©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

VECTOR ALGEBRA

Others

1. In a trapezium, the vector $B C=\lambda A D$. We will then find that $p=A C+B D$ is collinear with $A D . I p=\mu \mathrm{AD}$, then

- Watch Video Solution

2. If the vectors $\vec{a} a n d \vec{b}$ are linearly idependent satisfying $(\sqrt{3} \tan \theta+1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=0$, then the most general values of θ
are \quad a. $\quad n \pi-\frac{\pi}{6}, n \in Z \quad$ b. $\quad 2 n \pi \pm \frac{11 \pi}{6}, n \in Z \quad$ c. $\quad n \pi \pm \frac{\pi}{6}, n \in Z$ d. $2 n \pi+\frac{11 \pi}{6}, n \in Z$

- Watch Video Solution

3. Given three non-zero, non-coplanar vectors \vec{a}, \vec{b}, and $\vec{c} . \vec{r}_{1}=p \vec{a}+q \vec{b}+\vec{c}$ and $\vec{r}_{2}=\vec{a}+p \vec{b}+q \vec{c} \quad$ If the vectors $\vec{r}_{1}+2 \vec{r}_{2}$ and $2 \vec{r}_{1}+\vec{r}_{2}$ are collinear, then (P, q) is ${ }^{`}$

- Watch Video Solution

4. Let $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, P_{n}$ relative to the origin O If the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}++a_{n} \vec{r}_{n}=0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_{1}+a_{2}++a_{n}=n$ b. $a_{1}+a_{2}++a_{n}=1$ c. $a_{1}+a_{2}++a_{n}=0$ d. $a_{1}=a_{2}=a_{3}+a_{n}=0$
5. In triangle $A B C, \angle A=30^{\circ}, H$ is the orthocenter and D is the midpoint of $B C$. Segment $H D$ is produced to T such that $H D=D T$ The length $A T$ is equal to
(a). $2 B C$
(b). $3 B C$
(c). $\frac{4}{2} B C$
(d). none of these

Watch Video Solution

6. If $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta} a n d \vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}, \vec{\alpha}$ and $\vec{\delta}$ are non-colliner, then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals a. $a \vec{\alpha}$ b. $b \vec{\delta}$ c. 0 d. $(a+b) \vec{\gamma}$

- Watch Video Solution

7. Given three vectors $\vec{a}=6 \hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-6 \hat{j} a n d \vec{c}=-2 \hat{i}+21 \hat{j}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$ Then the resolution of the vector $\vec{\alpha}$ into components with
respect to \vec{a} and \vec{b} is given by a. $3 \vec{a}-2 \vec{b}$ b. $3 \vec{b}-2 \vec{a}$ c. $2 \vec{a}-3 \vec{b}$ d. $\vec{a}-2 \vec{b}$

- Watch Video Solution

8. Let us define the length of a vector $a \hat{i}+b \hat{j}+c \hat{k} a s|a|+|b|+|c|$ This definition coincides with the usual definition of length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ is and only if (a) $a=b=c=0$ (b) any two of $a, b, a n d c$ are zero (c) any one of $a, b, a n d c$ is zero (d) $a+b+c=0$

- Watch Video Solution

9. Vectors $\vec{a}=-4 \hat{i}+3 \hat{k} ; \vec{b}=14 \hat{i}+2 \hat{j}-5 \hat{k}$ are laid off from one point. Vector \hat{d}, which is being laid of from the same point dividing the angle between vectors $\vec{a} a n d \vec{b}$ in equal halves and having the magnitude $\sqrt{6}$, is

$$
\text { a. } \hat{i}+\hat{j}+2 \hat{k} \text { b. } \hat{i}-\hat{j}+2 \hat{k} \text { c. } \hat{i}+\hat{j}-2 \hat{k} \text { d. } 2 \hat{i}-\hat{j}-2 \hat{k}
$$

- Watch Video Solution

10. Vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+4 \hat{k}$, are so placed that the end point of one vector is the starting point of the next vector. Then the vector are (A) not coplanar (B) coplanar but cannot form a triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle

- Watch Video Solution

11. The position vectors of the vertices A, B, and C of a triangle are $\hat{i}+\hat{j}, \hat{j}+\hat{k} a n d \hat{i}+\hat{k}$, respectively. Find the unite vector \hat{r} lying in the plane of $A B C$ and perpendicular to $I A$, whereI is the incentre of the triangle.

- Watch Video Solution

12. A ship is sailing towards the north at a speed of $1.25 \mathrm{~m} / \mathrm{s}$. The current is taking it towards the east at the rate of $1 \mathrm{~m} / \mathrm{s}$ and a sailor is climbing a vertical pole on the ship at the rate of $0.5 \mathrm{~m} / \mathrm{s}$. Find the velocity of the sailor in space.

(D) Watch Video Solution

13. Given four points P_{1}, P_{2}, P_{3} andP P_{4} on the coordinate plane with origin
O which satisfy the condition $(\overrightarrow{O P})_{n-1}+(\overrightarrow{O P})_{n+1}=\frac{3}{2} \overrightarrow{O P_{n}}$. If P1 and P2 lie on the curve $\mathrm{xy}=1$, then prove that P3 does not lie on the curve

- Watch Video Solution

14. $A B C D$ is a tetrahedron and O is any point. If the lines joining O to the vertices meet the opposite faces at P, Q, RandS, prove that $\frac{O P}{A P}+\frac{O Q}{B Q}+\frac{O R}{C R}+\frac{O S}{D S}=1$.

- Watch Video Solution

15. If \vec{a} and \vec{b} are non-collinear vectors and $\vec{A}=(p+4 q) \vec{a}+(2 p+q+1) \vec{b} a n d \vec{B}=(-2 p+q+2) \vec{a}+(2 p-3 q-1) \vec{b}, a \mathrm{n} \mathrm{d}$
if $3 \vec{A}=2 \vec{B}$, then determine p and q .

- Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are any three non-coplanar vectors, then prove that points are collinear: $\vec{a}+\vec{b}+\vec{c}, 4 \vec{a}+3 \vec{b}, 10 \vec{a}+7 \vec{b}-2 \vec{c}$.

- Watch Video Solution

17. If \vec{a}, \vec{b} and \vec{c} are three non-zero non-coplanar vectors, then the value of

$$
(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b} .
$$

- Watch Video Solution

18. Let a, b, c be distinct non-negative numbers an the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane, then prove that the quadratic equation $a x^{2}+2 c x+b=0$ has equal roots
19. A pyramid with vertex at point P has a regular hexagonal base $A B C D E F$, Position vector of points A and B are \hat{i} and $\hat{i}+2 \hat{j}$ The centre of base has the position vector $\hat{i}+\hat{j}+\sqrt{3} \hat{k}$ Altitude drawn from P on the base meets the diagonal $A D$ at point G find the all possible position vectors of G It is given that the volume of the pyramid is $6 \sqrt{3}$ cubic units and $A P$ is 5 units.

- Watch Video Solution

20. $A B C D$ is a parallelogram. If L and M be the middle points of $B C$ and CD , respectively express $A L$ and $A M$ in terms of $A B$ and $A D$. Also show that $A L+A M=(3 / 2) A C$.

- Watch Video Solution

21. A, B, C and D have position vectors $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$, respectively, such that $\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$ Then a. ABandCD bisect each other b. BDandAC bisect each other c . $A B$ and $C D$ trisect each other d. BDandAC trisect each other

- Watch Video Solution

22. If $\vec{a} a n d \vec{b}$ are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by a.
$\frac{\vec{a}-\vec{b}}{\cos (\theta / 2)}$ b. $\frac{\vec{a}+\vec{b}}{2 \cos (\theta / 2)}$ c. $\frac{\vec{a}-\vec{b}}{2 \cos (\theta / 2)}$ d. none of these

- Watch Video Solution

23. $A B C D$ is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=x \vec{O} E$, thenx is equal to a. 3 b .9 c .7 d .4
24. If vectors $\vec{A} B=-3 \hat{i}+4 \hat{k} a n d \vec{A} C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median through Ais a. $\sqrt{14}$ b. $\sqrt{18}$ c. $\sqrt{29}$ d. $\sqrt{5}$

- Watch Video Solution

25. $A B C D$ parallelogram, and $A_{1} a n d B_{1}$ are the midpoints of sides $B C$ andCD, respectivley. If $\vec{A} A_{1}+\vec{A} B_{1}=\lambda \vec{A} C$, then λ is equal to a. $\frac{1}{2}$ b. 1 c. $\frac{3}{2}$ d. 2 e. $\frac{2}{3}$

- Watch Video Solution

26. The position vectors of the points PandQ with respect to the origin O are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-2 \hat{k}$, respectively. If M is a point on $P Q$, such that $O M$ is the bisector of $\angle P O Q$, then $\overrightarrow{O M}$ is a. $2(\hat{i}-\hat{j}+\hat{k})$ b. $2 \hat{i}+\hat{j}-2 \hat{k} \mathrm{c} .2(-\hat{i}+\hat{j}-\hat{k})$ d. $2(\hat{i}+\hat{j}+\hat{k})$

(Watch Video Solution

27. A point O is the centre of a circle circumscribed about a triangleABC Then $\vec{O} A \sin 2 A+\vec{O} B \sin 2 B+\vec{O} C \sin 2 C$ is equal to

- Watch Video Solution

28. If G is the centroid of triangle $A B C$, then $\vec{G} A+\vec{G} B+\vec{G} C$ is equal to a. $\overrightarrow{0}$ b. $3 \vec{G} A$ c. $3 \vec{G} B$ d. $3 \vec{G} C$

- Watch Video Solution

29. Let $A B C$ be triangle, the position vecrtors of whose vertices are respectively $\hat{i}+2 \hat{j}+4 \hat{k},-2 \hat{i}+2 \hat{j}+\hat{k} a n d 2 \hat{i}+4 \hat{j}-3 \hat{k}$. Then Delta $A B C$ is a. isosceles b. equilateral c. right angled d. none of these
30. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between $\vec{a} a n d \vec{b}$ can lie in the interval a. $(\pi / 2, \pi / 2)$ b. $(0, \pi)$ c. $(\pi / 2,3 \pi / 2)$ d. $(0,2 \pi)$

- Watch Video Solution

31. ' I ' is the incentre of triangle $A B C$ whose corresponding sides are a, b, c, rspectively. $a \vec{I} A+b \vec{I} B+c \vec{I} C$ is always equal to $a . \overrightarrow{0} \mathrm{~b}$. $(a+b+c) \vec{B} C$ c. $(\vec{a}+\vec{b}+\vec{c}) \vec{A} C$ d. $(a+b+c) \vec{A} B$

- Watch Video Solution

32. Let $x^{2}+3 y^{2}=3$ be the equation of an ellipse in the $x-y$ plane. AandB are two points whose position vectors are $-\sqrt{3} \hat{i}$ and $-\sqrt{3} \hat{i}+2 \hat{k}$ Then the position vector of a point P on the ellipse such that $\angle A P B=\pi / 4$ is a. $\pm \hat{j}$
b. $\pm(\hat{i}+\hat{j})$ c. $\pm \hat{i}$ d. none of these

- Watch Video Solution

33. Locus of the point P, for which $O P$ represents a vector with direction $\operatorname{cosine} \cos \alpha=\frac{1}{2}$ (where O is the origin) is

- Watch Video Solution

34. If $\vec{x} a n d \vec{y}$ are two non-collinear vectors and $A B C$ isa triangle with side lengths

$$
a, b, a n d c
$$ satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=0$, then triangle $A B C$ is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

- Watch Video Solution

35. If $\hat{i}-3 \hat{j}+5 \hat{k}$ bisects the angle between âand $-\hat{i}+2 \hat{j}+2 \hat{k}$, whereâ is a unit vector, then a. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}-40 \hat{k})$ b. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}+40 \hat{k})$
c. $\hat{a}=\frac{1}{105}(-41 \hat{i}+88 \hat{j}-40 \hat{k})$ d. $\hat{a}=\frac{1}{105}(41 \hat{i}-88 \hat{j}-40 \hat{k})$
36. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+24 a n d 2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices A, BandC, respectively, of triangle $A B C$, then the position vecrtor of the point where the bisector of angle A meets $B C$ is a. $\frac{2}{3}(-6 \hat{i}-8 \hat{j}-\hat{k})$ b. $\frac{2}{3}(6 \hat{i}+8 \hat{j}+6 \hat{k})$ c. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$ d. $\frac{1}{3}(5 \hat{j}+12 \hat{k})$

- Watch Video Solution

37. If \vec{b} is a vector whose initial point divides thejoin of $5 \hat{i}$ and $5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, thenk lies in the interval a. [-6, -1/6] b. $(-\infty,-6] \cup[-1 / 6, \infty)$ c. [0, 6] d. none of these

- Watch Video Solution

38. Find the value of λ so that the points P, Q, R and S on the sides $O A, O B, O C$ and $A B$, respectively, of a regular tetrahedron $O A B C$ are
coplanar. It is given that $\frac{O P}{O A}=\frac{1}{3}, \frac{O Q}{O B}=\frac{1}{2}, \frac{O R}{O C}=\frac{1}{3}$ and $\frac{O S}{A B}=\lambda$.
$\lambda=\frac{1}{2}$ (B) $\lambda=-1$ (C) $\lambda=0$ (D) for no value of λ

- Watch Video Solution

39. A uni-modular tangent vector on the curve
$x=t^{2}+2, y=4 t-5, z=2 t^{2}-6 t=2$ is a. $\frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$ b. $\frac{1}{3}(\hat{i}-\hat{j}-\hat{k})$ c. $\frac{1}{6}(2 \hat{i}+\hat{j}+\hat{k})$ d. $\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

40. If \vec{x} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a $A B C$ satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\vec{x} \times \vec{y})=0$, then $A B C$ is (where $\vec{x} x \vec{y}$ is perpendicular to the plane of xandy) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle
41. The position vectors of points $A a n d B$ w.r.t. the origin are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$, $\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}$ respectively. Determine vector $\vec{O} P$ which bisects angle $A O B$, where P is a point on $A B$

- Watch Video Solution

42. What is the unit vector parallel to $\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

(Watch Video Solution

43. $A B C D$ is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of $O A, O B, O C$ and $O D=4 \quad O E$ where O is any point.
44. $A B C D$ is a parallelogram. If L and M be the middle points of $B C$ and $C D$, respectively express $A L$ and $A M$ in terms of $A B$ and $A D$. Also show that $\overrightarrow{A L}+\overrightarrow{A M}=(3 / 2) \overrightarrow{A C}$.

- Watch Video Solution

45. If $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are four vectors in three-dimensional space with the same initial point and such that $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$, show that terminals A, B, CandD of these vectors are coplanar. Find the point at which ACandBD meet. Find the ratio in which P divides A CandBD

- Watch Video Solution

46. Find the vector of magnitude 3, bisecting the angle between the vectors $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

47. If $\vec{a} a n d \vec{b}$ are two vectors of magnitude 1 inclined at 120°, then find the angle between \vec{b} and $\vec{b}-\vec{a}$

- Watch Video Solution

48. If $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are the position vectors of the collinear points and scalar pandq exist such that $\vec{r}_{3}=p \vec{r}_{1}+q \vec{r}_{2}$, then show that $p+q=1$.

- Watch Video Solution

49. Examine the following vector for linear independence:
(1) $\vec{i}+\vec{j}+\vec{k}, 2 \vec{i}+3 \vec{j}-\vec{k},-\vec{i}-2 \vec{j}+2 \vec{k}$
(2) $3 \vec{i}+\vec{j}-\vec{k}, 2 \vec{i}-\vec{j}+7 \vec{k}, 7 \vec{i}-\vec{j}+13 \vec{k}$

- Watch Video Solution

50. Show that the vectors $2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c} a n d \vec{a}+\vec{b}-3 \vec{c}$ are noncoplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)

Watch Video Solution

51. Let \vec{a}, \vec{b} and \vec{c} be three units vectors such that $2 \vec{a}+4 \vec{b}+5 \vec{c}=0$. Then which of the following statement is true? a. \vec{a} is parallel to \vec{b} b. \vec{a} is perpendicular to \vec{b} c. \vec{a} is neither parallel nor perpendicular to \vec{b} d. none of these

- Watch Video Solution

52. Four non -zero vectors will always be a. linearly dependent b. linearly independent c. either a or b
d. none of
these
53. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting.

- Watch Video Solution

54. In a triangle $P Q R$, SandT are points on $Q R a n d P R$, respectively, such that $Q S=3 S R a n d P T=4 T R$ Let M be the point of intersection of PSandQT Determine the ratio QM: MT using the vector method .

- Watch Video Solution

55. In a quadrilateral $P Q R S, \vec{P} Q=\vec{a}, \vec{Q} R=\vec{b}, \vec{S} P=\vec{a}-\vec{b}, M$ is the midpoint of \vec{Q} Rand X is a point on $S M$ such that $S X=\frac{4}{5} S M$ Prove that $P, X a n d R$ are collinear.

- Watch Video Solution

56. solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}=x$

- Watch Video Solution

57. Sow that $x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$, $\operatorname{andx}_{3} \hat{i}+y_{3} \hat{j}+z_{3} \hat{k}$, are noncoplanar if $\left|x_{1}\right|>\left|y_{1}\right|+\left|z_{1}\right|,\left|y_{2}\right|>\left|x_{2}\right|+\left|z_{2}\right|$ and $\left|z_{3}\right|>\left|x_{3}\right|+\left|y_{3}\right|$.

- Watch Video Solution

58. The position vector of the points P and Q are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and $-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k}$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q. A third vector
$2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors A and B Find the position vectors of points of intersection.

D Watch Video Solution

$\hat{i}+\cos (\beta-\alpha) \hat{j}+\cos (\gamma-\alpha) \hat{k}, \cos (\alpha-\beta) \hat{i}+\hat{j}+\cos (\gamma-\beta) \hat{k}$
$\cos (\alpha-\gamma) \hat{i}+\cos (\beta-\gamma) \hat{k}+a \hat{k} w h e r e \alpha, \beta$, and γ are different angles. If these vectors are coplanar, show that a is independent of α, β and γ

- Watch Video Solution

60. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by

- Watch Video Solution

61. The vectors $x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k},(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k}$ and $(x+6) \hat{i}+(x+7) \hat{j}+(x+8) \hat{k}$ are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

- Watch Video Solution

62. \vec{A} is vector with direction cosines $\cos \alpha, \cos \beta a n d \cos \gamma$ Assuming the $y-z$ plane as a mirror, the direction cosines of the reflected image of \vec{A} in the plane are a. $\cos \alpha, \cos \beta, \cos \gamma \mathrm{b} . \cos \alpha,-\cos \beta, \cos \gamma \mathrm{c} .-\cos \alpha, \cos \beta, \cos \gamma \mathrm{d}$. $-\cos \alpha,-\cos \beta,-\cos \gamma$

- Watch Video Solution

63. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular

Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to
a. -4 b. $-1 / 3$
c. 1 d. 2

- Watch Video Solution

64. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is a. $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$ b.
$\frac{1}{7}(3 \hat{i}-6 \hat{j}-2 \hat{k})$ c. $\frac{1}{\sqrt{69}}(\hat{i}+6 \hat{j}+8 \hat{k})$ d. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$

Watch Video Solution

65. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vector and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when a. $\mu \in R$ b.
$\lambda=\frac{1}{2} c . \lambda=0 \mathrm{~d}$. no value of λ

- Watch Video Solution

66. If points $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $p \hat{i}+q \hat{j}+r \hat{k}$ are collinear, then
A. a. $p=1$
B. b. $r=0$
C. c. $q \in R$
D. d. $q \neq 1$

- Watch Video Solution

67. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle, then \vec{a} may be $-\hat{i}-\hat{k} \mathrm{~b}$. $\hat{i}-2 \hat{j}-\hat{k} \mathrm{c} \cdot 2 \hat{i}+\hat{j}+\hat{k} \mathrm{~d} . \hat{i}+\hat{k}$

D Watch Video Solution

68. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k} a n d \vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

- Watch Video Solution

69. $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
70. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then value of x are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2

- Watch Video Solution

71. Prove that point $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}+5 \hat{j}-\hat{k}$ from a triangle in space.

- Watch Video Solution

72. Show that the point A, B and C with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k} \vec{b}=2$ $\hat{i} j+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively form the vertices of a right angled triangle.

- Watch Video Solution

73. If $2 A C=3 C B$, then prove that $2 O A+3 O B=5 O C$ where O is the origin.

- Watch Video Solution

74. Find the unit vector in the direction of vector $P Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$, respectively.

- Watch Video Solution

75. For given vector, $\vec{a}=2 \hat{i} j+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

76. If the projections of vector \vec{a} on $x-y$ - and z-axes are 2,1 and 2 units ,respectively, find the angle at which vector \vec{a} is inclined to the z-axis.
77. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

78. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, than prove that quadrilateral $A B C D$ is a parallelogram.

- Watch Video Solution

79. Show that the points $A(6,-7,0), B(16,-19,-4), C(0,3,-6)$ and $D(2,-5,10)$ are such that $A B$ and $C D$ intersect at the point $P(1,-1,2)$.
80. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as $l_{1}, m_{1}, n_{1} a n d l_{2}, m_{2}, n_{2}$ are proportional to $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$ Statement 2: The angle between the two intersection lines having direction cosines as l_{1}, m_{1}, n_{1} andl $_{2}, m_{2}, n_{2}$ is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

D Watch Video Solution

81. Statement 1: In $\triangle A B C, A B+B C+C A=0$

Statement 2: If $O A=\vec{a}, O B=\vec{b}$, then $A B=\vec{a}+\vec{b}$

- Watch Video Solution

82. Statement 1: If $\vec{u} a n d \vec{v}$ are unit vectors inclined at angle $\alpha a n d \vec{x}$ is a unit vector bisecting the angle between them, then
$\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$ Statement 2: If DeltaABC is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angel A is given by $\vec{A} D=(\vec{A} B+\vec{A} C) / 2$.

- Watch Video Solution

83. Statement 1: If $\cos \alpha, \cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. Statement 2 : If $\cos \alpha, \cos \beta$, andcos γ are the direction cosines of any line segment, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=1$.

- Watch Video Solution

84. A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotated through an angle α about the origin in the anticlockwise sense.

Statement 1: If the vector has component $p+2$ and 1 with respect to the new system, then $p=-1$.

Statement 2: Magnitude of the original vector and new vector remains the same.

- Watch Video Solution

85. Statement 1 : If three point P, Q and R have position vectors \vec{a}, \vec{b} and \vec{c}, respectively, and $2 \vec{a}+3 \vec{b}-5 \vec{c}=0$, then the point P, Q and R must be collinear.

Statement 2 : If for three points A, B and $\mathrm{C}, A B=\lambda A C$, then points A, B and C must be collinear.

D Watch Video Solution

86. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l}, and $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}_{4}=0$, then
A. a. $\lambda=1$
B. b. $\mu=-2 / 3$
C. c. $y=2 / 3$
D. d. $\delta=1 / 3$

Answer: null

D Watch Video Solution

87. Let $A B C$ be a triangle, the position vectors of whose vertices are $-10 \hat{i}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$. Then $\triangle A B C$ is a. isosceles b . equilateral c. right angled d. none of these

- Watch Video Solution

88. If non-zero vectors \vec{a} and \vec{b} are equally inclined to coplanar vector \vec{c},
then \vec{c} can be a. $\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} a+\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} \vec{b}$ b. $\frac{|\vec{b}|}{|\vec{a}|+|\vec{b}|} a+\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|} \vec{b}$
$\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} a+\frac{|\vec{b}|}{|\vec{a}|+2|\vec{b}|} \vec{b}$ d. $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|} a+\frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|} \vec{b}$

- Watch Video Solution

89. If $A(-4,0,3)$ and $B(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\vec{O} A$ and $\vec{O} B(O$ is the origin of reference)? a. $(2,2,4)$ b. $(2,11,5)$ c. ($-3,-3,-6)$ d. $(1,1,2)$

- Watch Video Solution

90. Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

91. Prove that the resultant of two forces acting at point O and represented by $\vec{O} B$ and $\vec{O} C$ is given by $2 \vec{O} D$, where D is the midpoint of

- Watch Video Solution

92. Two forces $\vec{A} B$ and $\vec{A} D$ are acting at vertex A of a quadrilateral $A B C D$ and two forces $\vec{C} B$ and $\vec{C} D$ at C prove that their resultant is given by $4 \vec{E} F$, where E and F are the midpoints of AC and BD , respectively.

- Watch Video Solution

93. $A B C$ is a triangle and P any point on $B C$. If $P Q$ is the sum of $A P+P B+P C$, show that ABQC is a parallelogram and Q , therefore, is a fixed point.

- Watch Video Solution

94. If vector $\vec{a}+\vec{b}$ bisects the angle between \vec{a} and \vec{b}, then prove that $|\vec{a}|$
$=|\vec{b}|$.

- Watch Video Solution

95. ABCDE is a pentagon. Prove that the resultant of force $\vec{A} B, \vec{A} E, \vec{B} C, \vec{D} C$, $\vec{E} D$ and $\vec{A} C$, is $3 \vec{A} C$.

- Watch Video Solution

$\rightarrow \quad \rightarrow \quad \rightarrow$
96. if $A O+O B=B O+O C$, than prove that B is the midpoint of $A C$.

- Watch Video Solution

97. A unit vector of modulus 2 is equally inclined to x - and y-axes at an angle $\pi / 3$. Find the length of projection of the vector on the z-axis.
98. Find the equation of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0 \cdot x^{3}+y^{3}=8 x y$ at the point where it meets the curve $y^{2}=4 x$ other than the origin.

- Watch Video Solution

99. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors \vec{a} and \vec{b} is A, then what is the value of $4 A^{2}$?

- Watch Video Solution

100.

If the
resultant of three
forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. $-6 \mathrm{~b} .-4 \mathrm{c} .2 \mathrm{~d} .4$

- Watch Video Solution

101. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points A, B, C, D if $\vec{b}-\vec{a}=\vec{c}-\vec{d}$, then show that $A B C D$ is parallelogram.

- Watch Video Solution

102. Statement 1:Let $A(\vec{a}), B(\vec{b}) a n d C(\vec{c})$ be three points such that $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=3 \hat{i}-\hat{j}+3 \hat{k} a n d \vec{c}=-\hat{i}+7 \hat{j}-5 \hat{k}$ Then $O A B C$ is a tetrahedron. Statement 2: Let $A(\vec{a}), B(\vec{b})$ andC (\vec{c}) be three points such that vectors $\vec{a}, \vec{b} a n d \vec{c}$ are non-coplanar. Then $O A B C$ is a tetrahedron where O is the origin.

- Watch Video Solution

103. Statement 1: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle. Which of the following Statements is/are correct ?
104. Statement 1: $\vec{a}=3 \vec{i}+p \vec{j}+3 \vec{k}$ and $\vec{b}=2 \vec{i}+3 \vec{j}+q \vec{k}$ are parallel vectors if $p=9 / 2 a n d q=2 . \quad$ Statement $2:$ if $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k} \quad$ are parallel, then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$ Which of the following Statements is/are correct ?

- Watch Video Solution

105. The position vectors of the vertices A, Band C of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{a}=\vec{b}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b. obtuse angled c. right angled d. none of these

- Watch Video Solution

106. aandb form the consecutive sides of a regular hexagon $A B C D E F$ Column I, Column II If $\vec{C} D=x \vec{a}+y \vec{b}$, then, p. $x=-2$ If $\vec{C} E=x \vec{a}+y \vec{b}$, then, q $x=-1$ If $\vec{A} E=x \vec{a}+y \vec{b}$, then, r. $y=1 \vec{A} D=-x \vec{b}$, then, s. $y=2$

- Watch Video Solution

107. Column I, Column II Collinear vectors, p. \vec{a} Coinitial vectors, q. \vec{b} Equal vectors, r. \vec{c} Unlike vectors (same intitial point), s. \vec{d}

- Watch Video Solution

108. Statement $1: \quad|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=5$.

Statement 2: The length of the diagonals of a rectangle is the same.
109. A man travelling towards east at $8 \mathrm{~km} / \mathrm{h}$ finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

- Watch Video Solution

110. OABCDE is a regular hexagon of side 2 units in the $X Y$-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

- Watch Video Solution

111. If $\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$, determine vector \vec{c} along the internal bisector of the angle between of the angle between vectors \vec{a} and \vec{b} such that $|\vec{c}|=5 \sqrt{6}$
112. Find a unit vector \vec{c} if $\overrightarrow{-i}+\vec{j}-\vec{k}$ bisects the angle between \vec{c} and $3 \vec{i}+4 \vec{j}$.

- Watch Video Solution

113. The vectors $2 i+3 \hat{j}, 5 \hat{i}+6 \hat{j}$ and $8 \hat{i}+\lambda \hat{j}$ have initial points at $(1,1)$. Find the value of λ so that the vectors terminate on one straight line.

- Watch Video Solution

114. If \vec{a}, \vec{b} and \vec{c} are three non-zero vectors, no two of which are collinear, $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a}, then find the value of $|\vec{a}+2 \vec{b}+6 \vec{c}|$.
115. i. Prove that the points $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are are collinear, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar. ii. Prove that the points $A(1,2,3), B(3,4,7)$, and $C(-3,-2,-5)$ are collinear. find the ratio in which point C divides $A B$.

- Watch Video Solution

116. Check whether the given three vectors are coplanar or non-coplanar.
$-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}, 4 \hat{i}-2 \hat{j}-2 \hat{k}$

(Watch Video Solution

117. Prove that the four points $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}$ and $2 \hat{i}+5 \hat{j}+10 \hat{k}$ form a tetrahedron in space.

(Watch Video Solution

118. If \vec{a} and \vec{b} are two non-collinear vectors, show that points
$l_{1} \vec{a}+m_{1} \vec{b}, l_{2} \vec{a}+m_{2} \vec{b}$ and $l_{3} \vec{a}+m_{3} \vec{b}$ are collinear if $\left|\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ 1 & 1 & 1\end{array}\right|=0$.

- Watch Video Solution

119. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

- Watch Video Solution

120. Let $\vec{A}(t)=f_{1}(t) \hat{i}+f_{2}(t) \hat{j}$ and $\vec{B}(t)=g(t) \hat{i}+g_{2}(t) \hat{j}, t \in[0,1], f_{1}, f_{2}, g_{1} g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all t and $\vec{A}(0)=2 \hat{i}+3 \hat{j}, \vec{A}(1)=6 \hat{i}+2 \hat{j}, \vec{B}(0)=3 \hat{i}+2 \hat{i}$ and $\vec{B}(1)=2 \hat{i}+6 \hat{j}$ Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t.
121. Find the least positive integral value of x for which the angle between vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute.

- Watch Video Solution

122. If vectors $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$.

- Watch Video Solution

123. Find the values of λ such that $x, y, z \neq(0,0,0)$ and $(\hat{i}+\hat{j}+3 \hat{k}) x+(3 \hat{i}-3 \hat{j}+\hat{k}) y+(-4 \hat{i}+5 \hat{j}) z=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$, where $\hat{i}, \hat{j}, \hat{k}$ are unit vector along coordinate axes.

- Watch Video Solution

124. A vector has component $A_{1}, A_{2} a n d A_{3}$ in a right -handed rectangular

Cartesian coordinate system $O X Y Z$ The coordinate system is rotated about the x-axis through an angel $\pi / 2$. Find the component of A in the new coordinate system in terms of A_{1}, A_{2}, and A_{3}

- Watch Video Solution

125. The position vectors of the point A, B, C and D are $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k}$ and $4 \hat{i}+5 \hat{j}+\lambda \hat{k}$, respectively. If the points A, B, C and D lie on a plane, find the value of λ.

(Watch Video Solution

126. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.
127. In a triangle $A B C$, DandE are points on BCandAC, respectivley, such that $B D=2 D$ CandAE $=3 E C$ Let P be the point of intersection of $A D a n d B E$ Find $B P / P E$ using the vector method.

- Watch Video Solution

128. Prove by vector method that the line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference.

- Watch Video Solution

129. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.
130. The axes of coordinates are rotated about the z-axis through an angle of $\pi / 4$ in the anticlockwise direction and the components of a vector are $2 \sqrt{2}, 3 \sqrt{2}, 4$. Prove that the components of the same vector in the original system are $-1,5,4$.

- Watch Video Solution

131. Three coinitial vectors of magnitudes a, 2a and 3a meet at a point and their directions are along the diagonals if three adjacent faces if a cube.

Determined their resultant R. Also prove that the sum of the three vectors determinate by the diagonals of three adjacent faces of a cube passing through the same corner, the vectors being directed from the corner, is twice the vector determined by the diagonal of the cube.

- Watch Video Solution

132. If two side of a triangle are $\hat{i}+2 \hat{j}$ and $\hat{i}+\hat{k}$, then find the length of the third side.

- Watch Video Solution

133. If in parallelogram $A B C D$, diagonal vectors are $\vec{A} C=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{B} D=-6 \hat{i}+7 \hat{j}-2 \hat{k}$, then find the adjacent side vectors $\rightarrow A B$ and $\vec{A} D$

- Watch Video Solution

134. Find the resultant of vectors $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}$ Find the unit vector in the direction of the resultant vector.

- Watch Video Solution

135. Check whether the three vectors $2 \hat{i}+2 \hat{j}+3 \hat{k},-3 \hat{i}+3 \hat{j}+2 \hat{k} a n d 3 \hat{i}+4 \hat{k}$ from a triangle or not
136. The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that using vectors.

- Watch Video Solution

137. Prove that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

- Watch Video Solution

138. Find the angle of vector $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ with x-axis.

- Watch Video Solution

139. If the vectors $\vec{\alpha}=a \hat{i}+a \hat{j}+c \hat{k}, \vec{\beta}=\hat{i}+\hat{k}$ and $\vec{\gamma}=c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar, then prove that c is the geometric mean of a and b.

- Watch Video Solution

140. The points with position vectors $60 i+3 j, 40 i-8 j$, $a i-52 j$ are collinear if a. $a=-40 \mathrm{~b} . a=40 \mathrm{c} . a=20 \mathrm{~d}$. none of these

- Watch Video Solution

141. Let α, β and γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k} ; \beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}$ and $\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}$ a. are collinear. b . forms an equilateral triangle. c. forms a scalene triangle. d. forms a right angled triangle.

- Watch Video Solution

142. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k}$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) only x (B) only y (C) Neither x nor y (D) both x and y

- Watch Video Solution

143. In the $\triangle O A B, M$ is the mid-point of $A B, C$ is a point on $O M$, such that $20 C=C M . X$ is a point on the side $O B$ such that $O X=2 X B$. The line $X C$ is produced to meet $O A$ in Y. then, $\frac{O Y}{Y A}$ is equal to

- Watch Video Solution

144. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ
145. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors \& $|\vec{c}|=\sqrt{3}$, then ordered pair (α, β) is $(\mathrm{a})(1,1)$ (b) $(1,-1)(c)(-1,1)(d)(-1,-1)$

- Watch Video Solution

146. The number of distinct real values of λ, for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+k, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is a. zero b . one c . two d . three

- Watch Video Solution

147. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, then A, B and C are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

- Watch Video Solution

148. Find a vector magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

149. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$

- Watch Video Solution

150. The position vectors of PandQ are $5 \hat{i}+4 \hat{j}+a \hat{k}$ and $-\hat{i}+2 \hat{j}-2 \hat{k}$, respectively. If the distance between them is 7, then find the value of a

- Watch Video Solution

151. Given three points are $A(-3,-2,0), B(3,-3,1) \operatorname{and} C(5,0,2)$ Then find a vector having the same direction as that of $\vec{A} B$ and magnitude equal to

- Watch Video Solution

152. Let $A B C D$ be a p[arallelogram whose diagonals intersect at P and let
O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \overrightarrow{O P}$

- Watch Video Solution

153. If $A B C D$ is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$

- Watch Video Solution

154. If $A B C D$ is a rhombus whose diagonals cut at the origin O, then proved that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=0$
155. Let D, EandF be the middle points of the sides $B C, C A a n d A B$, respectively of a triangle $A B C$ Then prove that $\vec{A} D+\vec{B} E+\vec{C} F=\overrightarrow{0}$.

- Watch Video Solution

156. Consider the set of eight vectors $V[a \hat{i}+b \hat{j}+c \hat{k}: a, b, c \in\{1-1\}]$. Three non-coplanar vectors cann be chosen from V in 2^{p} ways, then p is

- Watch Video Solution

157. Find the direction cosines of the vector joining the points $A(1,2,-3) a \cap B(-1-2,1)$ directed from $A \rightarrow B$

- Watch Video Solution

158. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$
159. The median $A D$ of the triangle $A B C$ is bisected at E and $B E$ meets $A C$ at F . Find $\mathrm{AF}: \mathrm{FC}$.

- Watch Video Solution

160. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of n vectors $\vec{c}=(n-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 n+1) \vec{a}-\vec{b}$ are collinear?

- Watch Video Solution

161. i. If vec a , vec b a n d vec c arenon - coplanar $\vec{\rightarrow} r s$, provet $\overrightarrow{\vec{\beta}} r$ rs3veca -7 vecb -4 vecc ,3 veca -2 vecb + vecc and veca + vecb +2 vecc ` are coplanar.

- Watch Video Solution

162. Prove that a necessary and sufficient condition for three vectors \vec{a}, \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l \vec{a}+m \vec{b}+n \vec{c}=\overrightarrow{0}$

- Watch Video Solution

163. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$, prove that $(\vec{a}-\vec{d}) .(\vec{b}-\vec{c}) \neq 0$,

- Watch Video Solution

164. If $\vec{a}, \vec{b} a n d \vec{c}$ are non-coplanar vectors, prove that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

- Watch Video Solution

165. Find the unit vector in the direction of vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.
166. let P an interioer point of a triangle $A B C$ and $A P, B P, C P$ meets the sides $B C, C A, A B$ in D, E, F, respectively, Show that $\frac{A P}{P D}=\frac{A F}{F B}+\frac{A E}{E C}$.

- Watch Video Solution

167. Let \vec{a}, \vec{b} and \vec{c} be unit vectors, such that
$\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \vec{x}=1, \vec{b} \vec{x}=\frac{3}{2},|\vec{x}|=2$. Then find the angel between
c and x

- Watch Video Solution

168. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between \vec{A} and \vec{B}, then find the value of α
169. If the vectors $3 \vec{p}+\vec{q} ; 5 p-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q}

- Watch Video Solution

170. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ andS(, $-2,-1)$, then find the projection length of \vec{P} Qon $\vec{R} S$

- Watch Video Solution

171. A, B, C, D are any four points, prove that
$\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=4($ Area of $\triangle A B C)$.

- Watch Video Solution

172. Let $u=\hat{i}+\hat{j}, v=\hat{i}-\hat{j}$ and $w=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $u \cdot \hat{n}=0$ and $v \cdot \hat{n}=0$, then $|w \cdot \hat{n}|$ is

- Watch Video Solution

173. If the angel between unit vectors $\vec{a} a n d \vec{b} 60^{\circ}$, then find the value of $|\vec{a}-\vec{b}|$

D Watch Video Solution

174. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=9$,find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

175. Constant forces $P_{1}=\hat{i}+\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{k} a n d P_{3}=-\hat{j}-\hat{k}$ act on a particle at a point A Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k})$ to $B(6 \hat{i}+\hat{j}-3 \hat{k})^{\text {. }}$
176. If \vec{a}, and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$

- Watch Video Solution

177. Let $G_{1}, G_{2} a n d G_{3}$ be the centroids of the triangular faces $O B C, O C A a n d O A B$, respectively, of a tetrahedron $O A B C$ If V_{1} denotes the volumes of the tetrahedron $O A B C a n d V_{2}$ that of the parallelepiped with $O G_{1}, O G_{2} a n d O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{2}$

- Watch Video Solution

178. Prove that $\hat{i} \times(a+\hat{i})+\hat{j} \times(a \times \hat{j})+\hat{k} \times(a \times \hat{k})=2 a$

- Watch Video Solution

179. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$, then find vector \vec{a}

- Watch Video Solution

180. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors, then prove that [$\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

181. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of
$[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

182. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors, find $|2 \vec{a}+\vec{b}+\vec{c}|$
183. If a, bandc are three non-copOlanar vector, non-zero vectors then the value of $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}$.

- Watch Video Solution

184. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}$ are coplanar.

- Watch Video Solution

185. For any four vectors, prove that
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}$

- Watch Video Solution

186. If \vec{b} and \vec{c} are two-noncollinear vectors such that $\vec{a}|\mid(\vec{b} \times \vec{c})$, then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \vec{c})$.

- Watch Video Solution

187. If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively, then find $\angle A B C$.

- Watch Video Solution

188. Let \vec{a}, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=2$. Then find the length of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

189. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors $\vec{a} a n d \vec{b}$

- Watch Video Solution

190. If $|\vec{a}|=3,|\vec{b}|=4$ and the angle between \vec{a} and $\vec{b} i s 120^{\circ}$. Then find the value of $|4 \vec{a}+3 \vec{b}|$

- Watch Video Solution

191. If \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vector and p, q, r constitute the reciprocal system of vectors, then $(l a+m b+n c)$. $(l p+m q+n r)$. is equals to

- Watch Video Solution

192. Find $|\rightarrow a|$ and $|\rightarrow b|$, if $(\rightarrow a+\rightarrow b) \rightarrow a-\rightarrow b=8$ and $|\rightarrow a|=8|\rightarrow b|$

- Watch Video Solution

193. Let \vec{a}, \vec{b}, and \vec{c} and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{c}]}$.

$$
[\vec{a} \vec{b} \vec{c}]
$$

(Watch Video Solution

194. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ equals a. 0 b. $[\vec{a} \vec{b} \vec{c}]$ c. $2[\vec{a} \vec{b} \vec{c}]$
d. $-[\vec{a} \vec{b} \vec{c}]$
195. Find the vector equation of the plane passing through the points having position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 i-\hat{j}+\hat{k} a n d \hat{i}+2 \hat{j}+\hat{k}$

Watch Video Solution

196. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$, where \vec{a}, \vec{b}, and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$

- Watch Video Solution

197. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find thevalue of $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$

- Watch Video Solution

198. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then find \vec{c}

- Watch Video Solution

199. Given that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$

- Watch Video Solution

200. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8$ and $|\vec{a}+\vec{b}|=10$, then find $|\vec{b}|$

- Watch Video Solution

201. If A, B, C, D are four distinct point in space such that $A B$ is not
$\overrightarrow{A B} \cdot \overrightarrow{C D}=k\left(|\overrightarrow{A D}|^{2}+|\overrightarrow{B C}|^{2}-|\overrightarrow{A C}|^{2}-|\overrightarrow{B D}|^{2}\right)$, then find the value of k

Watch Video Solution

202. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m, n)

- Watch Video Solution

203. If $|\vec{a}|=2|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, then find the value of \vec{a}. \vec{b}

- Watch Video Solution

204. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ and interpret it geometrically.
205. \vec{a}, \vec{b} and \vec{c} are unit vectors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$. Angle between $\vec{a} a n d \vec{b} i s \theta_{1}$, between \vec{b} and \vec{c} is θ_{2} and between $\vec{a} a n d \vec{c}$ varies $[\pi / 6,2 \pi / 3]$ Then the maximum of $\cos \theta_{1}+3 \cos \theta_{2}$ is 3 b. 4 c. $2 \sqrt{2}$ d. 6

- Watch Video Solution

206. Prove that $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

- Watch Video Solution

207. Let A, B, C be three unit vectors and $A . B=A . C=0$. If the angel between B and C is $\frac{\pi}{6}$, then A is equals to

- Watch Video Solution

208. The position vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k}) \operatorname{andD}(2 \hat{i}+3 \hat{j}+2 \hat{k})$ Find the volume
of the tetrahedron $A B C D$

- Watch Video Solution

209. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

- Watch Video Solution

210. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]]=\vec{u} \cdot \vec{v} \times \vec{w}$

- Watch Video Solution

211. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k} a n d a \hat{i}+\hat{k}$ becomes minimum.
212. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m, n)

(Watch Video Solution

213. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} . \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$.

- Watch Video Solution

214. Find the altitude of a parallelepiped whose three coterminous edtges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k} a n d \vec{C}=\hat{i}+\hat{j}+3 \hat{k} w i t h \vec{A}$ and \vec{B} as the sides of the base of the parallepiped.

- Watch Video Solution

215. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=2,|\vec{b}|=3$ and $(\vec{a} . \vec{b})=4$ then find $|(\vec{a}-\vec{b})|^{`}$

- Watch Video Solution

216.

Prove
that
$\vec{R}+\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}$

- Watch Video Solution

217. If \vec{a}, \vec{b}, and \vec{c} are non-coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non-parallel, then prove that the angel between \vec{a} and $\vec{b}, i s 3 \pi / 4$.

- Watch Video Solution

218.

$\vec{r} . \vec{a}=0, \vec{r} . \vec{b}=1$ and $\left[\begin{array}{ccc}\vec{r} & \vec{a} & \vec{b}\end{array}\right]=1, \vec{a} \vec{b} \neq 0,(\vec{a} \vec{b})^{2}-|\vec{a}|^{2}|\vec{b}|^{2}=-1$, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

219. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$.

- Watch Video Solution

220. \vec{a}, \vec{b} and \vec{c} are three non-coplanar ,non-zero vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is equal to

- Watch Video Solution

$$
\vec{a} \times(\overrightarrow{d x x \vec{c}})
$$

$\vec{x}=\lambda \vec{a}+\vec{a} \times \longrightarrow$, then find the value of λ

$$
(\vec{a} \vec{c})|\vec{a}|^{2}
$$

- Watch Video Solution

222. Let \hat{a}, \hat{b}, and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α, between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ. If $A(\hat{a} \cos \alpha, 0), B(\hat{b} \cos \beta, 0)$ and $C(\hat{c} \cos \gamma, 0)$, then show that in triangle $A B C, \frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}$

- Watch Video Solution

223. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k} a n d 2 \hat{i}-3 \hat{j}$.

(D) Watch Video Solution

224. If \vec{b} is not perpendicular to \vec{c}, then find the vector \vec{r} satisfying the equyation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} . \vec{c}=0$.

- Watch Video Solution

225. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c})[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ is :

- Watch Video Solution

226. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $\lambda \vec{b} \times \vec{a}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$, then find the value of λ
227. Prove that $(\vec{a} . \hat{i})(\vec{a} \times \hat{i})+(\vec{a} . j)(\vec{a} \times \hat{j})+(\vec{a} . \hat{k})(\vec{a} \times \hat{k})=0$.

- Watch Video Solution

228. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then find the value of $|\vec{b}|$

- Watch Video Solution

229. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

230. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.
231. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$. If \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \cdot \vec{b}$

- Watch Video Solution

232. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between a and b is $\frac{\pi}{6}$, then prove that

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|^{2}=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
$$

- Watch Video Solution

233. Statement 1: \vec{a}, \vec{b}, and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non-coplanar. If
$[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1$, thend $=\vec{a}+\vec{b}+\vec{~}$
$[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \vec{d}$

- Watch Video Solution

234. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

235. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$.
236. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

237. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$

- Watch Video Solution

238. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

239. Prove that an angle inscribed in a semi-circle is a right angle using vector method.
240. If $\vec{a} \cdot \hat{i}=\vec{a} .(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})$, then find the unit vector \vec{a}

- Watch Video Solution

241. Prove by vector method that $\cos (A+B)=\cos A \cos B-\sin A \sin B$

- Watch Video Solution

242. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k}$, is $\frac{1}{\sqrt{30}}$,then find the value of x

- Watch Video Solution

243. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a
244. A unit vector a makes an angle $\frac{\pi}{4}$ with z -axis. If $a+i+j$ is a unit vector, then a can be equal to

- Watch Video Solution

245. if \vec{a}, \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a unit vector then find the value of $|2 \vec{a}+\vec{b}+\vec{c}|^{2}$

- Watch Video Solution

246. If \vec{a}, \vec{b}, and \vec{c} be non-zero vectors such that no two are collinear or $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c}, then find the value of $\sin \theta$

- Watch Video Solution

247. If $\vec{p}, \vec{q}, \vec{r}$ denote vector $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q}$.

(Watch Video Solution

248. If \vec{a} and \vec{b} be two non-collinear unit vector such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a} and \vec{b}.

D Watch Video Solution

249. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b}) \cdot$

(Watch Video Solution

250. Prove that $(\vec{a} .(\vec{b} \times \hat{i})) \hat{i}+(\vec{a} \cdot(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} .(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$.

- Watch Video Solution

251. For any four vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that $\vec{d} .(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d})))=(\vec{b} \cdot \vec{d})[\vec{a} \vec{c} \vec{d}]$.

Watch Video Solution

252. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$.

Watch Video Solution

$$
\vec{b} \times(\vec{a} \times \vec{b})
$$

253. If $\vec{a}=\vec{p}+\vec{q}, \vec{p} \times \vec{b}=0$ and $\vec{q} \vec{b}=0$, then prove that $\quad=\vec{q}$ $\vec{b} \vec{b}$

- Watch Video Solution

254. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$, then find vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$

(Watch Video Solution

255. If non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a}=\vec{b}$ is given by

- Watch Video Solution

256. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

257. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$

(D) Watch Video Solution

258. If three unit vectors \vec{a}, \vec{b}, and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=0$, then find the angle between \vec{a} and \vec{b}

- Watch Video Solution

259. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between \vec{a} and \vec{b}

- Watch Video Solution

260. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

261. If $\vec{r} . \hat{i}=\vec{r} . \hat{j}=\vec{r} . \hat{k}$ and $|\vec{r}|=3$, then find the vector \vec{r}

- Watch Video Solution

262. If \vec{a}, \vec{b}, and \vec{c} are non-zero vectors such that $\vec{a} . \vec{b}=\vec{a}$. \vec{c}, then find the geometrical relation between the vectors.

- Watch Video Solution

263. Find the projection of vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

264. If θ is th angle between the unit vectors a and b, then prove that
$\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}|$,and $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$
265. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\mathrm{pi} / 3$. If veca \times vecb + vecb \times vecc $=p$ veca $+q$ vecb $+r$ vecc, where p, q and r are scalars, then the value of $p 2$ $+2 q 2+r 2 / q 2$ is

- Watch Video Solution

266. Given unit vectors \hat{m}, $\hat{\text { and }}$ d \hat{p} such that angel between $\hat{m} a n d \hat{n}$ is α and angle between \hat{p} and $(\hat{m} \times \hat{n})$ is also α, then $[\hat{n} \hat{p} \hat{m}]=$

- Watch Video Solution

267. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar vectors and let the equation $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$, then prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$ is a null vector.

- Watch Video Solution

268. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x -axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

269. The base of the pyramid $A O B C$ is an equilateral triangle $O B C$ with each side equal to $4 \sqrt{2}, O$ is the origin of reference, $A O$ is perpendicualar to the plane of $O B C$ and $|\vec{A} O|=2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of $O B a n d$ the other passing through O and the mid point of $B C$

- Watch Video Solution

270. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$
271. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

- Watch Video Solution

272. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$

- Watch Video Solution

273. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c}, \vec{d}=15$.

- Watch Video Solution

274. If $A, B a n d C$ are the vetices of a triangle $A B C$, then prove sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

Watch Video Solution

275. Using cross product of vectors , prove that $(\sin A+B)-\sin A \cos B+\cos A \sin B$.

- Watch Video Solution

276. Find a unit vector perpendicular to the plane determined by the points (1, - 1,2$),(2,0,-1)$ and $(0,2,1)$

- Watch Video Solution

277. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$.
278. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} Eand $\vec{C} A($ where $|\vec{C} A|=12$).

- Watch Video Solution

279. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

- Watch Video Solution

280. Let \vec{a}, \vec{b}, and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b} Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.
281. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

282. If $\vec{A}=4 \hat{i}+6 \hat{j} a n d \vec{B}=3 \hat{j}+4 \hat{k}$, then find the component of $\vec{A} B$

- Watch Video Solution

283. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in units.

- Watch Video Solution

284. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors, then prove that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$

- Watch Video Solution

285. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$ If the ordered set $[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the values of x

- Watch Video Solution

286. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar vectors, then find the value of
$\frac{\vec{a} \vec{b} \times \vec{c}}{.}+\frac{\vec{b} \vec{c} \times \vec{a}}{}+\frac{\vec{c} \vec{b} \times \vec{a} .}{}$.
$\vec{b} \vec{c} \times \vec{a} \quad \vec{c} \vec{a} \times \vec{b} \quad \vec{a} \vec{b} \times \vec{c}$

- Watch Video Solution

287. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cyclic quadrilateral $A B C D$, prove that

$$
\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{b}|}{}=0
$$

$(\vec{b}-\vec{a}) \vec{d}-\vec{a} \quad(\vec{b}-\vec{c}) \vec{d}-\vec{c}$

- Watch Video Solution

288. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d}) \operatorname{andC}(\vec{l} \vec{b}+m \vec{d})$ Prove that the area of the quadrialeral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$

- Watch Video Solution

289. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$, is paralelto $\vec{b}-\vec{c}$
290. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\vec{c}$

- Watch Video Solution

291. In triangle $A B C$,points D, EandF are taken on the sides $B C, C A a n d A B$, respectively, such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$. Prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle(A B C)$

- Watch Video Solution

292. Let A, B, C be points with position vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane $O A C$

- Watch Video Solution

293. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the value of $(2 \vec{a}+5 \vec{b}) \cdot((3 \vec{a}+\vec{b}+\vec{a} \times \vec{b}))$

- Watch Video Solution

294. If u and v are two non-collinear unit vectors such that $|\vec{u} \times \vec{v}|=\left|\frac{\vec{u}-\vec{v}}{2}\right|$, then the value of $|\vec{u} \times(\vec{u} \times \vec{v})|^{2}$ is equal to

- Watch Video Solution

295. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

296. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a} ; \vec{r} \times \vec{b}=\vec{a} \times \vec{b} ; \vec{a} \neq \overrightarrow{0} ; \vec{b} \neq \overrightarrow{0} ; \vec{a} \neq \lambda \vec{b}$, and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of $\vec{a} a n d \vec{b}$

- Watch Video Solution

297. If $|\vec{a}|=2$, then find the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$

- Watch Video Solution

298. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of a triangle ABC , show that the area of the triangle ABC is $\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}]$. Also deduce the condition for collinearity of the points A, B and C.

- Watch Video Solution

299. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.

- Watch Video Solution

300. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} a n d \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

301. Using vectors, find the area of the triangle with vertices $A(1,1,2), B(2$, $3,5)$ and $C(1,5,5)$.

- Watch Video Solution

302. Let \vec{a}, \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ If $\vec{b}-2 \vec{c}=\lambda \vec{a}$, then find the value of λ

- Watch Video Solution

303. Find the area a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

304. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot[(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})]=0$, then angle between \vec{a} and \vec{b} is a. 0 b. $\pi / 2 \mathrm{c} . \pi \mathrm{d}$. indeterminate

- Watch Video Solution

305. If $\vec{a} a n d \vec{b}$ are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$.

- Watch Video Solution

306. If the vectors \vec{a}, \vec{b}, and \vec{c} form the sides $B C, C A a n d A B$, respectively, of triangle $A B C$, then $\begin{array}{llll}\text { (a) } \vec{a} \vec{b}+\vec{b} \vec{c}+\vec{c} \vec{a}=0 & \text { (b) } \vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} & \text { (c). }\end{array}$
$\vec{a} \vec{b}=\vec{b} \vec{c}=\vec{c} \vec{a}(\mathrm{~d}) . \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$

(D) Watch Video Solution

307. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$

- Watch Video Solution

308. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$

If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$

- Watch Video Solution

309. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ then $[\vec{a} \vec{b} \vec{c}]$ in terms of θ is equal to :

- Watch Video Solution

310. Volume of parallelepiped formed by vectors
$\vec{a} \times \vec{b}, \vec{b} \times \vec{c} a n d \vec{c} \times \vec{a} i s 36 s q$ units. Column \|Column II Volume of parallelepiped formed by vectors \vec{a}, \vec{b}, and \vec{c} is $\mid \mathrm{p}$. Osq.units Volume of tetrahedron formed by vectors \vec{a}, \vec{b}, and \vec{c} is $\mid q$. 12 sq. units Volume of parallelepiped formed by vectors $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is|r. 6 sq. units Volume of parallelepiped formed by vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c} a n d \vec{c}-\vec{a}$ is $\mid \mathrm{s}$. 1 sq. units
311. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ a. $3 \mathrm{~b} \cdot-3 \mathrm{c} .0 \mathrm{~d}$. cannot be evaluated

- Watch Video Solution

312. The value of a so that the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ is minimum is a. -3 b. 3 c. $1 / \sqrt{3}$ d. $\sqrt{3}$

- Watch Video Solution

313. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n} \overrightarrow{O A}_{i} \times \overrightarrow{O A}_{i+1}=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$
314. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp \vec{B}$, then find vector \vec{X} which satisfies the equation
$\vec{A} \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$

- Watch Video Solution

315. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

316. $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=[\vec{a} \vec{b} \vec{c}]$, then

- Watch Video Solution

317. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k} \vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$.

- Watch Video Solution

318. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

319. If $\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{a})$ and $4[\vec{a} \vec{b} \vec{c}]=1$, then $x_{1}+x_{2}+x_{3}$ is equal to (A) $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$ (B) $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
$2 \vec{r} .(\vec{a}+\vec{b}+\vec{c})$ (D) $4 \vec{r} .(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

320. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non-coplanar vector) $[\vec{a} \vec{b} \vec{c}]^{2} \mathrm{~b}$. $[\vec{a} \vec{b} \vec{c}]^{3} \mathrm{c}$. $[\vec{a} \vec{b} \vec{c}]^{4}$ d. $[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

321. If V be the volume of a tetrahedron and V^{\prime} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to a. 9 b. 12 c. 27 d. 81

- Watch Video Solution

322. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these

- Watch Video Solution

323. $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of the triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle ABC , then $r .(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is always equal to

- Watch Video Solution

324. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, $\vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{c}]}, \overrightarrow{\vec{c} \times \vec{a}}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{c}]}$ Then the

$$
\left[\begin{array}{lll}
\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}]
\end{array}\right.
$$

value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is a. 0 b .1 c .2 d . 3

- Watch Video Solution

325. Let $\vec{a}, \vec{b} a n d \vec{c}$ be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these
326. The position vectors of point A, B, and C are $\hat{i}+\hat{j}+\hat{k}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively. Then greatest angel of triangle $A B C$ is $120^{\circ} \mathrm{b} \cdot 90^{0} \mathrm{c} \cdot \cos ^{-1}(3 / 4) \mathrm{d}$. none of these

- Watch Video Solution

327. Let $\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j} a n d \vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x \hat{j})$ be two variable vectors $(x \in R)$ Then $\vec{a}(x) a n d \vec{b}(x)$ are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

- Watch Video Solution

328.

If
$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+\hat{j}+2 \hat{k} \operatorname{and}(1+\alpha) \hat{i}+\beta(1+\alpha) \hat{j}+\gamma(1+\alpha)(1$
are a. $-2,-4,-\frac{2}{3}$ b. $2,-4, \frac{2}{3}$ c. $-2,4, \frac{2}{3}$ d. $2,4,-\frac{2}{3}$

Watch Video Solution

329. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

330. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0$, then
a. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$
c. \vec{a}, \vec{b}, and \vec{c} are coplanar
d. none of these
331. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a. $\hat{j}-\hat{k} b \cdot-\hat{i}+\hat{j}$
c. $\hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$

- Watch Video Solution

332. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+2 \hat{j}+3 \hat{k}$ be three given vectors. If
\vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{r} \vec{a}=0$, then find the value of $\vec{r} \vec{b}$

- Watch Video Solution

333. Let \vec{a}, \vec{b}, and \vec{c} be vectors forming right-hand traid. Let $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$, and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$, If $x \in R^{+}$, then
a. $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value $=2$. b. $x^{4}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $=\left(\frac{3}{2}\right)^{2 / 3}$ c. $[\vec{p} \vec{q} \vec{r}]>0 \mathrm{~d}$. none of these

- Watch Video Solution

334. From a point O inside a triangle $A B C$, perpendiculars $O D$, OEandOf are drawn to rthe sides $B C, C A a n d A B$, respecrtively. Prove that the perpendiculars from A, B, andC to the sides $E F, F D a n d D E$ are concurrent.

D Watch Video Solution

335. Find $\vec{a} \times \vec{b}$, if $\vec{a}=2 \hat{i}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

336. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acrting on a particle such that the particle is displaced from point $A(-3,-4,1) \rightarrow B(-1,-1,-2)$

- Watch Video Solution

337. Find the angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

338. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

339. In the quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are equal and perpendicular to each other. What type of a quadrilateral is $A B C D$?

- Watch Video Solution

340. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ arwe two sets of vectors such that $\vec{e}_{1} \cdot \vec{E}_{j}=1$, if and $\vec{e}_{i} \cdot \vec{E}_{j}=0$ and \quad if $i \neq j$, the prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{i}\right.$
341. Find the angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

342. Given the vectors \vec{A}, \vec{B}, and \vec{C} form a triangle such that $\vec{A}=\vec{B}+\vec{C}$ find a, b, c, andd such that the area of the triangle is $5 \sqrt{6}$ where $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k} \vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k} \vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

343. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector
which is equally inclined to these vectors is $\vec{a}+\vec{b}+\vec{c} \mathrm{~b} . \frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
c. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$ d. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$
344. Let a three dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$ If $3|\vec{V}|=\sqrt{m}$ Then find the value of m

- Watch Video Solution

345. If $\vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, find $|3 \vec{a}-2 \hat{b}+4 \hat{c}|$

- Watch Video Solution

346. Let $\vec{O} A=\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, Aand C are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k
347. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} . \vec{b}=0=\vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$.

- Watch Video Solution

348. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

- Watch Video Solution

349. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$, and $\vec{c}=2 \hat{i}-\alpha \hat{j}+\hat{k}$ Find thevalue of 6α, such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$.

- Watch Video Solution

350. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1 , 5and 3 , respectively, such that the angel between $\vec{a} a n d \vec{b} i s \theta$ and $\vec{a} \times(\vec{a} \times \vec{b})=c$. Then $\tan \theta$ is equal to a. 0 b. $2 / 3$ c. $3 / 5 \mathrm{~d} .3 / 4$

- Watch Video Solution

351. Two vectors in space are equal only if they have equal component in
a. a given direction
b. two given directions
c. three given directions
d. in any arbitrary direction

- Watch Video Solution

352. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{k}-\hat{i}$. If \vec{d} is a unit vector such that $\vec{a} . \vec{d}=0=[\vec{b} \vec{c} \vec{d}]$, then d equals a. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$ b. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ c. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ d. $\pm \hat{k}$
353. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

- Watch Video Solution

354. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$
(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a}) \text { b. } \vec{a} \vec{b}=0 \text { c. } \vec{a} \vec{c}=0 \text { d. } \vec{b} \vec{c}=0
$$

- Watch Video Solution

355. $[(\vec{a} \times \vec{b})(\vec{c} \times \vec{d})(\vec{e} \times \vec{f})]$ is equal to
(a) $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
(b) $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$

(d) $[\vec{c} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

- Watch Video Solution

356. \vec{b} and \vec{c} are non-collinear
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \vec{c}) \vec{a}=\vec{?}$ Then a. $x=1$ b. $x=-1$ c. $y=(4 n+1) \pi / 2, n \in I$ d. $y=(2 n+1) \pi / 2, n \in I$

- Watch Video Solution

357. If \vec{a} and \vec{b} are unit vectors, then angle between \vec{a} and \vec{b} for
$\sqrt{3} \vec{a}-\mathrm{b}$ to be unit vector is
358. If $\vec{a} \perp \vec{b}$, then vector \vec{v} in terms of $\vec{a} a n d \vec{b}$ satisfying the equation s
$\vec{v} \vec{a}=\operatorname{Oand} \vec{v} \vec{b}=1 \operatorname{and}[\vec{v} \vec{a} \vec{b}]=1$ is $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$ b. $\frac{\vec{b}}{|\vec{b}|^{\square}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$ c.
$\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{\square}}$

(Watch Video Solution

359. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}^{\prime}=2 \hat{i}+\hat{j}-\hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is reciprocal vector \vec{a})

- Watch Video Solution

360. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$, then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$ c. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$ d. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$
361. If unit vectors $\vec{a} a n d \vec{b}$ are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in interval a.[0, $\pi / 6]$ b. $[5 \pi / 6, \pi]$ C.
$[\pi / 6, \pi / 2]$ d. $[\pi / 2,5 \pi / 6]$

- Watch Video Solution

362. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, $\vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the
value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is a. 0 b .1 c .2 d . 3

- Watch Video Solution

363. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{2} \hat{k}, \vec{b}=b_{1} \hat{i}+a_{2} \hat{j}+b_{2} \hat{k}$, and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{2} \hat{k}$, be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors \vec{a} and \vec{b}. If the angle between a and b is $\pi / 6$, then

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \text { is equal to }
$$

A. (a) 0
B. (b) 1
C. (c) $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. (d) $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)$

Answer: null

D Watch Video Solution

364. A, B, CandD are four points such that
$\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j})$ and $\vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}) \quad$ If $\quad C D$
intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b. $n \geq 1 / 3$ c. $m=n$ d. $m<n$

- Watch Video Solution

365. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of $\vec{a} a n d \vec{b}$, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k} \mathrm{c} .3 \hat{i}-\hat{j}+3 \hat{k} \mathrm{~d} . \hat{i}+3 \hat{j}-3 \hat{k}$

D Watch Video Solution

366. If \hat{a}, \hat{b}, and \hat{c} are unit vectors, then $|\hat{a}+\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed

D Watch Video Solution

367. Which of the following expressions are meaningful? a. $\vec{u} .(\vec{v} \times \vec{w})$ b.
$\vec{u} \cdot \vec{v} \cdot \vec{w} \mathrm{c} \cdot(\vec{u} \vec{v}) \cdot \vec{w} \mathrm{~d} \cdot \vec{u} \times(\vec{v} \cdot \vec{w})$
368. Find the value of λ if the volume of a tetrashedron whose vertices are with position vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+3 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k} a n d 7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic unit.

- Watch Video Solution

369. Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}=\hat{k} a n d \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c}, whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$, is a. $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $2 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $-2 \hat{i}-\hat{j}+5 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

370. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \vec{a} \times \vec{d}=0$, then which of the following may be true? $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are necessarily coplanar b. \vec{a} lies in the plane of \vec{c} and \vec{d} c.
\vec{b} lies in the plane of \vec{a} and $\vec{d} \mathrm{~d} . \vec{c}$ lies in the plane of \vec{a} and \vec{d}
371. Vector $\frac{1}{3}(2 i-2 j+k)$ is (A) a unit vector (B) makes an angle $\pi / 3$ with vector $(2 \hat{i}-4 \hat{j}+3 \hat{k})$ (C) parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)$ (D) perpendicular to vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

372. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$.

Find the value of $[\vec{u} \vec{v} \vec{w}]$.

- Watch Video Solution

373. The scalarslandm such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to

- Watch Video Solution

374. If $O A B C$ is a tetrahedron where O is the orogin $\operatorname{anf} A, B$, and C are the other three vertices with position vectors, \vec{a}, \vec{b}, and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron is $a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})$
given by position vector

$$
2[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

375. If K is the length of any edge of a regular tetrahedron, then the distance of any vertex from the opposite face is

- Watch Video Solution

376. In $\triangle A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of the lines $A Q a n d C P$, using vector method, find the area of
$A B C$ if the area of $B R C$ is 1 unit
377. Let $A B C D$ be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

378. Find $\vec{a} \vec{b}$ when: $\vec{a}=\hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-2 \hat{k}$

- Watch Video Solution

379. if $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ then $\vec{a} X \vec{b}$ is

- Watch Video Solution

380. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k} \quad$ and $\vec{c}=x \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
A. (a) parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. (b) orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. (c) orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. (d) orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

Answer: null

- Watch Video Solution

381. Find $|\rightarrow a \times \rightarrow b|$, if $\rightarrow a=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\rightarrow b=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

382. find the value of x, y and z so that vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=$ $2 \hat{i}+y \hat{j}+\hat{k}$ are equal

- Watch Video Solution

383. The lengths of two opposite edges of a tetrahedron are a and b; the shortest distane between these edges is d, and the angel between them is θ Prove using vectors that the volume of the tetrahedron is $\frac{a b d \sin \theta}{6}$.

- Watch Video Solution

384. Volume of the parallelopiped whose adjacent edges are vectors $\vec{a}, \vec{b}, \vec{c}$ is

- Watch Video Solution

385. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k} a n d \vec{C}$ form a left-handed system, then \vec{C} is a. $11 \hat{i}-6 \hat{j}-\hat{k}$ b. $-11 \hat{i}+6 \hat{j}+\hat{k}$ c. $11 \hat{i}-6 \hat{j}+\hat{k}$ d. $-11 \hat{i}+6 \hat{j}-\hat{k}$

- Watch Video Solution

386. Let $a=2 i-j+k, b=i+2 j-k$ and $c=i+j-2 k$ be three vectors. A vector in the plane of b and c whose projection on a is of magnitude $\left(\frac{\sqrt{3}}{2}\right)$ is

Watch Video Solution

387. Vectors $\vec{A} a n d \vec{B}$ satisfying the vector equation
$\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$, where \vec{a} and \vec{b} are given vectors, are a.
$\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$ b. $\quad \vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$ c. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$ d.
$\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

- Watch Video Solution

388. if $\left.\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta) \cdot(\vec{\alpha} \times \vec{\gamma})$ equals to a. $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$ b. $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ c. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ d. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
389. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k} a n d \vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ are three coplanar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$ Then v is perpendicular to $\vec{\alpha}$ b. $\vec{\beta}$ c. $\vec{\gamma}$ d. none of these

(D) Watch Video Solution

390. $a_{1}, a_{2}, a_{3}, \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ for all $x \in R$, then
A. (a) vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other
B. (b) vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each other
C. (c) If vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triplet is $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. (d) If $2 a_{1}+3 a_{2}+6 a_{3}=26$, then $\left|a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$

- Watch Video Solution

391. If P is any arbitrary point on the circumcircle of the equilateral triangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$

- Watch Video Solution

392. Let $\vec{a} a n d \vec{b}$ be two non-zero perpendicular vectors. A vecrtor \vec{x} satisfying the equation $\vec{x} \times \vec{b}=\vec{a}$ is $\vec{x}=\beta \vec{b}-\frac{1}{|b|^{2}} \vec{a} \times \vec{b}$ then β can be

- Watch Video Solution

393. If $\vec{a} a n d \vec{b}$ are two vectors and angle between them is θ, then
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \quad|\vec{a} \times \vec{b}|=(\vec{a} \vec{b})$, if $\theta=\pi / 4$
$\vec{a} \times \vec{b}=(\vec{a} \vec{b}) \hat{n}$, (wheren is unit vector,) if $\theta=\pi / 4(\vec{a} \times \vec{b}) \vec{a}+\vec{b}=0$

- Watch Video Solution

394. Let \vec{r} be a unit vector satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$. Then

- Watch Video Solution

395. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2}) \operatorname{and} \vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the z-axis, then the value of α is
396. Let \vec{a}, \vec{b}, and \vec{c} be non-zero vectors and $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c}) \operatorname{and} \vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$. Vectors $\vec{V}_{1} a n d \vec{V}_{2}$ are equal. Then (a). $\vec{a} a n \vec{b}$ are orthogonal (b). $\vec{a} a n d \vec{c}$ are collinear (c). \vec{b} and \vec{c} are orthogonal (d). $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

- Watch Video Solution

397. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k} \quad$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $-2 \hat{i}-\hat{j}+5 \hat{k}$ c. $2 \hat{i}+3 \hat{j}+3 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

398. Let $\vec{P} R=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{S} Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS, and $\vec{P} T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the
volume of the parallelepiped determine by the vectors $\vec{P} T, \vec{P} Q$ and $\vec{P} S$ is 5 b. 20 c. 10 d. 30

- Watch Video Solution

399. If in a right-angled triangle $A B C$, the hypotenuse $A B=p$,then
$\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these

- Watch Video Solution

400. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k})$, \vec{a}. $\vec{b}=$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \hat{b} is $\hat{i}-\hat{j}+\hat{k} \mathrm{~b} .2 \hat{j}-\hat{k}$ c. \hat{i} d. $2 \hat{i}$

- Watch Video Solution

401. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$, then \vec{a} is equal to a.

$$
\text { b. } \quad \lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R
$$

$$
\begin{aligned}
& \lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda \in R \quad \text { b. } \quad \lambda \hat{i}+(1-2 \lambda) \\
& \lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda \in R \text { d. } \lambda \hat{i}-(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R
\end{aligned}
$$

c.

- Watch Video Solution

402. If $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=0$, where \vec{a}, \vec{b}, and \vec{c} are non-coplanar, then a.

$$
\vec{r} \perp(\vec{c} \times \vec{a}) \text { b. } \vec{r} \perp(\vec{a} \times \vec{b}) \text { c. } \vec{r} \perp(\vec{b} \times \vec{c}) \text { d. } \vec{r}=\overrightarrow{0}
$$

- Watch Video Solution

403. The unit vector orthogonal to vector $-\hat{i}+\hat{j}+2 \hat{k}$ and making equal angles with the x and y-axis a. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$ b. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$ c. $\pm \frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k}) \mathrm{d}$. none of these

- Watch Video Solution

404. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle between a and b is a. $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$
405. If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to \vec{a} is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{(\vec{b} \cdot \vec{a}) \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

- Watch Video Solution

406. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between b and the z -axis acute and less than $\pi / 6$ is given by

- Watch Video Solution

407. Let $\vec{a} \cdot \vec{b}=0$, where $\vec{a} a n d \vec{b}$ are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} If
$\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then a.- $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ b. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
c. $0 \leq \theta \leq \frac{\pi}{4}$ d. $0 \leq \theta \leq \frac{3 \pi}{4}$

- Watch Video Solution

408.

A parallelogram
is constructed
on
$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and $\vec{a} a n d \vec{b}$ are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48

- Watch Video Solution

409. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals a $-1 / 2$ b. 1/2 c. 1 d. none of these

- Watch Video Solution

410. If a and c are unit vectors and $|b|=4$. The angel between aandc is $\cos ^{-1}(1 / 4)$ and $a \times b=2 a \times c$ then, $b-2 c=\lambda a$ The value of λ is

- Watch Video Solution

411. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then \quad a.
$|\vec{a}|=|\vec{b}|=|\vec{c}|$ b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

412. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$ Now
$\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$ Then \quad a. $\frac{\vec{d} \vec{a}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}=2$
b.
 $[\vec{a} \vec{b} \vec{c}]$
$x^{2}+y^{2}$ is $5 \pi^{2} / 4$

- Watch Video Solution

413. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$ a. $2(\vec{a} \times \vec{b})$ b. $6(\vec{b} \times \vec{c})$ c. $3(\vec{c} \times \vec{a})$ d. $\overrightarrow{0}$

- Watch Video Solution

414. If \vec{a} and \vec{b} are two non-collinear unit vector, and $|\vec{a}+\vec{b}|=3$ then $(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})=$
415. The angles of triangle, two of whose sides are represented by vectors
$\sqrt{3}(\vec{a} \times \vec{b})$ and $\vec{b}-(\hat{a} \vec{b}) \hat{a}$, where \vec{b} is a non zero vector and \hat{a} is unit vector in the direction of \vec{a}, are

- Watch Video Solution

416. \vec{a}, \vec{b}, and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angel between \vec{a} and \vec{b} is 30^{0}, then \vec{c} is a. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$ b. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
c. $(2 \hat{i}+2 \hat{j}-\hat{k}) / 3$ d. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

- Watch Video Solution

417. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\vec{k}$ are $\hat{i}+\hat{k}$ b. $2 \hat{i}+\hat{j}+\hat{k}$ c. $3 \hat{i}+2 \hat{j}+\hat{k}$ d. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$
418. If side $\vec{A} B$ of an equilateral strangle $A B C$ lying in the x-y plane $3 \hat{i}$, then side $\vec{C} B$ can be a. $-\frac{3}{2}(\hat{i}-\sqrt{3 \dot{j}})$ b. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$ d. $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$

- Watch Video Solution

419. 36. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot \vec{c} \times \vec{d}=1$ and $\vec{a} . \vec{c}=\frac{1}{2}$ then a) \vec{a}, \vec{b} and \vec{c} are non-coplanar b) $\vec{b}, \vec{c}, \vec{d}$ are non -coplanar c) \vec{b}, \vec{d} are non parallel d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel

- Watch Video Solution

420. Let two non-collinear unit vector \hat{a} a $\mathrm{n} d \hat{b}$ form an acute angle. A point P moves so that at any time t, the position vector $O P$ (where O is the origin) is given by a cost $+\hat{b} \operatorname{sintWhenP}$ is farthest from origin O, let M be the length of OPandu be the unit vector along $O P$ Then (a)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+\hat{a} \hat{b})^{1 / 2} \quad$ (b) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=\left(1+\hat{a}^{\wedge}\right)^{1 / 2}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$ (d) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=(1+2 \hat{a} \hat{b})^{1 / 2}$

D Watch Video Solution

421. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projection of c is $1 / \sqrt{3}$ is a. $4 \hat{i}-\hat{j}+4 \hat{k}$ b. $3 \hat{i}+\hat{j}+3 \hat{k}$ c. $2 \hat{i}+\hat{j}+2 \hat{k}$ d. $4 \hat{i}+\hat{j}-4 \hat{k}$

- Watch Video Solution

422. If \vec{a}, \vec{b} and \vec{c} are three non-zero, non coplanar vector $\vec{b}_{1}=\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}} \vec{a}$,
$\vec{c}_{1}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} \quad, \quad, c_{2}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{b} \vec{c}}{\left|\vec{b}_{1}\right|^{2}}$
$b_{1}, \vec{c}_{3}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{c}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \vec{c}_{4}=\vec{c}-\frac{\vec{a} \vec{a}}{|\vec{c}|^{2}} \vec{a}=\frac{\vec{b} \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$ then the set of orthogonal vectors is $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$ b. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$
c. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right) \mathrm{d}$. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

- Watch Video Solution

423. The unit vector which is orthogonal to the vector $3 \hat{j}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ b. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
d. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

- Watch Video Solution

424. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between \vec{a} and \vec{b} is 0 b. $\pi / 2 \mathrm{c} . \pi / 4 \mathrm{~d} . \pi$
425. If $\vec{a}, \vec{b}, \vec{c}$ are 3 unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}}{2}$ then $(\vec{b}$ and \vec{c} being non parallel). (a)angle between $\vec{a} \& \vec{b}$ is $\frac{\pi}{3}$ (b)angle between \vec{a} and \vec{c} is $\frac{\pi}{3}$ (c)angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$ (d)angle between \vec{a} and \vec{c} is $\frac{\pi}{2}$

- Watch Video Solution

426. If in triangle $A B C, \vec{A} B=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|} \operatorname{and} \vec{A} C=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
a. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
b. $\sin A=\cos C$
c. projection of $A C$ on $B C$ is equal to $B C$
d. projection of $A B$ on $B C$ is equal to $A B$

- Watch Video Solution

427. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then a. $\vec{x} . \vec{d}=-1$ b. $\vec{y} . \vec{d}=1$ C.
$\vec{z} \cdot \vec{d}=0 \mathrm{~d} \cdot \vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$

- Watch Video Solution

428. If $a \times(b \times c)=(a \times b) \times c$, then $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0} b . \vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0} c$. $\vec{b} \times(\vec{c} \times \vec{a})=0$ d. $(\vec{c} \times \vec{a}) \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

- Watch Video Solution

429. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors inclined to each other at angle θ, then the maximum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2 \pi}{3}$ d. $\frac{5 \pi}{6}$

- Watch Video Solution

430. Let the pairs a, b, and c, d each determine a plane. Then the planes are parallel if a. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ b. $\quad(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ c. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ d. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

431. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vectorvariable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=0$ then the locus of R is

- Watch Video Solution

432. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|A C \times B D|$ is a. $20 \sqrt{5}$ b. $22 \sqrt{5}$ c. $24 \sqrt{5}$ d. $26 \sqrt{5}$

- Watch Video Solution

433. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by

- Watch Video Solution

434. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d}$. none of these

- Watch Video Solution

435. Let $\vec{a}=\hat{i}+\hat{j} ; \vec{b}=2 \hat{i}-\hat{k}$ Then vector \vec{r} satisfying $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ then \vec{r} is a. $\hat{i}-\hat{j}+\hat{k}$ b. $3 \hat{i}-\hat{j}+\hat{k}$ c. $3 \hat{i}+\hat{j}-\hat{k}$ d. $\hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

436. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b}<0$ and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then the angle between vectors \vec{a} and \vec{b} is a $\pi \mathrm{b} .7 \pi / 4 \mathrm{c} . \pi / 4 \mathrm{~d} .3 \pi / 4$

- Watch Video Solution

437. \vec{a}, \vec{b}, and \vec{c} are three vectors of equal magnitude. The angel between each pair of vectors is $\pi / 3$ such that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$. Then $|\vec{a}|$ is equal to a.2 b. -1 c. 1 d. $\sqrt{6} / 3$

- Watch Video Solution

438. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. $\vec{a}+\vec{b}+\vec{c}$ b. $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$ c. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$ d. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

- Watch Video Solution

439. Let \vec{a} and \vec{b} be two non-collinear unit vector. If
$\vec{u}=\vec{a}-(\vec{a} \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}|+|\vec{u} \vec{a}|$ c. $|\vec{u}|+|\vec{u} \vec{b}|$ d.
$|\vec{u}|+\hat{u}|\vec{a}+\vec{b}|$

- Watch Video Solution

440. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices Band have respective position vectors $\hat{i} a n d \hat{j}$ Let Delta be the area of the triangle and Delta $[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is $a .[-8,4] \cup[4,8]$ b. $[-4,4]$
c. [-2, 2]
d. $[-4,-2] \cup[2,4]$

- Watch Video Solution

441. If a is real constant A, B and C are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan C=6 a$, then the least value of
$\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$ is a. 6 b. 10 c. 12 d. 3

- Watch Video Solution

442. The position vectors of the vertices A, BandC of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \vec{a}=\vec{d} \vec{b}=\vec{d} \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b. obtuse angled c. right angled d. none of these

- Watch Video Solution

443. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=0$ and $|\vec{b}|^{2}=1$, where $\mu \quad$ is a scalar. Then
$|(\vec{a} \vec{q}) \vec{p}-(\vec{p} \vec{q}) \vec{a}|$ is equal to (a) $2|\vec{p} \cdot \vec{q}|$ (b) (1/2) $|\vec{p} \cdot \vec{q}|$ (c) $|\vec{p} \times \vec{q}|$
$|\vec{p} \cdot \vec{q}|$
444. In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other. If $C D: C E=C G: C B=2: 1$ then the value of area ($\triangle A E G$): area $(\triangle A B D$) is equal to (a) $7 / 2$ (b)3 (c)4 (d) $9 / 2$

- Watch Video Solution

445. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} B a n d \vec{A} D$, angle between $\vec{A} B$ and $\vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$ Then the angle between \vec{B} Aand $\vec{C} D$ is $\frac{\cos ^{-1}(\sqrt{14})}{7 \sqrt{2}}$ b. $\frac{\cos ^{-1}(\sqrt{21})}{7 \sqrt{3}}$ c. $\frac{\cos ^{-1} 2}{\sqrt{7}}$ d. $\cos ^{-1}(2 \sqrt{7})$ 14

- Watch Video Solution

446. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angle between \hat{i} and \hat{j}. Then its new position is
A. a. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
B. b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
D. d. none of these

Answer: null

- Watch Video Solution

447. A non-zero vector \vec{a} is such that its projections along vectors
$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} is a. $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$ b.
$\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$ c. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$ d. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

448. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a}, then \vec{c} is a. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$ b. $\frac{1}{\sqrt{3}}(-\hat{i}-\hat{j}-\hat{k})$ C. $\frac{1}{\sqrt{5}}(-\hat{k}-2 \hat{j})$ d. $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$

- Watch Video Solution

449. Let $\vec{a}=2 i+j-2 k a n d \vec{b}=i+j$ If \vec{c} is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ between $\vec{a} \times \vec{b}$ and \vec{c} is 30^{0}, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ । equal to a. $2 / 3 \mathrm{~b} .3 / 2 \mathrm{c} .2$ d. 3

- Watch Video Solution

450. Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3,4 and 5 sq. units, respectively. Then the area of triangle $B C D$ is a. $5 \sqrt{2}$
b. 5
c. $\frac{-}{2}$
d. $\frac{5}{2}$

- Watch Video Solution

451. Vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$ The value of \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ d. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

- Watch Video Solution

452. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is a. $3 \pi / 4 \mathrm{~b} . \pi / 4 \mathrm{c}$. $\pi / 2$ d. π

- Watch Video Solution

453. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is a. 47 b. -25 c. 0 d. 25

- Watch Video Solution

454. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ equals a. 0 b. $[\vec{a} \vec{b} \vec{c}]$ c. $2[\vec{a} \vec{b} \vec{c}]$
d. $-[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

455. Let \vec{p} and \vec{q} be any two orthogonal vectors of equal magnitude 4 each.

Let \vec{a}, \vec{b}, and \vec{c} be any three vectors of lengths $7 \sqrt{15}$ and $2 \sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector

$$
(\vec{a} \vec{p}) \vec{p}+(\vec{a} \vec{q}) \vec{q}+(\vec{a} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(\vec{b} \vec{p}) \vec{p}(\vec{b} \vec{q}) \vec{q}+(\vec{b} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(
$$

from the origin.
456. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these

- Watch Video Solution

457. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

458. Consider three vectors \vec{a}, \vec{b} and \vec{c} Statement 1 $\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+((\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k} \quad$ Statement $\quad 2:$ $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$

- Watch Video Solution

459. Column I, Column II The possible value of \vec{a} if $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{i}-\hat{k})$ and $\vec{r}=(\hat{i}+2 \hat{j})+\mu(-\hat{i}+\hat{j}+a \hat{k})$ are not consistent, where λ and μ are scalars, is, p. -4 The angel between vectors $\vec{a}=\lambda \hat{i}-3 \hat{j}-\hat{k} a n d \vec{b}=2 \lambda \hat{i}+\lambda \hat{j}-\hat{k}$ is acute, whereas vector \vec{b} makes an obtuse angel with the axes of coordinates. Then λ may be, q. -2 The possible value of a such that $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+(1+a) k a n d 3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar is, r. 2 If $\vec{A}=2 \hat{i}+\lambda \hat{j}+3 \hat{k}, \vec{B}=2 \hat{i}+\lambda \hat{j}+\hat{k}, \vec{C}=3 \hat{i}+\hat{j} a n d \vec{A}+\lambda \vec{B}$ is perpendicular to \vec{C} then $|2 \lambda|$ is, s. 3

- Watch Video Solution

460. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|-|\vec{C}|$. Prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$

- Watch Video Solution

$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and $\vec{a} a n d \vec{b}$ are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48

- Watch Video Solution

462. Statement 1 : Vector $\vec{c}=-5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angel between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k} a n d \vec{b}=8 \hat{i}+\hat{j}-4 \hat{k} \quad$ Statement $2: \quad \vec{c} \quad$ is equally inclined to $\vec{a} a n d \vec{b}$

- Watch Video Solution

463. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2 : A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ is $2 \hat{i}+2 \hat{j}+2 \hat{k}$
464. Statement 1 : Points $A(1,0), B(2,3), C(5,3)$, and $D(6,0)$ are concyclic. Statement 2 : Points $A, B, C, a n d D$ form an isosceles trapezium or ABandCD meet at E Then EAEB $=E C E D$

- Watch Video Solution

465. Let \vec{r} be a non-zero vector satisfying $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=0$ for given non-zero vectors \vec{a}, \vec{b} and \vec{c} Statement 1: $\left.\begin{array}{lll}\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}\end{array}\right]=0$ Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

466. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} ; \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
$\vec{a} \& \vec{b}$. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}=$

(Watch Video Solution

467. Statement-I $A=2 \hat{i}+3 \hat{j}+6 \hat{k}, B=\hat{i}+\hat{j}-2 \hat{k}$ and $C=\hat{i}+2 \hat{j}+\hat{k}$, then $|A \times(A \times(A \times B)) \cdot C|=243$

Statement-II $|A \times(A \times(A \times B)) \cdot C|=|A|^{2} 2|[A B C]|$

- Watch Video Solution

468. If \vec{a} and \vec{b} and \vec{c} are mutually perpendicular unit vectors, write the value of $|\vec{a}+\vec{b}+\vec{c}|$

- Watch Video Solution

469. Let vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$. Let $P_{1} a n d P_{2}$ be planes determined by the pair of vectors \vec{a}, \vec{b}, and \vec{c}, \vec{d}, respectively. Then the angle between $P_{1} a n d P_{2}$ is a. $0 \mathrm{~b} . \pi / 4 \mathrm{c} . \pi / 3 \mathrm{~d} . \pi / 2$
470. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

- Watch Video Solution

471. For any two \vec{a} and $\vec{b},(\vec{a} \times \hat{i}) \cdot(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})$ is always equal to a. \vec{a}, \vec{b} b. $2 \vec{a}, \vec{b}$ c. zero d. none of these

(D) Watch Video Solution

472. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where[.] denotes the greatest integer function. Then the vectors $f\left(\frac{5}{4}\right) \operatorname{andf}(t), 0<t<1$ are(a) parallel to
each other(b) perpendicular(c) inclined at $\cos ^{-1} 2\left(\sqrt{7\left(1-t^{2}\right)}\right)$ (d)inclined
at $\cos ^{-1}\left(\frac{8+t}{9 \sqrt{1+t^{2}}}\right)$;

- Watch Video Solution

473. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$ is equal to $|\vec{a}|^{2}(\vec{b} \vec{c}) b$. $|\vec{b}|^{2}\binom{\vec{a} \vec{c}}{)}$ c. $|\vec{c}|^{2}(\vec{a} \vec{b})$ d. none of these

- Watch Video Solution

474. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

- Watch Video Solution

475. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then \quad a.
$|\vec{a}|=|\vec{b}|=|\vec{c}|$ b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

476. If $|a|=2 a n d|b|=3$ and $a b=0$, then $(a \times(a \times(a \times(a \times b))))$ is equal to $48 \hat{b}$ b. -48 b c. $48 a ̂$ d. $-48 \hat{a}$

- Watch Video Solution

477. If the two diagonals of one its faces are $6 \hat{i}+6 \hat{k} a n d 4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $c=4 \hat{j}-8 \hat{k}$, then the volume of a parallelepiped is a. 60 b .80 c .100 d .120

- Watch Video Solution

478. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is 6 b .18 c .36 d .9

- Watch Video Solution

479. If \vec{a}, \vec{b}, and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

- Watch Video Solution

480. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satisfies the condition $\vec{\cdot}(\hat{i}+2 \hat{j}-7 \hat{k})=10$. Then vector \vec{c} is equal to a. $(7,5,1)$ b. $-7,-5,-1$ c. 1, 1, -1 d. none of these

- Watch Video Solution

481. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j} ; \vec{a} \perp \vec{b}, \vec{a} \vec{c}=4$. Then $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}| \mathrm{b} .[\vec{a} \vec{b} \vec{c}]^{=}|\vec{a}| c .[\vec{a} \vec{b} \vec{c}]^{=} 0$ d. $[\vec{a} \vec{b} \vec{c}]^{=}|\vec{a}|^{2}$

- Watch Video Solution

482. $\vec{a} a n d \vec{b}$ are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is a. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ b. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$ c. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ d. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

- Watch Video Solution

483. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to a.2 $|\vec{r}|^{2}$ b. $|\vec{r}|^{2} / 2$ c. $3|\vec{r}|^{2}$ d. $|r|^{2}$

- Watch Video Solution

484. The scalar $\vec{A}(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals a. 0 b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these

- Watch Video Solution

485. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2 j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2

- Watch Video Solution

486. For non-zero vectors \vec{a}, \vec{b}, and $\vec{c},|(\vec{a} \times \vec{b}) \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if a. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0 \mathrm{~b} . \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0 \mathrm{c} . \vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0 \mathrm{~d}$. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$

- Watch Video Solution

487. For three vectors $\vec{u}, \vec{v} a n d \vec{w}$ which of the following expressions is not equal to any of the remaining three ? a. $\vec{u} \vec{v} \times \vec{w} \mathrm{~b} .(\vec{v} \times \vec{w}) \vec{u} \mathrm{c} . \vec{v} \vec{u} \times \vec{w} \mathrm{~d}$. $(\vec{u} \times \vec{v}) \vec{w}$

- Watch Video Solution

488. Let \vec{A} be a vector parallel to the line of intersection of planes P_{1} and P_{2} Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 k a n d P_{2}$ is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is a. $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$

- Watch Video Solution

489. If $\vec{a} \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$ b. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$ c.
$\frac{(\beta \vec{c}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$ d. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
490. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these

- Watch Video Solution

491. Let $\vec{a} a n d \vec{b}$ be mutually perpendicular unit vectors. Then for any arbitrary

$$
\begin{equation*}
\text { a. } \quad \vec{r}=(\dot{\vec{r}} \dot{\hat{a}}) \hat{a}+(\vec{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b}) \tag{b.}
\end{equation*}
$$

$\vec{r}=(\dot{\vec{r}} \dot{a})-(\dot{r} \hat{b}) \hat{b}-(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$
C.
$\vec{r}=(\stackrel{\rightharpoonup}{r} \dot{a}) \hat{a}-(\vec{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$ none of these

- Watch Video Solution

492. Value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to $(\vec{a} \vec{d})[\vec{a} \vec{b} \vec{c}]$ b. $\left(\begin{array}{c}\vec{a} \vec{c}\end{array}\right)[\vec{a} \vec{b} \vec{d}]$ c. $\left(\begin{array}{c}\vec{a} \vec{b}\end{array}\right)[\vec{a} \vec{b} \vec{d}]$ d. none of these

- Watch Video Solution

493. Let $\vec{a} a n d \vec{b}$ be unit vectors that are perpendicular to each other. Then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to 1 b. 0 c. -1 d. none of these

- Watch Video Solution

494. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four nonzero vectors such that $\vec{r} \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ Then $[a b c]$ is equal to $|a||b||c|$ b. $-|a||b||c| c .0$ d. none of these
495. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three nonzero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} a n d \vec{b}$ If the angle between $\vec{a} a n d \vec{b}$ is $\pi / 6$, then the value of
$\left|a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} a_{3} b_{3} c_{3}\right|^{2}$ is a. 0
b. 1
c. $\frac{1}{4}\left(a 1^{2}+a 2^{2}+a 3^{2}\right)\left(b 1^{2}+b 2^{2}+b 3^{2}\right)$
d. $\frac{3}{4}\left(a 1^{2}+a 2^{2}+a 3^{2}\right)\left(b 1^{2}+b 2^{2}+b 3^{2}\right)$

- Watch Video Solution

496. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to a vector perpendicular to the plane of $a, b, c \mathrm{~b}$. a scalar quantity $\mathrm{c} . \overrightarrow{0} \mathrm{~d}$. none of these

- Watch Video Solution

497. If \vec{a}, \vec{b}, and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda \vec{a} \times \vec{b}$, angle, between $\vec{a} a n d \vec{b}$ is $\frac{2 \pi}{3},|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3} a n d|\vec{c}|=\frac{1}{\sqrt{3}}$, then the angel between
\vec{a} and \vec{b} is $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

Watch Video Solution

498. A vector of magnitude $\sqrt{2}$ coplanar with the vecrtor $\vec{a}=\hat{i}+\hat{j}+2 \hat{k} a n d \vec{b}=\hat{i}+2 \hat{j}+\hat{k}, \quad$ and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$, is a $.-\hat{j}+\hat{k}$ b. $\hat{i}-\hat{k}$ c. $\hat{i}-\hat{j}$ d. $\hat{i}-\hat{j}$

- Watch Video Solution

499. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b. orthocentre c. incentre d. circumcentre

- Watch Video Solution

500. G is the centroid of triangle $A B C a n d A_{1}$ and B_{1} are rthe midpoints of sides $A B a n d A C$, respectively. If Delta $_{1}$ is the area of quadrilateral
$G A_{1} A B_{1}$ andDelta is the area of triangle $A B C$, then Delta/Delta ${ }_{1}$ is equal to a. $\frac{3}{2}$ b. 3 c. $\frac{1}{3}$ d. none of these

- Watch Video Solution

501. Points $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are coplanar and
$(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=0$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3$ yis a. $\frac{1}{14}$ b. 14 c. 6 d. $1 / \sqrt{6}$

- Watch Video Solution

502. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 1 and 2 , respectively, and
$(1-3 \vec{a} \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$, then the angel between \vec{a} and \vec{b}
is $\pi / 3 \mathrm{~b} \cdot \pi-\cos ^{-1}(1 / 4)$ c. $\frac{2 \pi}{3}$ d. $\cos ^{-1}(1 / 4)$

- Watch Video Solution

503. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$, then the maximum value of k is a. $\sqrt{13}$ b. $2 \sqrt{13}$ c. $6 \sqrt{13}$ d. $10 \sqrt{13}$

- Watch Video Solution

504. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}|=3$ and $\vec{a} \vec{b}=1$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

505. If the vector product of a constant vector $\overrightarrow{O A}$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a. a straight line perpendicular to $\overrightarrow{O A} \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\overrightarrow{O A} A$ d. none of these
506. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors $\vec{v} a n d \vec{w}$ are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals 2 b. $\sqrt{7}$ c. $\sqrt{14} \mathrm{~d}$. 14
A. 2
B. $\operatorname{sqrt}(7)^{\prime}$
C. $\operatorname{sqrt}(14)^{\text { }}$
D. 14`

Answer: 3

- Watch Video Solution

507. If the two adjacent sides of two rectangles are represented by vectors

$$
\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b} \text { and } \vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b},
$$

respectively, then the angel between the vector
$\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\quad \vec{y}=\frac{1}{5}(\vec{r}+\vec{s}) \quad$ is \quad a. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
$\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ c. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate

(Watch Video Solution

508. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j$, respectively. The quadrilateral $P Q R S$ must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

- Watch Video Solution

509. \vec{u}, \vec{v} and \vec{w} are three non-coplanar unit vecrtors and α, β and γ are the angles between \vec{u} and \vec{v}, \vec{v} and \vec{w}, and \vec{w} and \vec{u}, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\alpha, \beta a n d \gamma$, respectively. Prove that

$$
[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right) .
$$

(Watch Video Solution

510. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, . \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ and $[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]$, then find the value of $\frac{\lambda}{4}$.

- Watch Video Solution

511. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3)$ and $C(t, 1,1)$ is minimum.

- Watch Video Solution

512. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is $\vec{b} \vec{c}=\vec{a} \vec{d}$ b. $\vec{a} \vec{b}=\vec{c} \vec{d}$ c. $\vec{b} \vec{c}+\vec{a} \vec{d}=0$ d. $\vec{a} \vec{b}+\vec{c} \vec{d}=0$

- Watch Video Solution

513. If aandb are nonzero non-collinear vectors, then $[\vec{a} \vec{b} \hat{i}] \hat{i}+[\vec{a} \vec{b} \hat{j}] \hat{j}+[\vec{a} \vec{b} \hat{b}] \hat{k}$ is equal to a. $\vec{a} \times \vec{b}$ b. $\vec{a}+\vec{b}$ c. $\vec{a}-\vec{b}$ d. $\vec{b} \times \vec{a}$

- Watch Video Solution

514. $(\vec{a}+\vec{b}) \vec{b}+\vec{c} \times(\vec{a}+\vec{b}+\vec{c})=[\vec{a} \vec{b} \vec{c}]$
b. $\backslash 0 \backslash$
c. $2[\vec{a} \vec{b} \vec{c}]$
d.
$-[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

515. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be (A) $6 \hat{i}+8 \hat{j}$ (B) $-8 \hat{i}+3 \hat{j}$ (C)
$6 \hat{i}-8 \hat{j}$ (D) $8 \hat{i}+6 \hat{j}$

- Watch Video Solution

516. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, bandc is nonzero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

- Watch Video Solution

517. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b}, and \vec{c} are nonzero vectors, then 1 . \vec{a}, \vec{b}, and \vec{c} can be coplanar 2. \vec{a}, \vec{b}, and \vec{c} must be coplanar $3 . \vec{a}, \vec{b}$, and \vec{c} cannot be coplanar 4.none of these

- Watch Video Solution

518. If $\vec{a}, \vec{b}, \vec{c}$ are any three noncoplanar vector, then $(\vec{a}+\vec{b}+\vec{c})[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ is :

- Watch Video Solution

519. If $\vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}$, where \vec{c} is a nonzero vector, then

$$
\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \vec{a}) \vec{c}
$$

which of the following is not correct? a. $\vec{x}=$
b.

$$
1+\vec{c} \vec{c}
$$

$$
\vec{c} \times \vec{b}+\vec{b}+\left(\begin{array}{c}
\vec{c} \vec{a}) \vec{c} \quad \vec{a} \times \vec{c}+\vec{b}+(\vec{c} \vec{b}) \vec{c}+\vec{v}-\vec{r}
\end{array}\right.
$$

$\vec{x}=$
c. $\vec{y}=$

$$
1+\vec{c} \vec{c}
$$

d. none of these

$$
1+\vec{c} \vec{c}
$$

- Watch Video Solution

520. If $\vec{a} a n d \vec{b}$ are two unit vectors incline at angle $\pi / 3$, then
$\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \vec{b}$ is equal to $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$

- Watch Video Solution

521. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and $\vec{b}, \vec{r} \times \vec{a}$ is equal to
a. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
b. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
c. $[\vec{r} \vec{a} \vec{b}] \vec{a}-(\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b}$
d. none of these

Watch Video Solution

522. Let V be the volume of the parallelepiped formed by the vectors
$\vec{a}=a_{i} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. If
a_{r}, b_{r} and $c r$, where $r=1,2,3$, are non-negative real numbers and 3
$\sum_{r=1}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

523. Find 3-dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying
$\vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6$,
$\vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29$
524. Let $\vec{u} a n d \vec{v}$ be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$ Find the value of [$\vec{u} \vec{v} \vec{w}$]

- Watch Video Solution

525. For any two vectors $\vec{u} a n d \vec{v}$ prove that $(\vec{u} \cdot \vec{v})^{2}+|\vec{u} \times \vec{v}|^{2}=|\vec{u}|^{2}|\vec{v}|^{2}$

- Watch Video Solution

526. If the incident ray on a surface is along the unit vector \vec{v}, the reflected ray is along the unit vector \vec{w} and the normal is along the unit vector \vec{a} outwards, express \vec{w} in terms of \vec{a} and \vec{v}

- Watch Video Solution

527. $P_{1} n d P_{2}$ are planes passing through origin L_{1} and L_{2} are two lines on P_{1} and P_{2}, respectively, such that their intersection is the origin. Show that there exist points $A, B a n d C$, whose permutation A^{\prime}, B^{\prime} andC', respectively, can be chosen such that A is on L_{1}, BonP $_{1}$ but not on L_{1} andC not on P_{1}; A^{\prime} is on L_{2}, B^{\prime} on P_{2} but not on L_{2} and C^{\prime} not on P_{2}

- Watch Video Solution

528. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$, prove that $(\vec{a}-\vec{d}) .(\vec{b}-\vec{c}) \neq 0$,

- Watch Video Solution

529. Given two vectors $\vec{a}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$ Column I, Column II A vector coplanar with $\vec{a} a n d \vec{b}, \mathrm{p} .-3 \hat{i}+3 \hat{j}+4 \hat{k} \mathrm{~A}$ vector which is perpendicular to both \vec{a} and \vec{b}, q. $2 \hat{i}-2 \hat{j}+3 \hat{k} \mathrm{~A}$ vector which is equally
inclined to $\vec{a} a n d \vec{b}$, r. $\hat{i}+\hat{j}$ A vector which forms a triangle with $\vec{a} a n d \vec{b}$, s. $\hat{i}-\hat{j}+5 \hat{k}$

- Watch Video Solution

530. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product [UVW] is a.-1 b. $\sqrt{10}+\sqrt{6} c$. $\sqrt{59}$ d. $\sqrt{60}$

- Watch Video Solution

531. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and I,m,n are distinct real numbers, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$, implies
(A) $|m+m n+n|=0$
(B) $l+m+n=0$ (C) $l^{2}+m^{2}+n^{2}=0$
532. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product

$$
[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}] \text { is } 0 \text { b. } 1 \text { c. }-\sqrt{3} \text { d. } \sqrt{3}
$$

