \hat{i}-\hat{j}+3 \hat{k}) \times(-3 \hat{i}+\hat{j}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$
A. $(2 \hat{i}-3 \hat{j}+3 \hat{k}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$
B. $x=3-t, y=-11 t, z=2-3 t$
C. $(x+2)+11(y-1)=3 z$
D. $(2 \hat{i}-\hat{j}+3 \hat{k}) \times(-3 \hat{i}+\hat{j}) \cdot((x+2) \hat{i}+(y-1) \hat{j}+z \hat{k})=0$

Answer: d

- Watch Video Solution

62. Given $\vec{\alpha}=3 \hat{i}+\hat{j}+2 \hat{k} \operatorname{and} \vec{\beta}=\hat{i}-2 \hat{j}-4 \hat{k}$ are the position vectors of the points AandB. Then the distance of the point $-\hat{i}+\hat{j}+\hat{k}$
from the plane passing through B and perpendicular to $A B$ is a. 5 b .10 c .
15 d .20
A. 5
B. 10
C. 15
D. 20

Answer: a

- Watch Video Solution

63. L_{1} and L_{2} are two lines whose vector equations are
$L_{1}: \vec{r}=\lambda((\cos \theta+\sqrt{3}) \hat{i}+(\sqrt{2} \sin \theta) \hat{j}+(\cos \theta-\sqrt{3}) \hat{k})$
$L_{2}: \vec{r}=\mu(a \hat{i}+b \hat{j}+c \hat{k})$, where λ and μ are scalars and α is the acute angle between L_{1} and L_{2}.If the $\angle \alpha$ is independent of θ then the value of α is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: a

- Watch Video Solution

64. The shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is a. $\sqrt{30}$ b.
$2 \sqrt{30}$ c. $5 \sqrt{30}$ d. $3 \sqrt{30}$
A. $\sqrt{3}$
B. $2 \sqrt{3}$
C. $5 \sqrt{3}$
D. $3 \sqrt{3}$
65. A long solenoid having $\mathrm{n}=200$ turns per metre has a circular crosssection of radius $a_{1}=1 \mathrm{~cm}$. A circular conducting loop of radius $a_{2}=4 c m$ and resistance $R=5(\Omega)$ encircles the solenoid such that the centre of circular loop coincides with the midpoint of the axial line of the solenoid and they have the same axis as shown in Fig.

A current ' t ' in the solenoid results in magnetic field along its axis with magnitude $B=(\mu) n i$ at points well inside the solenoid on its axis. We can neglect the insignificant field outside the solenoid. This results in a magnetic flux $(\phi)_{B}$ through the circular loop. If the current in the winding of solenoid is changed, it will also change the magnetic field $B=(\mu)_{0} n i$ and hence also the magnetic flux through the circular loop.

Obvisouly, it will result in an induced emf or induced electric field in the circular loop and an induced current will appear in the loop. Let current in the winding of solenoid be reduced at a rate of $75 A / \mathrm{sec}$.

When the current in the solenoid becomes zero so that external magnetic field for the loop stops changing, current in the loop will follow a differenctial equation given by [You may use an approximation that field at all points in the area of loop is the same as at the centre
A. $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(-\hat{i}+5 \hat{j}-3 \hat{k})$
B. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}-5 \hat{j}+3 \hat{k})$
C. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(\hat{i}+5 \hat{j}+3 \hat{k})$
D. $\vec{r}=\hat{i}+3 \hat{j}+2 \hat{k}+\lambda(-\hat{i}-5 \hat{j}-3 \hat{k})$

Answer: b

- Watch Video Solution

66. The line through of the plane passing through the lines $\frac{x-4}{1}=\frac{y-3}{1}=\frac{z-2}{2}$ and $\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z}{5}$ is
A. $11 x-y-3 z=35$
B. $11 x+y-3 z=35$
C. $11 x-y+3 z=35$
D. none of these

Answer: d

- Watch Video Solution

67.

The
three
$4 y+6 z=5,2 x+3 y+5 z=5 a n d 6 x+5 y+9 z=10$ a. meet in a point b. have a line in common c. form a triangular prism d. none of these
A. meet in a point
B. have a line in common
C. form a triangular prism
D. none of these

- Watch Video Solution

68. The equation of the plane through the line of intersection of the planes $a x+b y+c z+d=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ parallel to the line $y=0$ and $z=0$ is
A. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right)=0$
B. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right) z=0$
C. $\left(a b^{\prime}-a^{\prime} b\right) y+\left(b c^{\prime}-b^{\prime} c\right) z+\left(a d^{\prime}-a^{\prime} d\right)=0$
D. none of these

Answer: c

- Watch Video Solution

69. Equation of the plane passing through the points $(2,2,1) \operatorname{and}(9,3,6)$, and \perp to the plane $2 x+6 y+6 z=9$ is a. $3 x+4 y+5 z=9$ b. $3 x+4 y-5 z=9$ c. $3 x+4 y-5 z=9$ d. none of these
A. $3 x+4 y+5 z=9$
B. $3 x+4 y-5 z=9$
C. $3 x+4 y-5 z=9$
D. none of these

Answer: b

- Watch Video Solution

70. Find the value of λ such that the line $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{\lambda}$ is \perp to normal to the plane $\vec{r} \cdot(2 \vec{i}+3 \vec{j}+4 \vec{k})=0$.
A. $-\frac{13}{4}$
B. $-\frac{17}{4}$
C. 4
D. none of these

Answer: a

- Watch Video Solution

71. The equation of the plane passing through the intersection of $x+2 y+3 z+4=0$ and $4 x+3 y+2 z+1=0$ and the origin $(0.0,0)$ is
A. $17 x+14 y+11 z=0$
B. $7 x+4 y+z=0$
C. $x+14 y+11 z=0$
D. $17 x+y+z=0$

Answer: a

72. The plane $4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $5 x+3 y+10 z=25$. The equation of the plane in its new position is $x-4 y+6 z=k$ where k is
A. $x-4 y+6 z=106$
B. $x-8 y+13 z=103$
C. $x-4 y+6 z=110$
D. $x-8 y+13 z=19=105$

Answer: a

- Watch Video Solution

73. The vector equation of the plane passing through the origin and the line of intersection of the planes $\vec{r} \cdot \vec{a}=\lambda$ and $\vec{r} \cdot \vec{b}=\mu$ is
A. $\vec{r} \cdot(\lambda \vec{a}-\mu \vec{b})=0$
B. $\vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0$
c. $\vec{r} \cdot(\lambda \vec{a}+\mu \vec{b})=0$
D. $\vec{r} \cdot(\lambda \vec{b}+\mu \vec{a})=0$

Answer: b

- Watch Video Solution

74. The two lines $\vec{r}=\vec{a}+\vec{\lambda}(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ intersect at a point where $\vec{\lambda}$ and μ are scalars then
A. $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
B. $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
c. $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$
D. none of these

Watch Video Solution

75. The projection of the line $\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}$ on the plane $x-2 y+z=6$ is the line of intersection of this plane with the plane a. $2 x+y+2=0$ b. $3 x+y-z=2$ c. $2 x-3 y+8 z=3 \mathrm{~d}$. none of these
A. $2 x+y+2=0$
B. $3 x+y-z=2$
C. $2 x-3 y+8 z=3$
D. none of these

Answer: a

- Watch Video Solution

76. The direction cosines of a line satisfy the relations $\lambda(l+m)=$ nandmn $+n l+l m=0$. The value of λ, for which the two lines are perpendicular to each other, is a. $1 \mathrm{~b} .2 \mathrm{c} .1 / 2 \mathrm{~d}$. none of these
A. 1
B. 2
C. $1 / 2$
D. none of these

Answer: b

- Watch Video Solution

77. The intercepts made on the axes by the plane the which bisects the line joining the points $(1,2,3)$ and $(-3,4,5)$ at right angles are a.
$\left(-\frac{9}{2}, 9,9\right)$
b. $\left(\frac{9}{2}, 9,9\right)$
c. $\left(9,-\frac{9}{2}, 9\right)$
d. $\left(9, \frac{9}{2}, 9,\right)$
A. $\left(-\frac{9}{2}, 9,9\right)$
B. $\left(\frac{9}{2}, 9,9\right)$
C. $\left(9,-\frac{9}{2}, 9\right)$
D. $\left(9, \frac{9}{2}, 9\right)$

Answer: a

- Watch Video Solution

78. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0$ and $6 m n-2 n l+5 l m=0$
A. parallel
B. perpendicular
C. inclined at $\cos (-1)\left(\frac{1}{6}\right)$
D. none of these

Answer: c

- Watch Video Solution

79. A sphere of constant radius $2 k$ passes through the origin and meets the axes in $A, B, a n d C$. The locus of a centroid of the tetrahedron
$O A B C \quad$ is \quad a. $\quad x^{2}+y^{2}+z^{2}=4 k^{2} \quad$ b. $\quad x^{2}+y^{2}+z^{2}=k^{2}$
$2\left(x^{2}+y^{2}+z\right)^{2}=k^{2}$ d. none of these
A. $x^{2}+y^{2}+z^{2}=k^{2}$
B. $x^{2}+y^{2}+z^{2}=k^{2}$
C. $2\left(k^{2}+y^{2}+z\right)^{2}=k^{2}$
D. none of these

Answer: b

- Watch Video Solution

80. A plane passes through a fixed point (a, b, c). The locus of the foot of the perpendicular to it from the origin is a sphere of radius a.
$\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}$
b. $\sqrt{a^{2}+b^{2}+c^{2}}$
c. $a^{2}+b^{2}+c^{2}$
d. $\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$
A. $\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}+c^{2}}$
C. $a^{2}+b^{2}+c^{2}$
D. $\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)$

Answer: a

- Watch Video Solution

81. What is the nature of the intersection of the set of planes
$x+a y+(b+c) z+d=0, x+b y+(c+a) z+d=0 a n d x+c y+(a+t$
(a). they meet at a point (b). they form a triangular prism (c). they pass through a line (d). they are at equal distance from the origin
A. They meet at a point
B. They form a triangular prism
C. They pass through a line
D. They are at equal distance from the origin

Answer: c

82. Find the equation of a straight line in the plane $\vec{r} \cdot \vec{n}=d$ which is parallel to $\vec{r} \cdot \vec{n}=d($ where $\vec{n} \cdot \vec{b}=0)$.
A. $\vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
B. $\vec{r}=\vec{a}+\left(\frac{d-\vec{a} \cdot \vec{n}}{n}\right) \vec{n}+\lambda \vec{b}$
c. $\vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n^{2}}\right) \vec{n}+\lambda \vec{b}$
D. $\vec{r}=\vec{a}+\left(\frac{\vec{a} \cdot \vec{n}-d}{n}\right) \vec{n}+\lambda \vec{b}$

Answer: a

- Watch Video Solution

83. What is the equation of the plane which passes through the z -axis and is perpendicular to the line $\frac{x-a}{\cos \theta}=\frac{y+2}{\sin \theta}=\frac{z-3}{0}$?a.
$x+y \tan \theta=0$
b. $\quad y+x \tan \theta=0$
c. $x \cos \theta-y \sin \theta=0 \mathrm{~d}$. $x \sin \theta-y \cos \theta=0$
A. $x+y \tan \theta=0$
B. $y+x \tan \theta=0$
C. $x \cos \theta-y \sin \theta=0$
D. $x \sin \theta-y \cos \theta=0$

Answer: a

- Watch Video Solution

84. A straight line L on the $x y$-plane bisects the angle between OXandOY. What are the direction cosines of L ? a. $\langle(1 / \sqrt{2}),(1 / \sqrt{2}), 0\rangle$ b. $\langle(1 / 2),(\sqrt{3} / 2), 0\rangle$ c. $\langle 0,0,1\rangle$ d. $\left\langle\begin{array}{l}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right\rangle$
A. $<(1 / \sqrt{2}),(1 / \sqrt{2}), 0>$
B. $<(1 / 2),(\sqrt{3} / 2), 0>$
C. $\langle 0,0,1\rangle$
D. $\langle(2 / 3),(2 / 3),(1 / 3)>$

- Watch Video Solution

85. For what value (s) of a will the two points $(1, a, 1) \operatorname{and}(-3,0, a)$ lie on opposite sides of the plane $3 x+4 y-12 z+13=0$? a. $a \succ 1$ or $a>1 / 3$ b. $a=0$ only c. ${ }^{\text {'o }}$
A. $a<-1$ or $a>1 / 3$
B. $a=0$ only
C. $0<a<1$
D. $-1<a<1$

Answer: a

86. If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$ cuts the axes of coordinates at points, A, B, and C, then find the area of the triangle $A B C$. a. 18 sq unit b. 36 sq unit $\mathrm{c} .3 \sqrt{14}$ sq unit d. $2 \sqrt{14}$ sq unit
A. 18 sq unit
B. 36 sq unit
C. $3 \sqrt{14}$ sq unit
D. $2 \sqrt{14}$ sq unit

Answer: c

- Watch Video Solution

Multiple Correct Answer Type

1. Let $P M$ be the perpendicular from the point $P(1,2,3)$ to the $x-y$ plane. If $\vec{O} P$ makes an angle θ with the positive direction of the $z-$ axis and $\vec{O} M$ makes an angle φ with the positive direction of $x-$ axis,
where O is the origin and $\operatorname{\theta and\varphi }$ are acute angels, then a. $\cos \theta \cos \varphi=1 / \sqrt{14} \quad$ b. $\quad \sin \theta \sin \varphi=2 / \sqrt{14} \quad$ c. $\quad \tan \varphi=2 \quad$ d. $\tan \theta=\sqrt{5} / 3$
A. $\cos \theta \cos \phi=1 / \sqrt{14}$
B. $\sin \theta \sin \phi=2 / \sqrt{14}$
C. $\tan \phi=2$
D. $\tan \theta=\sqrt{5} / 3$

Answer: b, c, d

- Watch Video Solution

2. Let P_{1} denote the equation of a plane to which the vector $(\hat{i}+\hat{j})$ is normal and which contains the line whose equation is $\vec{r}=\hat{i}+\hat{j}+\vec{k}+\lambda(\hat{i}-\hat{j}-\hat{k})$ and P_{2} denote the equation of the plane containing the line L and a point with position vector j. Which of the following holds good? (a) The equation of P_{1} is $x+y=2$. (b) The equation of P_{2} is $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=2$. (c) The acute angle the
P_{1} and P_{2} is $\cot ^{-1}(\sqrt{3})$. (d) The angle between the plnae P_{2} and the line L is $\tan ^{-1} \sqrt{3}$.
A. The equation of P_{1} is $x+y=2$.
B. The equation of P_{2} is $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=2$.
C. The acute angle the P_{1} and P_{2} is $\cot ^{-1}(\sqrt{3})$.
D. The angle between the plnae P_{2} and the line L is $\tan ^{-1} \sqrt{3}$.

Answer: a, c

- Watch Video Solution

3. If
the
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=q_{1}, \vec{r} \cdot(\hat{i}+2 a \hat{j}+\hat{k})=q_{2}$ and $\vec{r} \cdot\left(a \hat{i}+a^{2} \hat{j}+\hat{k}\right)=$ intersect in a line, then the value of a is
A. 1
B. $1 / 2$
C. 2
D. 0

Answer: a, b

D Watch Video Solution

4. A line with direction cosines proportional to $1,-5$, and -2 meets lines $x=y+5=z+1 a n d x+5=3 y=2 z$. The coordinates of each of the points of the intersection are given by a. $(2,-3,1)$ b. $(1,2,3)$ c. $(0,5 / 3,5 / 2)$ d. $(3,-2,2)$
A. $(2,-3,1)$
B. $(1,2,3)$
C. $(0,5 / 3,5 / 2)$
D. $(3,-2,2)$

Answer: a, b

5. Let $P=0$ be the equation of a plane passing through the line of intersection of the planes $2 x-y=0 a n d 3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$. Then the points which lie on the plane $P=0$ is/are a. $(0,9,17)$ b. $(1 / 7,2,1 / 9)$ c. $(1,3,-4)$ d. $(1 / 2,1,1 / 3)$
A. $(0,9,17)$
B. $(1 / 7,2,1 / 9)$
C. $(1,3,-4)$
D. $(1 / 2,1,1 / 3)$

Answer: a, d

- Watch Video Solution

6. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are (1) $(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$
A. $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-2}{2}$
B. $\frac{x+(1 / 2)}{1}=\frac{y-1}{-2}=\frac{z-(1 / 2)}{1}$
C. $\frac{x}{1}=\frac{y}{-2}=\frac{z-1}{1}$
D. $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z=0}{1}$

Answer: b, c, d

- Watch Video Solution

7. Consider the planes $3 x-6 y+2 z+5=0 a n d 4 x-12 y+3 z=3$. The plane $67 x-162 y+47 z+44=0$ bisects the angel between the given planes which a. contains origin b. is acute c. is obtuse d. none of these
A. contains origin
B. is acute
C. is obtuse
D. none of these

D Watch Video Solution

8. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{\lambda}$ and $\frac{x-1}{\lambda}=\frac{y-4}{2}=\frac{z-5}{1}$ intersect then
A. $\lambda=-1$
B. $\lambda=2$
C. $\lambda=-3$
D. $\lambda=0$

Answer: a,d

D Watch Video Solution

9. The equations of the plane which passes through $(0,0,0)$ and which is equally inclined to the planes $x-y+z-3=0 a n d x+y+z+4=0$
is/are a. $y=0$ b. $x=0$ c. $x+y=0$ d. $x+z=0$
A. $y=0$
B. $x=0$
C. $x+y=0$
D. $x+z=0$

Answer: a, c

- Watch Video Solution

10. The $x-y$ plane is rotated about its line of intersection with the y-z plane by 45^{0}, then the equation of the new plane is/are a. $z+x=0 \mathrm{~b}$. $z-y=0$ c. $x+y+z=0$ d. $z-x=0$
A. $z+x=0$
B. $z-y=0$
C. $x+y+z=0$
D. $z-x=0$

Answer: a, d

- Watch Video Solution

11. The equation of the plane which is equally inclined to the lines $\frac{x-1}{2}=\frac{y}{-2}=\frac{z+2}{-1}$ and $=\frac{x+3}{8}=\frac{y-4}{1}=\frac{z}{-4} \quad$ and passing through the origin is/are a. $14 x-5 y-7 z=0$ b. $2 x+7 y-z=0$ c. $3 x-4 y-z=0$ d. $x+2 y-5 z=0$
A. $14 x-5 y-7 z=0$
B. $2 x+7 y-z=0$
C. $3 x-4 y-z=0$
D. $x+2 y-5 z=0$

Answer: a, b

12. Which of the following lines lie on the plane $x+2 y-z+4=0$? a. $\frac{x-1}{1}=\frac{y}{-1}=\frac{z-5}{1} \quad$ b. $\quad x-y+z=2 x+y-z=0$
$\hat{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$ d. none of these c.
A. $\frac{x-1}{1}=\frac{y}{-1}=\frac{z-5}{-1}$
B. $x-y+z=2 x+y-z=0$
C. $\vec{r}=2 \hat{i}-\hat{j}+4 \hat{k}+\lambda(3 \hat{i}+\hat{j}+5 \hat{k})$
D. none of these

Answer: a, c

- Watch Video Solution

13. If the volume of tetrahedron $A B C D$ is 1 cubic units, where $A(0,1,2), B(-1,2,1)$ and $C(1,2,1)$, then the locus of point D is a. $x+y-z=3$ b. $y+z=6$ c. $y+z=0$ d. $y+z=-3$
A. $x+y-z=0$
B. $y+x=6$
C. $y+z=0$
D. $y+z=-3$

Answer: b, c

- Watch Video Solution

14. A rod of length 2 units whose one ends is $(1,0,-1)$ and other end touches the plane $x-2 y+2 z+4=0$, then which statement is false
A. the rod sweeps the figure whose volume is π cubic units.
B. the area of the region which the rod traces on the plane is 2π.
C. the length of projection of the rod on the plane is $\sqrt{3}$ units.
D. the centre of the region which the rod traces on the plane is

$$
\left(\frac{2}{3}, \frac{2}{3}, \frac{-5}{3}\right)
$$

15. Consider a set of point R in which is at a distance of 2 units from the line $\frac{x}{1}=\frac{y-1}{-1}=\frac{z+2}{2}$ between the planes $x-y+2 z=3=0$ and $x-y+2 z-2=0$. (a) The volume of the bounded figure by points R and the planes is $\left(\frac{10}{3} \sqrt{3}\right) \pi$ cube units (b) The area of the curved surface formed by the set of points R is $\left(\frac{20}{\sqrt{6}}\right) \pi$ sq. units The volume of the bounded figure by the set of points R and the planes is $\left(\frac{20}{\sqrt{6}}\right) \pi$ cubic units. (d) The area of the curved surface formed by the set of points R is $\left(\frac{10}{\sqrt{3}}\right) \pi$ sq. units
A. The volume of the bounded figure by points R and the planes is $(10 / 3 \sqrt{3}) \pi$ cube units.
B. The area of the curved surface formed by the set of points R is $(20 \pi / \sqrt{6})$ sq. units.
C. The volume of the bounded figure by the set of points R and the planes is $(20 \pi / \sqrt{6})$ cubic units.
D. The area of the curved surface formed by the set of points R is $(10 / \sqrt{3}) \pi$ sq. units.

Answer: b,c

- Watch Video Solution

16. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} \cdot \vec{n}=\mathrm{q}$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is

$$
\begin{equation*}
\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c}) \quad \text { (B) } \quad(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0 \tag{C}
\end{equation*}
$$

$\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$ (D) none of these
A. $\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c})$
B. $(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0$
C. $\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$
D. none of these

D Watch Video Solution

17. The equation of the line $x+y+z-1=0,4 x+y-2 z+2=0$ written in the symmetrical form is
A. $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z-0}{1}$
B. $\frac{x}{1}=\frac{y}{-2}=\frac{z-1}{1}$
C. $\frac{x+1 / 2}{1}=\frac{y-1}{-2}=\frac{z-1 / 2}{1}$
D. $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-2}{2}$

Answer: a,b,c

- Watch Video Solution

$$
\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}-\hat{k}) \text { and } \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k}) \text { do not }
$$ intersect.

Statement 2 : Skew lines never intersect.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

2.

$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=4 \hat{i}-\hat{k}+\mu(2 \hat{i}+3 \hat{k})$ intersect.

Statement 2 : If $\vec{b} \times \vec{d}=\overrightarrow{0}$, then lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{c}+\lambda \vec{d}$ do not intersect.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

3. The equation of two straight lines are $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$. Statement 1: the given lines are coplanar. Statement 2 : The equations $2 r-s=1, r+3 s=4 a n d 3 r+2 s=5$ are consistent.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

4. Statement 1: A plane passes through the point $A(2,1,-3)$. If distance of this plane from origin is maximum, then its equation is $2 x+y-3 z=14$.

Statement 2: If the plane passing through the point $A(\vec{a})$ is at maximum distance from origin, then normal to the plane is vector \vec{a}.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

5. Statement 1: Line $\frac{x-1}{1}=\frac{y-0}{2}=\frac{z+2}{-1}$ lies in the plane $2 x-3 y-4 z-10=0$. Statement 2: if line $\vec{r}=\vec{a}+\lambda \vec{b}$ lies in the plane $\vec{r} \dot{\vec{c}}=n($ wheren is scalar $)$, then $\vec{b} \vec{c}=0$.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

6. Statement 1 : Let θ be the angle between the line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{-2}$ and the plane $x+y-z=5$. Then
$\theta=\sin ^{-1}(1 / \sqrt{51})$. Statement 2: The angle between a straight line and a plane is the complement of the angle between the line and the normal to the plane.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

7. Statement 1: let $A(\vec{i}+\vec{j}+\vec{k}) \operatorname{andB}(\vec{i}-\vec{j}+\vec{k})$ be two points. Then point $P(2 \vec{i}+3 \vec{j}+\vec{k})$ lies exterior to the sphere with $A B$ as its diameter.,

Statement 2: If AandB are any two points and P is a point in space such that $\overrightarrow{P A} \cdot \overrightarrow{P B}>0$, then point P lies exterior to the sphere with $A B$ as its diameter.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

8. Statement 1: there exists a unique sphere which passes through the three non-collinear points and which has the least radius. Statement 2 :

The centre of such a sphere lies on the plane determined by the given three points.
A. (a) Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. (b) Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. (c) Statement 1 is true and Statement 2 is false.
D. (d) Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

9. Statement 1: There exist two points on the $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ which are at a distance of 2 units from point $(1,2,-4)$ Statement 2 : Perpendicular distance of point $(1,2,-4)$ form the line $\frac{x-1}{1}=\frac{y}{-1}=\frac{z+2}{2}$ is 1 unit.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

10. For an ideal gas, an illustration of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path A represents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion (B) from $P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant volume (C) from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is ΔS for path $(D+E)$?
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

D Watch Video Solution

Linked Comprehension Type

1. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$.

Point D lies on a line L orthogonal to the plane determined by the points
A, B and C .
The equation of the plane ABC is
A. $x+y+z-3=0$
B. $y+z-1=0$
C. $x+z-1=0$
D. $2 y+z-1=0$

Answer: b

- Watch Video Solution

2. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$. Point D lies on a line L orthogonal to the plane determined by the points A, B and C.

The equation of the line L is
A. $\vec{r}=2 \hat{k}+\lambda(\hat{i}+\hat{k})$
B. $\vec{r}=2 \hat{k}+\lambda(2 \hat{j}+\hat{k})$
C. $\vec{r}=2 \hat{k}+\lambda(\hat{j}+\hat{k})$
D. none
3. Given four points $A(2,1,0), B(1,0,1), C(3,0,1)$ and $D(0,0,2)$. Point D lies on a line L orthogonal to the plane determined by the points A, B and C.
A. $\sqrt{2}$
B. $1 / 2$
C. 2
D. $1 / \sqrt{2}$

Answer: d

- Watch Video Solution

4. A ray of light comes light comes along the line $L=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is
$\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B^{\prime} are

A. $(6,5,2)$
B. $(6,5,-2)$
C. $(6,-5,2)$
D. none of these

Answer: b

- Watch Video Solution

5. A ray of light comes light comes along the line $\mathrm{L}=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

The coordinates of B are
A. $(5,10,6)$
B. $(10,15,11)$
C. $(-10,-15,-14)$
D. none of these

Answer: c

- Watch Video Solution

6. A ray of light comes light comes along the line $\mathrm{L}=0$ and strikes the plane mirror kept along the plane $\mathrm{P}=0$ at $\mathrm{B} . ~ A(2,1,6)$ is a point on the line $\mathrm{L}=0$ whose image about $\mathrm{P}=0$ is A^{\prime}. It is given that $\mathrm{L}=0$ is $\frac{x-2}{3}=\frac{y-1}{4}=\frac{z-6}{5}$ and $P=0$ is $x+y-2 z=3$.

If $L_{1}=0$ is the reflected ray, then its equation is
A. $\frac{x+10}{4}=\frac{y-5}{4}=\frac{z+2}{3}$
B. $\frac{x+10}{3}=\frac{y+15}{5}=\frac{z+14}{5}$
C. $\frac{x+10}{4}=\frac{y+15}{5}=\frac{z+14}{3}$
D. none of these

Answer: c

- Watch Video Solution

7. For what values of p and q the system of equations $2 x+p y+6 z=8, x+2 y+q z=5, x+y+3 z=4$ has i no solution ii a unique solution iii in finitely many solutions.
A. $p=2, q \neq 3$.
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: b
8. For what values of p and q the system of equations $2 x+p y+6 z=8, x+2 y+q z=5, x+y+3 z=4$ has no solution. (a). $p=2, q \neq 3$. (b) $\cdot p \neq 2, q \neq 3$ (c). $p \neq 2, q=3$ (d). $p=2, q=3$
A. $p=2, q \neq 3$.
B. $p \neq 2, q \neq 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: c

- Watch Video Solution

9. For what values of p and q the system of equations $2 x+p y+6 z=8, x+2 y+q z=5, x+y+3 z=4 \quad$ has \quad a unique solution.
(a). $p=2, q \neq 3$
(b). $p \neq 2, q \neq 3$
(c). $p \neq 2, q=3$
(d).
$p=2, q=3$
A. $p=2, q \in 3$
B. $p \in 2, q \in 3$
C. $p \neq 2, q=3$
D. $p=2, q=3$

Answer: b

- Watch Video Solution

10. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$.

The coordinate of a point B of line L such that $A B$ is parallel to the plane is
A. (a) $(10,-1,15)$
B. (b) $(-5,4,-5)$
C. (c) $(4,1,7)$
D. (d) $(-8,5,-9)$

D Watch Video Solution

11. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$. The equation of the plane containing line L and point A has the equation
A. $x-3 y+5=0$
B. $x+3 y-7=0$
C. $3 x-y-1=0$
D. $3 x+y-5=0$

Answer: b
12. Consider a plane $x+y-z=1$ and point $A(1,2,-3)$. A line L has the equation $x=1+3 r, y=2-r$ and $z=3+4 r$. The equation of the plane containing line L and point A has the equation
A. a. $4 \sqrt{26}$
B. b. 20
C. c. $10 \sqrt{13}$
D. d. none of these

Answer: d

- Watch Video Solution

1.

- View Text Solution

2.

Columa 1

3.

- View Text Solution

4. Match the following Column I to Column II

Column I	Column II		
a. The distance between the line $\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and plane	p. $\frac{25}{3 \sqrt{14}}$		
$r \cdot(\hat{i}+\hat{j}+\hat{k})=5$		\left\lvert\,	q. $13 / 7$
:---			
b. The distance between parallel planes $\vec{r} \cdot(2 \hat{i}-\hat{j}+3 \hat{k})=4$ and $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+9 \hat{k})$ $+13=0$ is			
c. The distance of a point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$ is			
d. The distance of the point $(1,0,-3)$ from the plane $x-y-z-9=0$ measured			
parallel to line $\frac{x-2}{2}=\frac{y+2}{3}=\frac{z-6}{-6}$		s. $\frac{10}{3 \sqrt{3}}$	
:---	\right.		

- Watch Video Solution

5. Match the following Column I to Column II

Column 1	Column II
a. Image of the point ($3,5,7$) in the plane $2 x+y+z=-18$ is	p. $(-1,-1,-1)$
b. The point of intersection of the line $\frac{x-2}{-3}=\frac{y-1}{-2}=\frac{z-3}{2}$ and the plane $2 r+y-z=3$ is	q. $(-21,-7,-5)$
c. The foot of the perpendicular from the point $(1,1,2)$ to the plane $2 x-2 y$ $+4 z+5=0$ is	r. $\left(\frac{5}{2}, \frac{2}{3}, \frac{8}{3}\right)$
d. The intersection point of the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z=$ is	s. $\left(-\frac{1}{12}, \frac{25}{12}, \frac{-2}{12}\right)$

- Watch Video Solution

Integer Type

1. Find the number of sphere of radius r touching the coordinate axes.

- Watch Video Solution

2. Find the distance of the z-axis from the image of the point $M(2-3,3)$ in the plane $x-2 y-z+1=0$.
3. The length of projection of the line segment joining the points $(1,0,-1) \operatorname{and}(-1,2,2)$ on the plane $x+3 y-5 z=6$ is equal to a. 2
b. $\sqrt{\frac{271}{53}}$ c. $\sqrt{\frac{472}{31}}$ d. $\sqrt{\frac{474}{35}}$

- Watch Video Solution

4. If the angle between the plane $x-3 y+2 z=1$ and the line $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{-3}$ is θ, then the find the value of $\cos e c \theta$.

- Watch Video Solution

5. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the areas of the triangular faces of a tetrahedron, and $h_{1}, h_{2}, h_{3}, h_{4}$ be the corresponding altitudes of the tetrahedron. If the volume of tetrahedron is $1 / 6$ cubic units, then find the minimum value of $\left(A_{1}+A_{2}+A_{3}+A_{4}\right)\left(h_{1}+h_{2}+h_{3}+h_{4}\right)$ (in cubic units).
6. about to only mathematics
A. 4
B. 2
C. 6
D. 8

Answer: C

- Watch Video Solution

7. If (a, b, c) is a point on the plane $3 x+2 y+z=7$, then find the least value of $a^{2}+b^{2}+c^{2}$, using vector method.
8. The plane denoted by $\pi_{1}: 4 x+7 y+4 z+81=0$ is rotated through a right angle about its line of intersection with the plane $\pi_{2}: 5 x+3 y+10 z=25$. If the plane in its new position is denoted by π, and the distance of this plane from the origin is \sqrt{k}, where $k \in N$, then $\mathrm{k}=$

- Watch Video Solution

9. Find the distance of the point $(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 x+12 y-3 z+1=0$.

- Watch Video Solution

10. The position vectors of the four angular points of a tetrahedron OABC are $(0,0,0) ;(0,0,2),(0,4,0)$ and $(6,0,0)$ respectively. A point P inside the tetrahedron is at the same distance r from the four plane faces of the tetrahedron. Find the value of $3 r$

- Watch Video Solution

Archives Subjective Type

1. Find the equation of the plane passing through the points $(2,1,0),(5,0,1)$ and $(4,1,1)$.

- Watch Video Solution

2. Find the equation of a plane passing through $(1,1,1)$ and parallel to the lines L_{1} and L_{2} direction ratios (1, $0,-1$) and ($1,-1,0$) respectively. Find the volume of the tetrahedron formed by origin and the points where this plane intersects the coordinate axes.

- Watch Video Solution

3. A parallelepiped S has base points $A, B, C a n d D$ and upper face points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}. The parallelepiped is compressed by upper face $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to form a new parallepiped T having upper face points $A, \mathrm{~B}, C \mathrm{andD}$. The volume of parallelepiped T is 90 percent of the volume of parallelepiped S. Prove that the locus of A is a plane.

- Watch Video Solution

4. Find the equation of the plane containing the lines $2 x-y+z-3=0,3 x+y+z=5$ and at a distance of $\frac{1}{\sqrt{6}}$ from the point $(2,1,-1)$.

- Watch Video Solution

5. A line with positive direction cosines passes through the point $\mathrm{P}(2,-1$,
2) and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment PQ equals

Archives Single Correct Answer Type

1. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$ is a. 7 b. -7 c. no real value d. 4
A. 7
B. -7
C. no real value
D. 4

Answer: a

- Watch Video Solution

2. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect then the value of k is (A) $\frac{3}{2}$ (B) $\frac{9}{2}$ (C) $-\frac{2}{9}$ (D) $-\frac{3}{2}$
A. $3 / 2$
B. $9 / 2$
C. $-2 / 9$
D. $-3 / 2$

Answer: b

- Watch Video Solution

3. about to only mathematics
A. 3
B. 1
C. $1 / 3$
D. 9

Answer: d
4. A plane passes through ($1,-2,1$) and is perpendicualr to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, then the distance of the plane from the point $(1,2,2)$ is
A. 0
B. 1
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: d

- Watch Video Solution

5. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4 \mathrm{~b} .-1 / 4 \mathrm{c}$.
A. $1 / 4$
B. $-1 / 4$
C. $1 / 8$
D. $-1 / 8$

Answer: a

- Watch Video Solution

6. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{2}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
A. $x+2 y-2 z=0$
B. $3 x+2 y-2 z=0$
C. $x-2 y+z=0$
D. $5 x+2 y-4 z=0$

- Watch Video Solution

7. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0, i s 5$, then the foot of the perpendicular from P to the plane is a. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$ b. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
$\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3},-\frac{1}{3},-\frac{5}{3}\right)$
A. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
B. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Answer: a
8. The point P is the intersection of the straight line joining the points $Q(2,3,5)$ and $R(1,-1,4)$ with the plane $5 x-4 y-z=1$. If S is the foot of the perpendicular drawn from the point $T(2,1,4)$ to QR , then the length of the line segment PS is:
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. $2 \sqrt{2}$

Answer: a

- Watch Video Solution

9. Perpendiculars are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$ The feet of perpendiculars lie on the line
A. $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$
B. $\frac{x}{2}=\frac{y+1}{3}=\frac{z-2}{-5}$
c. $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
D. $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$

Answer: d

- Watch Video Solution

Archives Multiple Correct Answers Type

1. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b. 2 c. 3 d. 4
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

2. A line l passing through the origin is perpendicular to the lines $l_{1}:(3+t) \hat{i}+(-1+2 t) \hat{j}+(4+2 t) \hat{k},-\infty<t<\infty, \quad l_{2}:(3+s) \hat{i}+(3$ then the coordinates of the point on l_{2} at a distance of $\sqrt{17}$ from the point of intersection of $l \& l_{1}$ is/are:
A. $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$
B. $(-1,-1,0)$
C. $(1,1,1)$
D. $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$

Answer: b, d

- Watch Video Solution

3. let L be a straight line passing through the origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$, Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ? (a) $\left(0,-\frac{5}{6},-\frac{2}{3}\right)$
$\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
(c) $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
(d) $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$
A. $\left(0,-\frac{5}{9},-\frac{2}{3}\right)$
B. $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
C. $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
D. $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Answer: a, b

- Watch Video Solution

4. In R^{3}, consider the planes $P_{1}: y=0$ and $P_{2}, x+z=1$. Let P_{3} be a plane, different from P_{1} and P_{2} which passes through the intersection of
P_{1} and P_{2}, If the distance of the point $(0,1,0)$ from P_{3} is 1 and the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relation(s) is/are true? (a) $2 \alpha+\beta+2 \gamma+2=0$ (b) $2 \alpha-\beta+2 \gamma+4=0 \quad$ (c) $2 \alpha+\beta-2 \gamma-10=0$ (d) $2 \alpha-\beta+2 \gamma-8=0$
A. $2 \alpha+\beta+2 \gamma+2=0$
B. $2 \alpha-\beta+2 \gamma+4=0$
C. $2 \alpha+\beta-2 \gamma-10=0$
D. $2 \alpha-\beta+2 \gamma-8=0$

Answer: b, d

- Watch Video Solution

Archives Reasoning Type

1. Consider the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

Statement 1:The parametric equations of the line intersection of the
given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2: The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.
A. a. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. b. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. c. Statement 1 is true and Statement 2 is false.
D. d Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

2. Consider three planes $P_{1}: x-y+z=1, P_{2}: x+y-z=-1$ and
$P_{3}: x-3 y+3 z=2$. Let L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1}, P_{1} and P_{2} respectively.

Statement I Atleast two of the lines L_{1}, L_{2} and L_{3} are non-parallel.
Statement II The three planes do not have a common point.
A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
B. Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.
C. Statement 1 is true and Statement 2 is false.
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

Archives Linked Comprehension Type

1. Consider the line $L 1: x+1 / 3=y+2 / 1=z+1 / 2 L 2: x-2 / 1=y+2 / 2=z-3 / 3$ The unit vector perpendicular to both $L 1$ and $L 2$ lines is
A. $\frac{-\hat{i}+7 \hat{j}+7 \hat{k}}{\sqrt{99}}$
B. $\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
C. $\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D. $\frac{7 \hat{i}-7 \hat{j}-\hat{k}}{\sqrt{99}}$

Answer: b

- Watch Video Solution

2. Consider the line L1: x 1 y 2 z $1312+++==$, L2: x2y2z3 123
A. 0
B. $\frac{17}{\sqrt{3}}$
C. $\frac{41}{5 \sqrt{3}}$
D. $\frac{17}{5 \sqrt{3}}$

Answer: d

3. Consider the line L 1 : x 1 y 2 z 1312 +++ ==, L2 : x2y2z3 123
A. $\frac{12}{\sqrt{65}}$
B. $\frac{14}{\sqrt{75}}$
C. $\frac{13}{\sqrt{75}}$
D. $\frac{13}{\sqrt{65}}$

Answer: c

- Watch Video Solution

Archives Matrix Match Type

1.

$a x+b y+c z=0, b x+c y+a z=0$ and $c x+a y+b z=0$.

Match the conditions/expressions in Column I with statements in Column
II.

Column 1	Column 11
a. $a+b+c+0$ and $a^{2}+b^{2}+c^{2} \cdots a b+b c+c a$	p. The equations represent planes meeting only at a single point.
b. $a, b+c-0$ and $d^{2}+b^{2}+c^{2}+a b+b c+c a$	4. The equations represent the line $x=y=2$.
c. $a+b+c<0$ and $\left.a^{2}+b^{2}+c^{2}+a t\right)+b c+c a$	1. The equations represent identical planes.
d. $a+b+c-0$ and $a^{2}+b^{2}+c^{2}-a b+b c+c a$	s. The equations represent the whole of three-dimensional space.

- Watch Video Solution

2.

$L_{1}: \frac{x-1}{2}=\frac{y}{-1}=\frac{z+3}{1}, L_{2}: \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2} \quad$ and the
planes

$$
\begin{equation*}
P_{1}=7 x+y+2 z=3, P_{2}: 3 x+5 y-6 z=4 . \tag{Let}
\end{equation*}
$$

$a x+b y+c z=d$ be the equation of the plane passing through the point of intersection of lines L_{1} and L_{2}, and perpendicular to planes P_{1} and P_{2}.

Match Column I with Column II.

Column I	Column II
a. a-	p. 13
b. b -	4. 3
c. ι^{-}	r. 1
d. d/	2. 2

Archives Integer Type

1. If the distance between the plane $\mathrm{ax} 2 \mathrm{y}+\mathrm{z}=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is
$\sqrt{6}$, then value of $|\mathrm{d}|$ is

- Watch Video Solution

