

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

VECTOR ALGEBRA

1. In a trapezium, the vector $BC = \lambda AD$. We will then find that p = AC + BD

is collinear with AD. I $p = \mu$ AD, then

Watch Video Solution

2. If the vectors $\vec{a}and\vec{b}$ are linearly idependent satisfying $(\sqrt{3}\tan\theta + 1)\vec{a} + (\sqrt{3}\sec\theta - 2)\vec{b} = 0$, then the most general values of θ

are a.
$$n\pi - \frac{\pi}{6}, n \in Z$$
 b. $2n\pi \pm \frac{11\pi}{6}, n \in Z$ c. $n\pi \pm \frac{\pi}{6}, n \in Z$ d.
 $2n\pi \pm \frac{11\pi}{6}, n \in Z$

Watch Video Solution

3. Given three non-zero, non-coplanar vectors \vec{a}, \vec{b} , and $\vec{c}, \vec{r}_1 = p\vec{a} + q\vec{b} + \vec{c}$ and $\vec{r}_2 = \vec{a} + p\vec{b} + q\vec{c}$ If the vectors $\vec{r}_1 + 2\vec{r}_2$ and $2\vec{r}_1 + \vec{r}_2$ are collinear, then (P, q) is `

Watch Video Solution

4. Let $\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_n$ be the position vectors of points P_1, P_2, P_3, P_n relative to the origin \vec{O} If the vector equation $a_1\vec{r}_1 + a_2\vec{r}_2 + a_n\vec{r}_n = 0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_1 + a_2 + a_n = n$ b. $a_1 + a_2 + a_n = 1$ c. $a_1 + a_2 + a_n = 0$ d. $a_1 = a_2 = a_3 + a_n = 0$ **5.** In triangle *ABC*, $\angle A = 30^{\circ}$, *H* is the orthocenter and *D* is the midpoint of *BC*. Segment *HD* is produced to *T* such that *HD* = *DT* The length *AT* is equal to

(a). 2BC

(b). 3*BC*

(c).
$$\frac{4}{2}BC$$

(d). none of these

Watch Video Solution

6. If
$$\vec{\alpha} + \vec{\beta} + \vec{\gamma} = a\vec{\delta}and\vec{\beta} + \vec{\gamma} + \vec{\delta} = b\vec{\alpha}, \vec{\alpha}and\vec{\delta}$$
 are non-colliner, then
 $\vec{\alpha} + \vec{\beta} + \vec{\gamma} + \vec{\delta}$ equals a. $a\vec{\alpha}$ b. $b\vec{\delta}$ c. 0 d. $(a + b)\vec{\gamma}$

Watch Video Solution

7. Given three vectors $\vec{a} = 6\hat{i} - 3\hat{j}$, $\vec{b} = 2\hat{i} - 6\hat{j}and\vec{c} = -2\hat{i} + 21\hat{j}$ such that $\vec{\alpha} = \vec{a} + \vec{b} + \vec{c}$ Then the resolution of the vector $\vec{\alpha}$ into components with

respect to $\vec{a}and\vec{b}$ is given by a. $3\vec{a} - 2\vec{b}$ b. $3\vec{b} - 2\vec{a}$ c. $2\vec{a} - 3\vec{b}$ d. $\vec{a} - 2\vec{b}$

Watch Video Solution

8. Let us define the length of a vector $a\hat{i} + b\hat{j} + c\hat{k}as|a| + |b| + |c|$ This definition coincides with the usual definition of length of a vector $a\hat{i} + b\hat{j} + c\hat{k}$ is and only if (a) a = b = c = 0 (b) any two of a, b, andc are zero (c) any one of a, b, andc is zero (d) a + b + c = 0

Watch Video Solution

9. Vectors $\vec{a} = -4\hat{i} + 3\hat{k}$; $\vec{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$ are laid off from one point. Vector \hat{d} , which is being laid of from the same point dividing the angle between vectors \vec{a} and \vec{b} in equal halves and having the magnitude $\sqrt{6}$, is a. $\hat{i} + \hat{j} + 2\hat{k}$ b. $\hat{i} - \hat{j} + 2\hat{k}$ c. $\hat{i} + \hat{j} - 2\hat{k}$ d. $2\hat{i} - \hat{j} - 2\hat{k}$

10. Vectors $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 4\hat{k}$, are so placed that the end point of one vector is the starting point of the next vector. Then the vector are (A) not coplanar (B) coplanar but cannot form a triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle

11. The position vectors of the vertices A, B, andC of a triangle are $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}and\hat{i} + \hat{k}$, respectively. Find the unite vector \hat{r} lying in the plane of *ABC* and perpendicular to *IA*, *whereI* is the incentre of the triangle.

Watch Video Solution

12. A ship is sailing towards the north at a speed of 1.25 m/s. The current is taking it towards the east at the rate of 1 m/s and a sailor is climbing a vertical pole on the ship at the rate of 0.5 m/s. Find the velocity of the sailor in space.

13. Given four points P_1 , P_2 , P_3 and P_4 on the coordinate plane with origin

O which satisfy the condition
$$\begin{pmatrix} \vec{O} \\ OP \end{pmatrix}_{n-1} + \begin{pmatrix} \vec{O} \\ OP \end{pmatrix}_{n+1} = \frac{3}{2} \stackrel{\rightarrow}{OP}_n$$
. If P1 and P2

lie on the curve xy=1, then prove that P3 does not lie on the curve

Watch Video Solution

14. *ABCD* is a tetrahedron and *O* is any point. If the lines joining *O* to the vertices meet the opposite faces at *P*, *Q*, *RandS*, prove that $\frac{OP}{AP} + \frac{OQ}{BQ} + \frac{OR}{CR} + \frac{OS}{DS} = 1.$

15. If
$$\vec{a}$$
 and \vec{b} are non-collinear vectors and
 $\vec{A} = (p+4q)\vec{a} + (2p+q+1)\vec{b}$ and $\vec{B} = (-2p+q+2)\vec{a} + (2p-3q-1)\vec{b}$, and

if $3\vec{A} = 2\vec{B}$, then determine p and q.

16. If \vec{a} , \vec{b} and \vec{c} are any three non-coplanar vectors, then prove that points

are collinear: \vec{a} + \vec{b} + \vec{c} , $4\vec{a}$ + $3\vec{b}$, $10\vec{a}$ + $7\vec{b}$ - $2\vec{c}$.

17. If \vec{a} , \vec{b} and \vec{c} are three non-zero non-coplanar vectors, then the value of $(\vec{a}, \vec{a})\vec{b} \times \vec{c} + (\vec{a}, \vec{b})\vec{c} \times \vec{a} + (\vec{a}, \vec{c})\vec{a} \times \vec{b}$.

Watch Video Solution

18. Let a, b, c be distinct non-negative numbers an the vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}, c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then prove that the quadratic equation $ax^2 + 2cx + b = 0$ has equal roots **19.** A pyramid with vertex at point *P* has a regular hexagonal base *ABCDEF*, Position vector of points A and B are \hat{i} and $\hat{i} + 2\hat{j}$ The centre of base has the position vector $\hat{i} + \hat{j} + \sqrt{3}\hat{k}$ Altitude drawn from *P* on the base meets the diagonal *AD* at point \hat{G} find the all possible position vectors of \hat{G} It is given that the volume of the pyramid is $6\sqrt{3}$ cubic units and *AP* is 5 units.

Watch Video Solution

20. *ABCD* is a parallelogram. If L and M be the middle points of BC and \overrightarrow{ABCD} is a parallelogram. If L and M be the middle points of BC and CD, respectively express \overrightarrow{AL} and \overrightarrow{AM} in terms of \overrightarrow{AB} and \overrightarrow{AD} . Also show $\overrightarrow{AL} + \overrightarrow{AM} = (3/2)\overrightarrow{AC}$.

21. *A*, *B*, *C* and *D* have position vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} , respectively, such that $\vec{a} - \vec{b} = 2(\vec{d} - \vec{c})^{\cdot}$ Then a. *ABandCD* bisect each other b. *BDandAC* bisect each other c. *ABandCD* trisect each other d. *BDandAC* trisect each other other

Watch Video Solution

22. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then

the unit vector along the angular bisector of \vec{a} and b will be given by a.

 $\frac{\vec{a} - \vec{b}}{\cos(\theta/2)} \text{ b. } \frac{\vec{a} + \vec{b}}{2\cos(\theta/2)} \text{ c. } \frac{\vec{a} - \vec{b}}{2\cos(\theta/2)} \text{ d. none of these}$

Watch Video Solution

23. *ABCD* is a quadrilateral. *E* is the point of intersection of the line joining the midpoints of the opposite sides. If *O* is any point and $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D = x\vec{O}E$, then *x* is equal to a. 3 b. 9 c. 7 d. 4

24. If vectors $\vec{AB} = -3\hat{i} + 4\hat{k}and\vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a $\triangle ABC$, then the length of the median through Ais a. $\sqrt{14}$ b. $\sqrt{18}$ c. $\sqrt{29}$ d. $\sqrt{5}$

Watch Video Solution

25. *ABCD* parallelogram, and $A_1 and B_1$ are the midpoints of sides *BCandCD*, respectivley. If $\vec{A}A_1 + \vec{A}B_1 = \lambda \vec{A}C$, then λ is equal to a. $\frac{1}{2}$ b. 1 c. $\frac{3}{2}$ d. 2 e. $\frac{2}{3}$

Watch Video Solution

26. The position vectors of the points *PandQ* with respect to the origin *O* are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$, respectively. If *M* is a point on *PQ*, such that *OM* is the bisector of $\angle POQ$, then $\vec{O}M$ is a. $2(\hat{i} - \hat{j} + \hat{k})$ b. $2\hat{i} + \hat{j} - 2\hat{k}$ c. $2(-\hat{i} + \hat{j} - \hat{k})$ d. $2(\hat{i} + \hat{j} + \hat{k})$

28. If G is the centroid of triangle ABC, then $\vec{G}A + \vec{G}B + \vec{G}C$ is equal to a. $\vec{0}$

b. $3\vec{G}A$ c. $3\vec{G}B$ d. $3\vec{G}C$

Watch Video Solution

29. Let *ABC* be triangle, the position vectors of whose vertices are respectively $\hat{i} + 2\hat{j} + 4\hat{k}$, $-2\hat{i} + 2\hat{j} + \hat{k}and2\hat{i} + 4\hat{j} - 3\hat{k}$. Then Delta*ABC* is a. isosceles b. equilateral c. right angled d. none of these

30. If $\left| \vec{a} + \vec{b} \right| < \left| \vec{a} - \vec{b} \right|$, then the angle between $\vec{a}and\vec{b}$ can lie in the interval a. $(\pi/2, \pi/2)$ b. $(0, \pi)$ c. $(\pi/2, 3\pi/2)$ d. $(0, 2\pi)$

Watch Video Solution

31. '*I*' is the incentre of triangle *ABC* whose corresponding sides are *a*, *b*, *c*, rspectively. $\vec{aIA} + \vec{bIB} + \vec{cIC}$ is always equal to *a*. $\vec{0}$ *b*. $(a + b + c)\vec{BC}$ c. $(\vec{a} + \vec{b} + \vec{c})\vec{AC}$ d. $(a + b + c)\vec{AB}$

Watch Video Solution

32. Let $x^2 + 3y^2 = 3$ be the equation of an ellipse in the x - y plane. *AandB* are two points whose position vectors are $-\sqrt{3}\hat{i}and - \sqrt{3}\hat{i} + 2\hat{k}$. Then the position vector of a point *P* on the ellipse such that $\angle APB = \pi/4$ is a. $\pm \hat{j}$ b. $\pm (\hat{i} + \hat{j})$ c. $\pm \hat{i}$ d. none of these

33. Locus of the point P, for which OP represents a vector with direction

cosine $\cos \alpha = \frac{1}{2}$ (where O is the origin) is

Watch Video Solution

34. If \vec{x} and \vec{y} are two non-collinear vectors and *ABC* is a triangle with side lengths a, b, andc satisfying $(20a - 15b)\vec{x} + (15b - 12c)\vec{y} + (12c - 20a)(\vec{x} \times \vec{y}) = 0$, then triangle *ABC* is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

Watch Video Solution

35. If $\hat{i} - 3\hat{j} + 5\hat{k}$ bisects the angle between $\hat{a}and - \hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then a. $\hat{a} = \frac{1}{105} \left(41\hat{i} + 88\hat{j} - 40\hat{k} \right)$ b. $\hat{a} = \frac{1}{105} \left(41\hat{i} + 88\hat{j} + 40\hat{k} \right)$ c. $\hat{a} = \frac{1}{105} \left(-41\hat{i} + 88\hat{j} - 40\hat{k} \right)$ d. $\hat{a} = \frac{1}{105} \left(41\hat{i} - 88\hat{j} - 40\hat{k} \right)$

36. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 24and2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices *A*, *BandC*, respectively, of triangle *ABC*, then the position vector of the point where the bisector of angle *A* meets *BC* is a. $\frac{2}{3}\left(-6\hat{i}-8\hat{j}-\hat{k}\right)$ b. $\frac{2}{3}\left(6\hat{i}+8\hat{j}+6\hat{k}\right)$ c. $\frac{1}{3}\left(6\hat{i}+13\hat{j}+18\hat{k}\right)$ d. $\frac{1}{3}\left(5\hat{j}+12\hat{k}\right)$

Watch Video Solution

37. If \vec{b} is a vector whose initial point divides the join of $5\hat{i}and5\hat{j}$ in the ratio k: 1 and whose terminal point is the origin and $\left|\vec{b}\right| \le \sqrt{37}$, thenk lies in the interval a. [-6, -1/6] b. (- ∞ , -6] U [-1/6, ∞) c. [0, 6] d. none of these

Watch Video Solution

38. Find the value of λ so that the points *P*, *Q*, *R* and *S* on the sides *OA*, *OB*, *OC* and *AB*, respectively, of a regular tetrahedron *OABC* are

coplanar. It is given that
$$\frac{OP}{OA} = \frac{1}{3}$$
, $\frac{OQ}{OB} = \frac{1}{2}$, $\frac{OR}{OC} = \frac{1}{3}$ and $\frac{OS}{AB} = \lambda^{-}$ (A)
 $\lambda = \frac{1}{2}$ (B) $\lambda = -1$ (C) $\lambda = 0$ (D) for no value of λ

Watch Video Solution

39. A uni-modular tangent vector on the curve

$$x = t^2 + 2, y = 4t - 5, z = 2t^2 - 6t = 2$$
 is a. $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$ b. $\frac{1}{3}(\hat{i} - \hat{j} - \hat{k})$ c.
 $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$ d. $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$

Watch Video Solution

40. If \vec{x} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a *ABC* satisfying $(a - b)\vec{x} + (b - c)\vec{y} + (c - a)(\vec{x} \times \vec{y}) = 0$, then *ABC* is (where $\vec{x} \times \vec{y}$ is perpendicular to the plane of *xandy*) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

41. The position vectors of points *AandB* w.r.t. the origin are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$ respectively. Determine vector \vec{OP} which bisects angle *AOB*, where *P* is a point on *AB*

42. What is the unit vector parallel to $\vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

Watch Video Solution

Watch Video Solution

43. ABCD is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{OD} = 4 \overrightarrow{OE} ,

where O is any point.

44. *ABCD* is a parallelogram. If L and M be the middle points of BC and \overrightarrow{ABCD} is a parallelogram. If L and M be the middle points of BC and \overrightarrow{CD} , respectively express \overrightarrow{AL} and \overrightarrow{AM} in terms of \overrightarrow{AB} and \overrightarrow{AD} . Also show $\overrightarrow{AL} + \overrightarrow{AM} = (3/2)\overrightarrow{AC}$.

Watch Video Solution

45. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are four vectors in three-dimensional space with the same initial point and such that $3\vec{a} - 2\vec{b} + \vec{c} - 2\vec{d} = 0$, show that terminals *A*, *B*, *CandD* of these vectors are coplanar. Find the point at which ACandBD meet. Find the ratio in which *P* divides *ACandBD*

Watch Video Solution

46. Find the vector of magnitude 3, bisecting the angle between the vectors $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

47. If \vec{a} and \vec{b} are two vectors of magnitude 1 inclined at 120^0 , then find the

angle between $\vec{b}and\vec{b}$ - \vec{a}

48. If \vec{r}_1 , \vec{r}_2 , \vec{r}_3 are the position vectors of the collinear points and scalar

pandq exist such that $\vec{r}_3 = p\vec{r}_1 + q\vec{r}_2$, then show that p + q = 1.

Watch Video Solution

49. Examine the following vector for linear independence:

(1)
$$\vec{i} + \vec{j} + \vec{k}, 2\vec{i} + 3\vec{j} - \vec{k}, -\vec{i} - 2\vec{j} + 2\vec{k}$$

(2) $3\vec{i} + \vec{j} - \vec{k}, 2\vec{i} - \vec{j} + 7\vec{k}, 7\vec{i} - \vec{j} + 13\vec{k}$

50. Show that the vectors $2\vec{a} - \vec{b} + 3\vec{c}$, $\vec{a} + \vec{b} - 2\vec{c}$ and $\vec{a} + \vec{b} - 3\vec{c}$ are non-

coplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)

51. Let \vec{a} , $\vec{b}and\vec{c}$ be three units vectors such that $2\vec{a} + 4\vec{b} + 5\vec{c} = 0$. Then which of the following statement is true? a. \vec{a} is parallel to \vec{b} b. \vec{a} is perpendicular to \vec{b} c. \vec{a} is neither parallel nor perpendicular to \vec{b} d. none of these

Watch Video Solution

52. Four non -zero vectors will always be a. linearly dependentb. linearly independent c. either a or bd. none of

these

53. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting.

54. In a triangle PQR, SandT are points on QRandPR, respectively, such that QS = 3SRandPT = 4TR Let M be the point of intersection of PSandQT Determine the ratio QM: MT using the vector method .

Watch Video Solution

55. In a quadrilateral PQRS, $\vec{P}Q = \vec{a}$, $\vec{Q}R = \vec{b}$, $\vec{S}P = \vec{a} - \vec{b}$, M is the midpoint of $\vec{Q}RandX$ is a point on SM such that $SX = \frac{4}{5}SM$. Prove that P, *XandR* are collinear.

56. solve the differential equation $(1 + x^2)\frac{dy}{dx} = x$

Watch Video Solution

57. Sow that
$$x_1\hat{i} + y_1\hat{j} + z_1\hat{k}, x_2\hat{i} + y_2\hat{j} + z_2\hat{k}, and x_3\hat{i} + y_3\hat{j} + z_3\hat{k}$$
, are non-
coplanar if $|x_1| > |y_1| + |z_1|, |y_2| > |x_2| + |z_2|and |z_3| > |x_3| + |y_3|$.

Watch Video Solution

58. The position vector of the points P and Q are $5\hat{i} + 7\hat{j} - 2\hat{k}$ and $-3\hat{i} + 3\hat{j} + 6\hat{k}$, respectively. Vector $\vec{A} = 3\hat{i} - \hat{j} + \hat{k}$ passes through point P and vector $\vec{B} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ passes through point Q. A third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

$$\hat{i} + \cos(\beta - \alpha)\hat{j} + \cos(\gamma - \alpha)\hat{k}, \cos(\alpha - \beta)\hat{i} + \hat{j} + \cos(\gamma - \beta)\hat{k}$$
 and

 $\cos(\alpha - \gamma)\hat{i} + \cos(\beta - \gamma)\hat{k} + a\hat{k}$ where α, β , and γ are different angles. If these

vectors are coplanar, show that a is independent of α , β and γ

Watch Video Solution

60. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then

the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by

Watch Video Solution

61. The vectors
$$x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k}, (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k}$$
 and $(x+6)\hat{i} + (x+7)\hat{j} + (x+8)\hat{k}$ are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

62. \vec{A} is a vector with direction cosines $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ Assuming the y - z plane as a mirror, the directin cosines of the reflected image of \vec{A} in the plane are a. $\cos\alpha$, $\cos\beta$, $\cos\gamma$ b. $\cos\alpha$, $-\cos\beta$, $\cos\gamma$ c. $-\cos\alpha$, $\cos\beta$, $\cos\gamma$ d. $-\cos\alpha$, $-\cos\beta$, $-\cos\beta$, $-\cos\gamma$

Watch Video Solution

63. The vector \vec{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components (p + 1)and1, then p is equal to

a. -4 b. -1/3 c. 1 d. 2

Watch Video Solution

64. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is a. $\frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$ b.

$$\frac{1}{7} \left(3\hat{i} - 6\hat{j} - 2\hat{k} \right) \text{c.} \frac{1}{\sqrt{69}} \left(\hat{i} + 6\hat{j} + 8\hat{k} \right) \text{d.} \frac{1}{\sqrt{69}} \left(-\hat{i} - 2\hat{j} + 8\hat{k} \right)$$

Watch Video Solution

65. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vector and λ is a real number, then the vectors $\vec{a} + 2\vec{b} + 3\vec{c}$, $\lambda\vec{b} + \mu\vec{c}$ and $(2\lambda - 1)\vec{c}$ are coplanar when a. $\mu \in R$ b. $\lambda = \frac{1}{2}$ c. $\lambda = 0$ d. no value of λ

Watch Video Solution

66. If points $\hat{i} + \hat{j}$, $\hat{i} - \hat{j}$ and $p\hat{i} + q\hat{j} + r\hat{k}$ are collinear, then

A. a. *p* = 1

B. b. r = 0

C. c. $q \in R$

D. d. $q \neq 1$

Answer: null

67. If the vectors $\hat{i} - \hat{j}$, $\hat{j} + \hat{k}$ and \vec{a} form a triangle, then \vec{a} may be a. $-\hat{i} - \hat{k}$ b. $\hat{i} - 2\hat{j} - \hat{k}$ c. $2\hat{i} + \hat{j} + \hat{k}$ d. $\hat{i} + \hat{k}$

Watch Video Solution

68. If the resultant of three forces
$$\vec{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \vec{F}_2 = 6\hat{i} - \hat{k}and\vec{F}_3 = -5\hat{i} + \hat{j} + 2\hat{k}$$
 acting on a particle has

magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

Watch Video Solution

69. \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$. then find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a}

70. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in

magnitude, then it becomes $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$. Then value of x are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2

71. Prove that point $\hat{i} + 2\hat{j} - 3\hat{k}$, $2\hat{i} - \hat{j} + \hat{k}$ and $2\hat{i} + 5\hat{j} - \hat{k}$ from a triangle in

space.

Watch Video Solution

72. Show that the point *A*, *B* and *C* with position vectors $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}\vec{b} = 2$ $\hat{i}j + \hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$, respectively form the vertices of a right angled triangle.

76. If the projections of vector \vec{a} on x -, y - and z -axes are 2, 1 and 2 units

,respectively, find the angle at which vector \vec{a} is inclined to the *z* -axis.

magnitude 8 units.

Watch Video Solution

78. If \vec{a} , \vec{b} , \vec{c} , \vec{d} are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are collinear and $\vec{a} + \vec{c} = \vec{b} + \vec{d}$, than prove that guadrilateral ABCD is a parallelogram.

Watch Video Solution

79. Show that the points A(6, -7, 0), B(16, -19, -4), C(0, 3, -6) and D(2, -5, 10) are such that AB and CD intersect at the point P(1, -1, 2).

80. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are proportional to $l_1 + l_2$, $m_1 + m_2$, $n_1 + n_2$ Statement 2: The angle between the two intersection lines having direction cosines as l_1 , m_1 , n_1 and l_2 , m_2 , n_2 is given by $\cos\theta = l_1l_2 + m_1m_2 + n_1n_2$

81. Statement 1: In
$$\triangle ABC$$
, $AB + BC + CA = 0$
 \overrightarrow{ABC} , $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$
Statement 2: If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$

Watch Video Solution

82. Statement 1: If \vec{u} and \vec{v} are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them, then

 $\vec{x} = (\vec{u} + \vec{v}) / (2\sin(\alpha/2))$ Statement 2: If Delta*ABC* is an isosceles triangle

with AB = AC = 1, then the vector representing the bisector of angel A is given by $\vec{A}D = (\vec{A}B + \vec{A}C)/2$.

Watch Video Solution

83. Statement 1: If $\cos\alpha$, $\cos\beta$, and $\cos\gamma$ are the direction cosines of any line segment, then $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$. Statement 2: If $\cos\alpha$, $\cos\beta$, and $\cos\gamma$ are the direction cosines of any line segment, then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 1$.

Watch Video Solution

84. A vector has components p and 1 with respect to a rectangular Cartesian system. The axes are rotated through an angle α about the origin in the anticlockwise sense.

Statement 1: If the vector has component p + 2 and 1 with respect to the new system, then p = -1.

Statement 2: Magnitude of the original vector and new vector remains the same.

85. Statement 1 : If three point P, Q and R have position vectors \vec{a} , \vec{b} and \vec{c} , respectively, and $2\vec{a} + 3\vec{b} - 5\vec{c} = 0$, then the point P, Q and R must be collinear.

Statement 2 : If for three points A, B and C, $AB = \lambda AC$, then points A, B and C must be collinear.

Watch Video Solution

86. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and $\hat{l},$ and $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda - 1)(\vec{a}_1 - \vec{a}_2) + \mu(\vec{a}_2 + \vec{a}_3) + \gamma(\vec{a}_3 + \vec{a}_4 - 2\vec{a}_2) + \vec{a}_3 + \delta \vec{a}_4 = 0$, then

A. a. $\lambda = 1$ B. b. $\mu = -2/3$ C. c. $\gamma = 2/3$ D. d. $\delta = 1/3$

Answer: null

Watch Video Solution

87. Let *ABC* be a triangle, the position vectors of whose vertices are $-10\hat{i} + 10\hat{k}$, $-\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$. Then $\triangle ABC$ is a. isosceles b. equilateral c. right angled d. none of these

Watch Video Solution

88. If non-zero vectors \vec{a} and \vec{b} are equally inclined to coplanar vector \vec{c} ,

then
$$\vec{c}$$
 can be a. $\frac{|\vec{a}|}{|\vec{a}| + 2|\vec{b}|}a + \frac{|\vec{b}|}{|\vec{a}| + |\vec{b}|}\vec{b}$ b. $\frac{|\vec{b}|}{|\vec{a}| + |\vec{b}|}a + \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|}\vec{b}$ c.

89. If A(-4, 0, 3) and B(14, 2, -5), then which one of the following points lie on the bisector of the angle between $\vec{O}A$ and $\vec{O}B(O$ is the origin of reference)? a. (2, 2, 4) b. (2, 11, 5) c. (-3, -3, -6) d. (1, 1, 2)

Watch Video Solution

90. Prove that the sum of three vectors determined by the medians of a

triangle directed from the vertices is zero.

91. Prove that the resultant of two forces acting at point O and represented by \vec{OB} and \vec{OC} is given by $2\vec{OD}$, where D is the midpoint of

92. Two forces \vec{AB} and \vec{AD} are acting at vertex A of a quadrilateral ABCD and two forces \vec{CB} and \vec{CD} at C prove that their resultant is given by $4\vec{EF}$, where E and F are the midpoints of AC and BD, respectively.

Watch Video Solution

93. ABC is a triangle and P any point on BC. If PQ is the sum of $\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PC}$, show that ABQC is a parallelogram and Q, therefore, is a

fixed point.

angle $\pi/3$. Find the length of projection of the vector on the z-axis.

98. Find the equation of the normal to the curve $y = x^3 + 2x + 6$ which are parallel to the line x + 14y + 4 = 0. $x^3 + y^3 = 8xy$ at the point where it meets the curve $y^2 = 4x$ other than the origin.

Watch Video Solution

99. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that $\vec{a} + \vec{b} - \vec{c} = 0$. If the area of

triangle formed by vectors \vec{a} and \vec{b} is A, then what is the value of $4A^2$?

101. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of the four distinct points . A, B, C, D If $\vec{b} - \vec{a} = \vec{c} - \vec{d}$, then show that *ABCD* is parallelogram.

Watch Video Solution

102. Statement 1:Let $A(\vec{a}), B(\vec{b}) and C(\vec{c})$ be three points such that $\vec{a} = 2\hat{i} + \hat{k}, \vec{b} = 3\hat{i} - \hat{j} + 3\hat{k}and\vec{c} = -\hat{i} + 7\hat{j} - 5\hat{k}$ Then *OABC* is a tetrahedron. Statement 2: Let $A(\vec{a}), B(\vec{b}) and C(\vec{c})$ be three points such that vectors $\vec{a}, \vec{b}and\vec{c}$ are non-coplanar. Then *OABC* is a tetrahedron where *O* is the origin.

Watch Video Solution

103. Statement 1: If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then \vec{a} and \vec{b} are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle. Which of the following Statements is/are correct ?

104. Statement 1: $\vec{a} = 3\vec{i} + p\vec{j} + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} + q\vec{k}$ are parallel vectors if p = 9/2andq = 2. Statement 2: if $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}and\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ are parallel, then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$. Which of the following Statements is/are correct ?

Watch Video Solution

105. The position vectors of the vertices *A*, *BandC* of a triangle are three unit vectors $\vec{a}, \vec{b}, and\vec{c}$, respectively. A vector \vec{d} is such that $\vec{a} = \vec{b}and\vec{d} = \lambda (\vec{b} + \vec{c})$. Then triangle *ABC* is a acute angled b. obtuse angled c. right angled d. none of these

106. *aandb* form the consecutive sides of a regular hexagon ABCDEF Column I, Column II If $\vec{C}D = x\vec{a} + y\vec{b}$, then, p. x = -2 If $\vec{C}E = x\vec{a} + y\vec{b}$, then, qx = -1 If $\vec{A}E = x\vec{a} + y\vec{b}$, then, r. y = 1 $\vec{A}D = -x\vec{b}$, then, s.y = 2

> Watch Video Solution

107. Column I, Column II Collinear vectors, p. \vec{a} Coinitial vectors, q. \vec{b} Equal

vectors, r. \vec{c} Unlike vectors (same intitial point), s. \vec{d}

Watch Video Solution

108. Statement 1:
$$|\vec{a}| = 3, |\vec{b}| = 4$$
 and $|\vec{a} + \vec{b}| = 5,$ then $|\vec{a} - \vec{b}| = 5.$

Statement 2: The length of the diagonals of a rectangle is the same.

109. A man travelling towards east at 8km/h finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

110. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

Watch Video Solution

111. If $\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$, determine vector \vec{c} along the internal bisector of the angle between of the angle between vectors \vec{a} and \vec{b} such that $|\vec{c}| = 5\sqrt{6}$

112. Find a unit vector \vec{c} if $\vec{-i} + \vec{j} - \vec{k}$ bisects the angle between \vec{c} and $3\vec{i} + 4\vec{j}$.

Watch Video Solution

113. The vectors $2i + 3\hat{j}$, $5\hat{i} + 6\hat{j}$ and $8\hat{i} + \lambda\hat{j}$ have initial points at (1, 1). Find

the value of λ so that the vectors terminate on one straight line.

Watch Video Solution

114. If \vec{a} , \vec{b} and \vec{c} are three non-zero vectors, no two of which are collinear, $\vec{a} + 2\vec{b}$ is collinear with \vec{c} and $\vec{b} + 3\vec{c}$ is collinear with \vec{a} , then find the value of $|\vec{a} + 2\vec{b} + 6\vec{c}|$.

115. i. Prove that the points $\vec{a} - 2\vec{b} + 3\vec{c}$, $2\vec{a} + 3\vec{b} - 4\vec{c}$ and $-7\vec{b} + 10\vec{c}$ are are collinear, where \vec{a} , \vec{b} , \vec{c} are non-coplanar. ii. Prove that the points A(1, 2, 3), B(3, 4, 7), and C(-3, -2, -5) are collinear. find the ratio in which point C divides AB.

|--|

116. Check whether the given three vectors are coplanar or non-coplanar.

$$-2\hat{i} - 2\hat{j} + 4\hat{k}$$
, $-2\hat{i} + 4\hat{j}$, $4\hat{i} - 2\hat{j} - 2\hat{k}$

Watch Video Solution

117. Prove that the four points $6\hat{i} - 7\hat{j}$, $16\hat{i} - 19\hat{j} - 4\hat{k}$, $3\hat{j} - 6\hat{k}$ and $2\hat{i} + 5\hat{j} + 10\hat{k}$ form a tetrahedron in space.

118. If \vec{a} and \vec{b} are two non-collinear vectors, show that points

$$l_1\vec{a} + m_1\vec{b}, l_2\vec{a} + m_2\vec{b}$$
 and $l_3\vec{a} + m_3\vec{b}$ are collinear if $\begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ 1 & 1 & 1 \end{vmatrix} = 0.$

Watch Video Solution

119. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

120. Let $\vec{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$ and $\vec{B}(t) = g(t)\hat{i} + g_2(t)\hat{j}$, $t \in [0, 1]$, f_1, f_2, g_1g_2 are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all t and $\vec{A}(0) = 2\hat{i} + 3\hat{j}$, $\vec{A}(1) = 6\hat{i} + 2\hat{j}$, $\vec{B}(0) = 3\hat{i} + 2\hat{i}$ and $\vec{B}(1) = 2\hat{i} + 6\hat{j}$ Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t. **121.** Find the least positive integral value of x for which the angle between

vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute.

Watch Video Solution

122. If vectors $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$ are coplanar,

then find the value of $(\lambda - 4)$.

Watch Video Solution

123. Find the values of λ such that $x, y, z \neq (0, 0, 0)$ and $(\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} - 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$, where $\hat{i}, \hat{j}, \hat{k}$

are unit vector along coordinate axes.

124. A vector has component A_1 , A_2 and A_3 in a right -handed rectangular Cartesian coordinate system *OXYZ* The coordinate system is rotated about the x-axis through an angel $\pi/2$. Find the component of A in the new coordinate system in terms of A_1 , A_2 , and A_3

Watch Video Solution

125. The position vectors of the point *A*, *B*, *C* and *D* are $3\hat{i} - 2\hat{j} - \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$, $-\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$, respectively. If the points *A*, *B*, *C* and *D* lie on a plane, find the value of λ .

Watch Video Solution

126. Let OACB be a parallelogram with O at the origin and OC a diagonal.
Let D be the midpoint of OA using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

127. In a triangle *ABC*, *DandE* are points on *BCandAC*, respectivley, such that BD = 2DCandAE = 3EC Let *P* be the point of intersection of *ADandBE* Find *BP/PE* using the vector method.

Watch Video Solution

128. Prove by vector method that the line segment joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference.

Watch Video Solution

129. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

130. The axes of coordinates are rotated about the z-axis through an angle of $\pi/4$ in the anticlockwise direction and the components of a vector are $2\sqrt{2}$, $3\sqrt{2}$, 4. Prove that the components of the same vector in the original system are -1, 5, 4.

Watch Video Solution

131. Three coinitial vectors of magnitudes a, 2a and 3a meet at a point and their directions are along the diagonals if three adjacent faces if a cube. Determined their resultant R. Also prove that the sum of the three vectors determinate by the diagonals of three adjacent faces of a cube passing through the same corner, the vectors being directed from the corner, is twice the vector determined by the diagonal of the cube.

132. If two side of a triangle are $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{k}$, then find the length of

the third side.

133. If in parallelogram ABCD, diagonal vectors are $\vec{A}C = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and

 $\vec{B}D = -6\hat{i} + 7\hat{j} - 2\hat{k}$, then find the adjacent side vectors $\rightarrow AB$ and $\vec{A}D$

Watch Video Solution

134. Find the resultant of vectors $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}$ Find the unit vector in the direction of the resultant vector

the unit vector in the direction of the resultant vector.

135. Check whether the three vectors $2\hat{i} + 2\hat{j} + 3\hat{k}$, $-3\hat{i} + 3\hat{j} + 2\hat{k}and3\hat{i} + 4\hat{k}$

from a triangle or not

136. The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that using vectors.

Watch Video Solution

137. Prove that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

Watch Video Solution

138. Find the angle of vector $\vec{a} = 6\hat{i} + 2\hat{j} - 3\hat{k}$ with x -axis.

139. If the vectors $\vec{\alpha} = a\hat{i} + a\hat{j} + c\hat{k}$, $\vec{\beta} = \hat{i} + \hat{k}$ and $\vec{\gamma} = c\hat{i} + c\hat{j} + b\hat{k}$ are

coplanar, then prove that c is the geometric mean of a and b.

140. The points with position vectors 60i + 3j, 40i - 8j, ai - 52j are collinear

if a. a = -40 b. a = 40 c. a = 20 d. none of these

141. Let α , β and γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$; $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ a. are collinear. b. forms an equilateral triangle. c. forms a scalene triangle. d. forms a right angled triangle.

142. Let $\vec{a} = \vec{i} - \vec{k}$, $\vec{b} = x\vec{i} + \vec{j} + (1 - x)\vec{k}$ and $\vec{c} = y\vec{i} + x\vec{j} + (1 + x - y)\vec{k}$. Then $\left[\vec{a}\vec{b}\vec{c}\right]$ depends on (A) only x (B) only y (C) Neither x nor y (D) both x and y

143. In the $\triangle OAB$, *M* is the mid-point of AB,C is a point on OM, such that 2OC=CM. X is a point on the side OB such that OX=2XB. The line XC is produced to meet OA in Y. then, $\frac{OY}{YA}$ is equal to

Watch Video Solution

144. If \vec{a} , \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a} + \vec{b}$, $\vec{a} - \vec{b}$ and $\vec{a} + \lambda \vec{b}$ are collinear for all real values of \therefore

145. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors & $|\vec{c}| = \sqrt{3}$, then ordered pair (α, β) is (a)(1, 1) (b) (1, -1) (c) (-1, 1) (d) (-1, -1)

146. The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + k$, $\hat{i} - \lambda^2 \hat{j} + \hat{k} and \hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar is a. zero b. one c. two d.

three

Watch Video Solution

147. If $\vec{A}O + \vec{O}B = \vec{B}O + \vec{O}C$, then A, B and C are (where O is the origin) a.

coplanar b. collinear c. non-collinear d. none of these

148. Find a vector magnitude 5 units, and parallel to the resultant of the

vectors
$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

149. Show that the points *A*(1, -2, -8), *B*(5, 0, -2)*andC*(11, 3, 7) are

collinear, and find the ratio in which B divides AC

Watch Video Solution

150. The position vectors of PandQ are $5\hat{i} + 4\hat{j} + a\hat{k}$ and $-\hat{i} + 2\hat{j} - 2\hat{k}$,

respectively. If the distance between them is 7, then find the value of a

151. Given three points are *A*(-3, -2, 0), *B*(3, -3, 1)*andC*(5, 0, 2) Then find

a vector having the same direction as that of \overrightarrow{AB} and magnitude equal to


```
153. If ABCD is quadrilateral and EandF are the mid-points of ACandBD
respectively, prove that \vec{AB} + \vec{AD} + \vec{CB} + \vec{CD} = 4 \vec{EF}
```

Watch Video Solution

154. If ABCD is a rhombus whose diagonals cut at the origin O, then

proved that $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D$ =0

158. Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$

159. The median AD of the triangle ABC is bisected at E and BE meets AC

at F. Find AF : FC.

Watch Video Solution

160. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of n vectors

 $\vec{c} = (n-2)\vec{a} + \vec{b}$ and $\vec{d} = (2n+1)\vec{a} - \vec{b}$ are collinear?

161. i. If vec a , vec b a n d vec c *arenon - coplanar* $\xrightarrow{\rightarrow}$ *rs*, *provet* $\xrightarrow{\rightarrow}$ *rs*3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc ` are coplanar.

162. Prove that a necessary and sufficient condition for three vectors \vec{a} , \vec{b} and \vec{c} to be coplanar is that there exist scalars l, m, n not all zero simultaneously such that $l\vec{a} + m\vec{b} + n\vec{c} = \vec{0}$

164. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors, prove that the four points $2\vec{a} + 3\vec{b} - \vec{c}$, $\vec{a} - 2\vec{b} + 3\vec{c}$, $3\vec{a} + 4\vec{b} - 2\vec{c}$ and $\vec{a} - 6\vec{b} + 6\vec{c}$ are coplanar.

Watch Video Solution

165. Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$.

166. let P an interioer point of a triangle ABC and AP, BP, CP meets the

sides *BC*, *CA*, *AB* in *D*, *E*, *F*, respectively, Show that $\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}$

167. Let
$$\vec{a}$$
, \vec{b} and \vec{c} be unit vectors, such that
 $\vec{a} + \vec{b} + \vec{c} = \vec{x}$, $\vec{a}\vec{x} = 1$, $\vec{b}\vec{x} = \frac{3}{2}$, $|\vec{x}| = 2$. Then find the angel between
 \vec{c} and \vec{x}

Watch Video Solution

168. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $\left(\alpha \vec{A} + \vec{B}\right)$ bisects the internal angle between \vec{A} and \vec{B} , then find the value of α

169. If the vectors $3\vec{p} + \vec{q}$; $5p - 3\vec{q}$ and $2\vec{p} + \vec{q}$; $4\vec{p} - 2\vec{q}$ are pairs of mutually

perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q}

172. Let $u = \hat{i} + \hat{j}$, $v = \hat{i} - \hat{j}$ and $w = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $u \cdot \hat{n} = 0$ and $v \cdot \hat{n} = 0$, then $|w \cdot \hat{n}|$ is

174.
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 9$,find the angle between \vec{a} and \vec{c} .

Watch Video Solution

175. Constant forces $P_1 = \hat{i} + \hat{j} + \hat{k}$, $P_2 = -\hat{i} + 2\hat{j} - \hat{k}andP_3 = -\hat{j} - \hat{k}$ act on a particle at a point \hat{A} Determine the work done when particle is displaced from position $A(4\hat{i} - 3\hat{j} - 2\hat{k})$ to $B(6\hat{i} + \hat{j} - 3\hat{k})$.

176. If \vec{a} , and \vec{b} are unit vectors , then find the greatest value of $\left|\vec{a} + \vec{b}\right| + \left|\vec{a} - \vec{b}\right|$

177. Let $G_1, G_2 and G_3$ be the centroids of the triangular faces *OBC*, *OCAandOAB*, respectively, of a tetrahedron *OABC*⁻ If V_1 denotes the volumes of the tetrahedron *OABCandV*₂ that of the parallelepiped with $OG_1, OG_2 and OG_3$ as three concurrent edges, then prove that $4V_1 = 9V_2$

Watch Video Solution

178. Prove that
$$\hat{i} \times (a + \hat{i}) + \hat{j} \times (a \times \hat{j}) + \hat{k} \times (a \times \hat{k}) = 2a$$

179. If
$$\hat{i} \times \left[\left(\vec{a} - \hat{j}\right) \times \hat{i}\right] + \hat{j} \times \left[\left(\vec{a} - \hat{k}\right) \times \hat{j}\right] + \hat{k} \times \left[\left(\vec{a} - \hat{i}\right) \times \hat{k}\right] = 0$$
, then

find vector \vec{a}

180. Let
$$\vec{a}, \vec{b}, \text{ and } \vec{c}$$
 be any three vectors, then prove that [
 $\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}$]= $\left[\vec{a} \vec{b} \vec{c}\right]^2$

Watch Video Solution

181. If
$$\left[\vec{a}\vec{b}\vec{c}\right] = 2$$
, then find the value of $\left[\left(\vec{a}+2\vec{b}-\vec{c}\right)\left(\vec{a}-\vec{b}\right)\left(\vec{a}-\vec{c}\right)\right]^{\cdot}$

Watch Video Solution

182. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular unit vectors, find $\begin{vmatrix} 2\vec{a} + \vec{b} + \vec{c} \end{vmatrix}$

183. If a, bandc are three non-copOlanar vector, non-zero vectors then the

value of
$$(\vec{a}. \vec{a})\vec{b} \times \vec{c} + (\vec{a}. \vec{b})\vec{c} \times \vec{a} + (\vec{a}. \vec{c})\vec{a} \times \vec{b}$$
.

Watch Video Solution

184. Prove that vectors
$$\vec{u} = (al + a_1l_1)\hat{i} + (am + a_1m_1)\hat{j} + (an + a_1n_1)\hat{k}$$

 $\vec{v} = (bl + b_1l_1)\hat{i} + (bm + b_1m_1)\hat{j} + (bn + b_1n_1)\hat{k}$
 $\vec{w} = (cl + c_1l_1)\hat{i} + (cm + c_1m_1)\hat{j} + (cn + c_1n_1)\hat{k}$ are coplanar.

185. For any four vectors, prove that
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$$

Watch Video Solution

186. If \vec{b} and \vec{c} are two-noncollinear vectors such that $\vec{a} \mid \vec{b} \times \vec{c}$, then

prove that
$$(\vec{a} \times \vec{b})$$
. $(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^2 (\vec{b} \vec{c})^2$.

187. If the vertices A,B,C of a triangle ABC are (1,2,3),(-1,0,0),(0,1,2), respectively, then find $\angle ABC$.

Watch Video Solution

188. Let \vec{a} , \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that

$$\left|\vec{a}\right| = 1$$
, $\left|\vec{b}\right| = 2$, $\left|\vec{c}\right| = 2$. Then find the length of $\vec{a} + \vec{b} + \vec{c}$

189. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is a perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$, for any two

non-zero vectors $\vec{a}and\vec{b}$

190. If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and the angle between \vec{a} and $\vec{b}is120^\circ$. Then find the value of $|4\vec{a} + 3\vec{b}|$

Watch Video Solution

191. If \vec{a} , \vec{b} , and \vec{c} be three non-coplanar vector and p, q, r constitute the reciprocal system of vectors, then (la + mb + nc). (lp + mq + nr). is equals

to

192. Find $| \rightarrow a |$ and $| \rightarrow b |$, if $(\rightarrow a + \rightarrow b) \rightarrow a - \rightarrow b = 8$ and $| \rightarrow a | = 8 | \rightarrow b |$

Watch Video Solution

193. Let $\vec{a}, \vec{b}, and\vec{c}and\vec{a}', \vec{b}', \vec{c}'$ are reciprocal system of vectors, then

prove that
$$\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$

Watch Video Solution

194. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a} + \vec{b} + \vec{c}).[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ equals a.0 b. $[\vec{a}\vec{b}\vec{c}]$ c. $2[\vec{a}\vec{b}\vec{c}]$ d. $-[\vec{a}\vec{b}\vec{c}]$

195. Find the vector equation of the plane passing through the points

having position vectors $\hat{i} + \hat{j} - 2\hat{k}$, $2i - \hat{j} + \hat{k}and\hat{i} + 2\hat{j} + \hat{k}$

196. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$, where \vec{a} , \vec{b} , and \vec{c} are coplanar vectors, then for

some scalar k prove that $\vec{a} + \vec{c} = k\vec{b}$

Watch Video Solution

197. If
$$\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$$
, $\vec{b} = -\vec{i} + 2\vec{j} - 4\vec{k}$ and $\vec{c} = \vec{i} + \vec{j} + \vec{k}$, then find

thevalue of $(\vec{a} \times \vec{b})\vec{a} \times \vec{c}$

198. If the vectors \vec{c} , $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} and \vec{b}

form a right-handed system, then find \vec{c}

199. Given that $\vec{a}\vec{b} = \vec{a}\vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show

that $\vec{b} = \vec{c}$

Watch Video Solution

200. If $|\vec{a}| = 5$, $|\vec{a} - \vec{b}| = 8$ and $|\vec{a} + \vec{b}| = 10$, then find $|\vec{b}|$.

> Watch Video Solution

201. If A, B, C, D are four distinct point in space such that AB is not

$$\vec{AB. CD} = k \left(\left| \vec{AD} \right|^2 + \left| \vec{BC} \right|^2 - \left| \vec{AC} \right|^2 - \left| \vec{BD} \right|^2 \right), \text{ then find the value of } k.$$

Watch Video Solution

202. If $\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$, then find (m, n)

Watch Video Solution

203. If
$$|\vec{a}| = 2|\vec{b}| = 5$$
 and $|\vec{a} \times \vec{b}| = 8$, then find the value of $\vec{a} \cdot \vec{b}$

Watch Video Solution

204. Prove that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$
 and interpret it

geometrically.

205. \vec{a} , \vec{b} and \vec{c} are unit vectors such that $|\vec{a} + \vec{b} + 3\vec{c}| = 4$. Angle between \vec{a} and \vec{b} is θ_1 , between \vec{b} and \vec{c} is θ_2 and between \vec{a} and \vec{c} varies $[\pi/6, 2\pi/3]$. Then the maximum of $\cos\theta_1 + 3\cos\theta_2$ is 3 b. 4 c. $2\sqrt{2}$ d. 6

206. Prove that
$$\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

Watch Video Solution

207. Let *A*, *B*, *C* be three unit vectors and *A*. *B* = *A*. *C* = 0. If the angel between B and C is $\frac{\pi}{6}$, then A is equals to

Watch Video Solution

208. The position vectors of the four angular points of a tetrahedron are $A(\hat{j} + 2\hat{k}), B(3\hat{i} + \hat{k}), C(4\hat{i} + 3\hat{j} + 6\hat{k}) and D(2\hat{i} + 3\hat{j} + 2\hat{k})$. Find the volume

209. If the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ form three concurrent edges of

a parallelepiped, then find the volume of the parallelepiped.

Watch Video Solution

210. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u} + \vec{v} - \vec{w}) \cdot [[(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]] = \vec{u} \cdot \vec{v} \times \vec{w}$

Watch Video Solution

211. Find the value of *a* so that the volume of the parallelepiped formed by vectors $\hat{i} + a\hat{j} + k$, $\hat{j} + a\hat{k}anda\hat{i} + \hat{k}$ becomes minimum.

212. If $\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$, then find (m, n)

Watch Video Solution

213. Prove that
$$\begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} & \vec{a} & \vec{l} & \vec{b} & \vec{l} & \vec{c} \\ \vec{m} & \vec{a} & \vec{m} & \vec{b} & \vec{m} & \vec{c} \\ \vec{n} & \vec{a} & \vec{n} & \vec{b} & \vec{n} & \vec{c} \end{vmatrix}$$

Watch Video Solution

214. Find the altitude of a parallelepiped whose three coterminous edtges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}and\vec{C} = \hat{i} + \hat{j} + 3\hat{k}with\vec{A}and\vec{B}$ as the sides of the base of the parallepiped.
215. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $(\vec{a}, \vec{b})=4$ then find $|(\vec{a}-\vec{b})|$

217. If \vec{a}, \vec{b} , and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, \vec{b} and \vec{c} are non-parallel, then prove that the angel between \vec{a} and \vec{b} , $is3\pi/4$.

$$\vec{r} \cdot \vec{a} = 0, \vec{r} \cdot \vec{b} = 1$$
 and $\begin{bmatrix} \vec{r} & \vec{a} & \vec{b} \end{bmatrix} = 1, \vec{a}\vec{b} \neq 0, \begin{pmatrix} \vec{a} & \vec{b} \\ \vec{a} & \vec{b} \end{pmatrix}^2 - |\vec{a}|^2|\vec{b}|^2 = -1,$

then find \vec{r} in terms of \vec{a} and \vec{b} .

Watch Video Solution

219. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$.

Watch Video Solution

220. \vec{a} , $\vec{b}and\vec{c}$ are three non-coplanar ,non-zero vectors and \vec{r} is any vector in space, then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is equal to **Watch Video Solution**

lf

222. Let \hat{a}, \hat{b} , and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha, 0), B(\hat{b}\cos\beta, 0)$ and $C(\hat{c}\cos\gamma, 0)$, then show that in triangle $ABC, \quad \frac{\left|\hat{a} \times (\hat{b} \times \hat{c})\right|}{\sin A} = \frac{\left|\hat{b} \times (\hat{c} \times \hat{a})\right|}{\sin B} = \frac{\left|\hat{c} \times (\hat{a} \times \hat{b})\right|}{\sin C}$

Watch Video Solution

223. Find the vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$. **224.** If \vec{b} is not perpendicular to \vec{c} , then find the vector \vec{r} satisfying the

equyation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$.

Watch Video Solution

225. If \vec{a} , \vec{b} and \vec{c} are three non coplanar vectors, then $\left(\vec{a} + \vec{b} + \vec{c}\right) \left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$ is :

Watch Video Solution

226. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and

 $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$, then find the value of λ

227. Prove that
$$(\vec{a}, \hat{i})(\vec{a} \times \hat{i}) + (\vec{a}, j)(\vec{a} \times \hat{j}) + (\vec{a}, \hat{k})(\vec{a} \times \hat{k}) = 0.$$

Watch Video Solution

228. If
$$(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$$
 and $|\vec{a}| = 4$, then find the value of $|\vec{b}|$

Watch Video Solution

229. A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)

Watch Video Solution

230. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ is acting on point (1, -1, 2).

231. Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} is a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \cdot \vec{b}$

Watch Video Solution

232. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between a and b is $\frac{\pi}{6}$, then prove that $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$

Watch Video Solution

233. Statement 1: \vec{a} , \vec{b} , and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-coplanar. If

$$\begin{bmatrix} \vec{d}\vec{b}\vec{c} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{a}\vec{b} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{c}\vec{a} \end{bmatrix} = 1, then\vec{d} = \vec{a} + \vec{b} + \vec{\cdot}$$
Statement 2:
$$\begin{bmatrix} \vec{d}\vec{b}\vec{c} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{a}\vec{b} \end{bmatrix} = \begin{bmatrix} \vec{d}\vec{c}\vec{a} \end{bmatrix}\vec{d}$$

Watch Video Solution

234. If the volume of a parallelepiped whose adjacent edges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}, \vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k}$ is 15, then find the value of α if $(\alpha > 0)$

Watch Video Solution

235. Prove that
$$\begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} & \vec{a} & \vec{l} & \vec{b} & \vec{l} & \vec{c} \\ \vec{m} & \vec{a} & \vec{m} & \vec{b} & \vec{m} & \vec{c} \\ \vec{n} & \vec{a} & \vec{n} & \vec{b} & \vec{n} & \vec{c} \end{vmatrix}$$

236. Using dot product of vectors, prove that a parallelogram, whose

diagonals are equal, is a rectangle

238. In any triangle *ABC*, prove the projection formula $a = b\cos C + c\cos B$

using vector method.

Watch Video Solution

239. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

 $\forall x \in R$, then find the values of a

244. A unit vector a makes an angle $\frac{\pi}{4}$ with z-axis. If a + i + j is a unit vector, then a can be equal to

Watch Video Solution

245. if \vec{a} , \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a

unit vector then find the value of $\left|2\vec{a} + \vec{b} + \vec{c}\right|^2$

246. If \vec{a} , \vec{b} , and \vec{c} be non-zero vectors such that no two are collinear or $\left(\vec{a} \times \vec{b}\right) \times \vec{c} = \frac{1}{3} \left|\vec{b}\right| \left|\vec{c}\right| \vec{a}$ If θ is the acute angle between vectors \vec{b} and \vec{c} ,

then find the value of $\sin \theta$

247. If \vec{p} , \vec{q} , \vec{r} denote vector $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$, respectively, show that \vec{a}

is parallel to $\vec{q} \times \vec{r}$, \vec{b} is parallel $\vec{r} \times \vec{p}$, \vec{c} is parallel to $\vec{p} \times \vec{q}$.

248. If \vec{a} and \vec{b} be two non-collinear unit vector such that $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$, then find the angle between \vec{a} and \vec{b} .

Watch Video Solution

249. Show that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})^{\cdot}$$

Watch Video Solution

250. Prove that $(\vec{a}.(\vec{b}\times\hat{i}))\hat{i} + (\vec{a}.(\vec{b}\times\hat{j}))\hat{j} + (\vec{a}.(\vec{b}\times\hat{k}))\hat{k} = \vec{a}\times\vec{b}.$

251. For any four vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that $\vec{d}. \left(\vec{a} \times \left(\vec{b} \times \left(\vec{c} \times \vec{d}\right)\right)\right) = \left(\vec{b}. \vec{d}\right) \left[\vec{a} \ \vec{c} \ \vec{d}\right].$

Watch Video Solution

252. If
$$\vec{a}, \vec{b}$$
, and \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}, \vec{c} \times \vec{a} = \vec{b}$, then prove that $|\vec{a}| = |\vec{b}| = |\vec{c}|$.

Watch Video Solution

253. If
$$\vec{a} = \vec{p} + \vec{q}$$
, $\vec{p} \times \vec{b} = 0$ and $\vec{q}\vec{b} = 0$, then prove that $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b}\vec{b}} = \vec{q}$

254. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$, then find vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.

255. If non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the

solution of the equation $\vec{r} \times \vec{a} = \vec{b}$ is given by

Watch Video Solution

256. If \vec{a}, \vec{b} , and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a} + \vec{b} + \vec{c}$.

257. If \vec{a} , \vec{b} , and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$

Watch Video Solution

260. Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$

262. If \vec{a} , \vec{b} , and \vec{c} are non-zero vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , then find the geometrical relation between the vectors.

Watch Video Solution

263. Find the projection of vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$

Watch Video Solution

264. If θ is the angle between the unit vectors a and b, then prove that

$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} + \vec{b}\right|, \text{and } \sin\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} - \vec{b}\right|$$

265. Let \vec{a} , \vec{b} , and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is pi/3 . If veca × vecb + vecb × vecc =p veca +q vecb +r vecc , where p,q and r are scalars, then the value of p 2 +2q 2 +r 2 /q2 is

> Watch Video Solution

266. Given unit vectors \hat{m} , $\hat{n}and\hat{p}$ such that angel between $\hat{m}and\hat{n}$ is α and

angle between $\hat{p}and(\hat{m} \times \hat{n})$ is also α , then $[\hat{n}\hat{p}\hat{m}] =$

267. Let \vec{a} , \vec{b} , and \vec{c} be non-coplanar vectors and let the equation \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vector \vec{a} , \vec{b} , \vec{c} , then prove that $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$ is a null vector.

268. Vector $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$

Watch Video Solution

269. The base of the pyramid *AOBC* is an equilateral triangle *OBC* with each side equal to $4\sqrt{2}$, *O* is the origin of reference, *AO* is perpendicualar to the plane of *OBC* and $|\vec{A}O| = 2$. Then find the cosine of the angle between the skew straight lines, one passing though *A* and the midpoint of *OBand* the other passing through *O* and the mid point of *BC*

270. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

271. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

Watch Video Solution

272. Show that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})^{\cdot}$$

Watch Video Solution

273. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d}

which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . \vec{d} = 15.

274. If A, BandC are the vetices of a triangle ABC, then prove sine rule

276. Find a unit vector perpendicular to the plane determined by the

points (1, -1, 2), (2, 0, -1) and (0, 2, 1)

Watch Video Solution

277. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} & \vec{a} & \vec{a} & \vec{b} \\ \vec{b} & \vec{a} & \vec{b} & \vec{b} \end{vmatrix}$.

278. In isosceles triangles ABC, $|\vec{AB}| = |\vec{B}C| = 8$, a point E divides AB internally in the ratio 1:3, then find the angle between $\vec{C}Eand\vec{C}A(where |\vec{C}A| = 12)$.

Watch Video Solution

279. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

280. Let
$$\vec{a}, \vec{b}$$
, and \vec{c} are vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, and $(\vec{a} + \vec{b})$ is perpendicular to $\vec{c}, (\vec{b} + \vec{c})$ is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} . Then find the value of $|\vec{a} + \vec{b} + \vec{c}|$.

281. If
$$|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$$
, then find the value of $|\vec{a} - \vec{b}|$.

Watch Video Solution

282. If $\vec{A} = 4\hat{i} + 6\hat{j}and\vec{B} = 3\hat{j} + 4\hat{k}$, then find the component of \vec{AB}

Watch Video Solution

283. A particle acted by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + 9\hat{j} - \hat{k}$ is displaced from point $\hat{i} + 2\hat{j} + 3\hat{k}$ to point $5\hat{i} + 4\hat{j} + \hat{k}$ find the total work done by the forces in units.

284. If \vec{a} , \vec{b} , \vec{c} are three mutually perpendicular unit vectors, then prove that $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$

Watch Video Solution

285. Let $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{k}$ If the ordered set

 $\begin{bmatrix} \vec{b} \, \vec{c} \, \vec{a} \end{bmatrix}$ is left handed, then find the values of x

Watch Video Solution

286. If \vec{a} , \vec{b} , and \vec{c} are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}\vec{b}\times\vec{c}}{\cdot} + \frac{\vec{b}\vec{c}\times\vec{a}}{\cdot} + \frac{\vec{c}\vec{b}\times\vec{a}}{\cdot}$$
$$\vec{b}\vec{c}\times\vec{a} + \frac{\vec{c}\vec{b}\times\vec{a}}{\cdot}$$

287. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cyclic

quadrilateralABCD,provethat
$$\left| \vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a} \right|$$

. $+ \left| \vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b} \right|$
. $= 0$... $(\vec{b} - \vec{a})\vec{d} - \vec{a}$ $(\vec{b} - \vec{c})\vec{d} - \vec{c}$ Watch Video Solution

288. The position vectors of the vertices of a quadrilateral with A as origin

are $B(\vec{b}), D(\vec{d}) and C(l\vec{b} + m\vec{d})$. Prove that the area of the quadrialateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

Watch Video Solution

289. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $\vec{a} - \vec{d}$, is paralelto $\vec{b} - \vec{c}$

290. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ does not imply $\vec{b} = \vec{c}$

291. In triangle *ABC* ,points *D*, *EandF* are taken on the sides *BC*, *CAandAB*, respectively, such that $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = n$ Prove that $\triangle DEF = \frac{n^2 - n + 1}{(n+1)^2} \triangle (ABC)$

Watch Video Solution

292. Let *A*, *B*, *C* be points with position vectors $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}and3\hat{i} + \hat{j} + 2\hat{k}$ respectively. Find the shortest distance between point *B* and plane *OAC*

293. Let \vec{a} and \vec{b} be unit vectors such that $\left| \vec{a} + \vec{b} \right| = \sqrt{3}$. Then find the value of $\left(2\vec{a} + 5\vec{b} \right)$. $\left(\left(3\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right) \right)^{\cdot}$

Watch Video Solution

Watch Video Solution

295. A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2). Find the velocity of the particle at point (4,1,1).

296. $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}; \vec{r} \times \vec{b} = \vec{a} \times \vec{b}; \vec{a} \neq \vec{0}; \vec{b} \neq \vec{0}; \vec{a} \neq \lambda \vec{b}, and \vec{a}$ is not

perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b}

Watch Video Solution

298. If \vec{a} , \vec{b} , \vec{c} are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is $\frac{1}{2} \left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right]$. Also

deduce the condition for collinearity of the points A, B and C.

Watch Video Solution

299. *A*, *B*, *CandD* are any four points in the space, then prove that

$$\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$$
 (area of *ABC* .)

300. Find the area of the parallelogram whose adjacent sides are

determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}and\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Watch Video Solution

301. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B (2,

3, 5) and C (1, 5, 5).

Watch Video Solution

302. Let \vec{a} , \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$

and $\left| \vec{b} \times \vec{c} \right| = \sqrt{15}$. If $\vec{b} - 2\vec{c} = \lambda\vec{a}$, then find the value of λ

303. Find the area a parallelogram whose diagonals are $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$

Watch Video Solution

304. If
$$\vec{a}$$
 and \vec{b} are unit vectors such that $(\vec{a} + \vec{b})$. $[(2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b})] = 0$, then angle between \vec{a} and \vec{b} is a.0 b. $\pi/2$ c. π d. indeterminate

Watch Video Solution

305. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest positive

integer in the range of
$$\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$$
.

306. If the vectors \vec{a} , \vec{b} , and \vec{c} form the sides BC, CAandAB, respectively, of

triangle ABC, then (a) $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a} = 0$ (b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ (c).

$$\vec{a}\vec{b} = \vec{b}\vec{c} = \vec{c}\vec{a}$$
 (d). $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$

Watch Video Solution

307. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° . Suppose that $\left|\vec{u} - \hat{i}\right|$ is geometric mean of $\left|\vec{u}\right|and\left|\vec{u} - 2\hat{i}\right|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2} + 1)\left|\vec{u}\right|$

Watch Video Solution

308. Two adjacent sides of a parallelogram *ABCD* are given by $\vec{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}and\vec{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$ The side *AD* is rotated by an acute angle α in the plane of the parallelogram so that *AD* becomes *AD*. If AD' makes a right angle with the side AB, then the cosine of the angel

$$\alpha$$
 is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

Watch Video Solution

309. Let \vec{a} , \vec{b} , and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ then $\left[\vec{a}\vec{b}\vec{c}\right]$ in terms of θ is equal to :

Watch Video Solution

310. Volume of parallelepiped formed by vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36sq units. Column I|Column II Volume of parallelepiped formed by vectors \vec{a} , \vec{b} , and \vec{c} is |p. Osq.units Volume of tetrahedron formed by vectors \vec{a} , \vec{b} , and \vec{c} is |q. 12 sq. units Volume of parallelepiped formed by vectors $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is |r. 6 sq. units Volume of parallelepiped formed by vectors $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$ and $\vec{c} - \vec{a}$ is |s. 1 sq. units

311. Given three vectors \vec{a} , \vec{b} , and \vec{c} two of which are non-collinear. Further

if $(\vec{a} + \vec{b})$ is collinear with $\vec{c}, (\vec{b} + \vec{c})$ is collinear with $\vec{a}, |\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$ Find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ a. 3 b. -3 c. 0 d. cannot be evaluated

Watch Video Solution

312. The value of *a* so that the volume of parallelepiped formed by $\hat{i} + a\hat{j} + \hat{k}, \hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ is minimum is a.-3 b. 3 c. $1/\sqrt{3}$ d. $\sqrt{3}$

Watch Video Solution

313. $A_1, A_2, ..., A_n$ are the vertices of a regular plane polygon with n sides

and O as its centre. Show that
$$\sum_{i=1}^{n} \overrightarrow{OA}_{i} \times \overrightarrow{OA}_{i+1} = (1 - n) \left(\overrightarrow{OA}_{2} \times \overrightarrow{OA}_{1} \right)$$

314. If *c* is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp \vec{B}$, then find vector \vec{X} which satisfies the equation . $\vec{A}\vec{X} = c$ and $\vec{A} \times \vec{X} = \vec{B}$.

Watch Video Solution

315. *A*, *B*, *CandD* are any four points in the space, then prove that $\left| \vec{AB} \times \vec{CD} + \vec{BC} \times \vec{AD} + \vec{CA} \times \vec{BD} \right| = 4$ (area of *ABC*.)

Watch Video Solution

316.
$$\left[\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}\right] = \left[\vec{a}\vec{b}\vec{c}\right]$$
, then

317. Let $\vec{A} = 2\vec{i} + \vec{k}$, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$, $\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and \vec{R} . $\vec{A} = 0$.

318. Determine the value of c so that for all real x, vectors $cx\hat{i} - 6\hat{j} - 3\hat{k}$ and $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other.

Watch Video Solution

319. If
$$\vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{a}) + x_3 (\vec{c} \times \vec{a})$$
 and $4 [\vec{a}\vec{b}\vec{c}] = 1$, then $x_1 + x_2 + x_3$ is equal to (A) $\frac{1}{2}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$ (B) $\frac{1}{4}\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$ (C) $2\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$ (D) $4\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c})$

320. $\left[\left(\vec{a} \times \vec{b}\right) \times \left(\vec{b} \times \vec{c}\right) \left(\vec{b} \times \vec{c}\right) \times \left(\vec{c} \times \vec{a}\right) \left(\vec{c} \times \vec{a}\right) \times \left(\vec{a} \times \vec{b}\right)\right]$ is equal to (where \vec{a} , \vec{b} and \vec{c} are nonzero non-coplanar vector) $\left[\vec{a}\vec{b}\vec{c}\right]^2$ b. $\left[\vec{a}\vec{b}\vec{c}\right]^3$ c. $\left[\vec{a}\vec{b}\vec{c}\right]^4$ d. $\left[\vec{a}\vec{b}\vec{c}\right]$

Watch Video Solution

321. If *V* be the volume of a tetrahedron and *V*' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V = KV', *thenK* is equal to a. 9 b. 12 c. 27 d. 81

Watch Video Solution

322. Let \vec{a} , $\vec{b}and\vec{c}$ be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to $[\vec{a}\vec{b}\vec{c}]\vec{r}$ b. $2[\vec{a}\vec{b}\vec{c}]\vec{r}$ c. $3[\vec{a}\vec{b}\vec{c}]\vec{r}$ d. none of these

323. $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of the triangle ABC and $R(\vec{r})$ is any point in the plane of triangle ABC, then $r.(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ is always equal to

Watch Video Solution

324. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p} , \vec{q} and \vec{r} the vectors

defined by the relation
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$. Then the value of the expression $\left(\vec{a} + \vec{b}\right)\vec{p} + \left(\vec{b} + \vec{c}\right)\vec{q} + \left(\vec{c} + \vec{a}\right)\vec{r}$ is a.0 b. 1 c. 2 d.

325. Let $\vec{a}, \vec{b}and\vec{c}$ be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to $[\vec{a}\vec{b}\vec{c}]\vec{r}$ b. $2[\vec{a}\vec{b}\vec{c}]\vec{r}$ c. $3[\vec{a}\vec{b}\vec{c}]\vec{r}$ d. none of these

326. The position vectors of point *A*, *B*, and*C* are $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + 5\hat{j} - \hat{k}and2\hat{i} + 3\hat{j} + 5\hat{k}$, respectively. Then greatest angel of triangle *ABC* is 120° b. 90° c. $\cos^{-1}(3/4)$ d. none of these

Watch Video Solution

327. Let $\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}and\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x\hat{j})$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)and\vec{b}(x)$ are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

328. If

$$\vec{a} = 2\hat{i} + \hat{i} + \hat{k} \cdot \vec{b} = \hat{i} + 2\hat{i} + 2\hat{k} \cdot \vec{c} = \hat{i} + \hat{i} + 2\hat{k}and(1 + \alpha)\hat{i} + B(1 + \alpha)\hat{i} + y(1 + \alpha)(1 + \alpha)\hat{j}$$
are a.-2, -4,
$$-\frac{2}{3}$$
 b. 2, -4, $\frac{2}{3}$ c. -2, 4, $\frac{2}{3}$ d. 2, 4, $-\frac{2}{3}$

Watch Video Solution

329. If
$$\vec{a}$$
, \vec{b} and \vec{c} are unit vectors satisfying
 $\left|\vec{a} - \vec{b}\right|^2 + \left|\vec{b} - \vec{c}\right|^2 + \left|\vec{c} - \vec{a}\right|^2 = 9$, then $\left|2\vec{a} + 5\vec{b} + 5\vec{c}\right|$ is.

Watch Video Solution

330. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and
 $\left| (\vec{d} \cdot \vec{c}) (\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a}) (\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b}) (\vec{c} \times \vec{a}) \right| = 0$, then
 $a. |\vec{a}| = |\vec{b}| = |\vec{c}|$
 $b. |\vec{a}| + |\vec{b}| + |\vec{c}| = |d|$
 $c. \vec{a}, \vec{b}, and \vec{c}$ are coplanar

d. none of these

331. The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$, is/are a. $\hat{j} - \hat{k}$ b. $-\hat{i} + \hat{j}$ c. $\hat{i} - \hat{j}$ d. $-\hat{j} + \hat{k}$

Watch Video Solution

332. Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If

 \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{r} \vec{a} = 0$, then find the value of . $\vec{r} \vec{b}$.

333. Let
$$\vec{a}, \vec{b}, and\vec{c}$$
 be vectors forming right-hand traid. Let $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}, and\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \text{ If } x \in \mathbb{R}^+, \text{ then}$
a. $x\left[\vec{a}\vec{b}\vec{c}\right] + \frac{\left[\vec{p}\vec{q}\vec{r}\right]}{x}$ has least value $= 2. \text{ b. } x^4\left[\vec{a}\vec{b}\vec{c}\right]^2 + \frac{\left[\vec{p}\vec{q}\vec{r}\right]}{x^2}$ has least value $= \left(\frac{3}{2}\right)^{2/3}$ c. $\left[\vec{p}\vec{q}\vec{r}\right] > 0$ d. none of these

334. From a point *O* inside a triangle *ABC*, perpendiculars *OD*, *OEandOf* are drawn to rthe sides *BC*, *CAandAB*, respectively. Prove that the perpendiculars from *A*, *B*, *andC* to the sides *EF*, *FDandDE* are concurrent.

Watch Video Solution

335. Find $\vec{a} \times \vec{b}$, if $\vec{a} = 2\hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$

Watch Video Solution

336. Find the work done by the force $F = 3\hat{i} - \hat{j} - 2\hat{k}$ acrting on a particle

such that the particle is displaced from point $A(-3, -4, 1) \rightarrow B(-1, -1, -2)$

337. Find the angle between the vectors $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

Watch Video Solution

338. OABC is regular tetrahedron in which D is the circumcentre of OAB

and E is the midpoint of edge AC Prove that DE is equal to half the edge of tetrahedron.

Watch Video Solution

339. In the quadrilateral ABCD, the diagonals AC and BD are equal and perpendicular to each other. What type of a quadrilateral is ABCD?

Watch Video Solution

340. If $\vec{e}_1, \vec{e}_2, \vec{e}_3$ and $\vec{E}_1, \vec{E}_2, \vec{E}_3$ arwe two sets of vectors such that $\vec{e}_1, \vec{E}_j = 1$, if and $\vec{e}_i, \vec{E}_j = 0$ and if $i \neq j$, the prove that $\begin{bmatrix} \vec{e}_1 \vec{e}_2 \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_1 \vec{E}_2 \vec{E}_3 \end{bmatrix}$

341. Find the angle between the vectors $\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

342. Given the vectors \vec{A} , \vec{B} , and \vec{C} form a triangle such that $\vec{A} = \vec{B} + \vec{C}$ find a, b, c, and d such that the area of the triangle is $5\sqrt{6}$ where $\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}\vec{B} = d\hat{i} + 3\hat{j} + 4\hat{k}\vec{C} = 3\hat{i} + \hat{j} - 2\hat{k}$

Watch Video Solution

343. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector

which is equally inclined to these vectors is $\vec{a} + \vec{b} + \vec{c}$ b. $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|}$

c.
$$\frac{\dot{a}}{|\vec{a}|^2} + \frac{b}{|\vec{b}|^2} + \frac{\dot{c}}{|\vec{c}|^2}$$
 d. $|\vec{a}|\vec{a} - |\vec{b}|\vec{b} + |\vec{c}|\vec{c}$

344. Let a three dimensional vector \vec{V} satisfy the condition, $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$ If $3|\vec{V}| = \sqrt{m}$ Then find the value of m

Watch Video Solution

345. If
$$\vec{a} = 3\hat{i} - \hat{j} - 4\hat{k}$$
, $\vec{b} = 2\hat{i} + 4\hat{j} - 3\hat{k}$ and $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, find $|3\vec{a} - 2\hat{b} + 4\hat{c}|$

Watch Video Solution

346. Let $\vec{O}A = \vec{a}$, $\hat{O}B = 10\vec{a} + 2\vec{b}and\vec{O}C = \vec{b}$, where O, AandC are noncollinear points. Let p denotes the area of quadrilateral OACB, and let qdenote the area of parallelogram with OAandOC as adjacent sides. If p = kq, then find \vec{k}

347. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$.

Watch Video Solution

348. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $[(a-2)\alpha^2 + (b-3)\alpha + c]\vec{x} + [(a-2)\beta^2 + (b-3)\beta + c]\vec{y} + [(a-2)\gamma^2 + (b-3)\gamma + c]$ are three distinct real numbers, then find the value of $(a^2 + b^2 + c^2 - 4)$.

Watch Video Solution

349. Let $\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \alpha \hat{i} + 2\alpha \hat{j} - 2\hat{k}$, $and\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$ Find thevalue of 6α , such that $\left\{ \left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \right\} \times \left(\vec{c} \times \vec{a} \right) = 0$.

350. Let \vec{a} , $\vec{b}and\vec{c}$ be three vectors having magnitudes 1, 5and 3, respectively, such that the angel between $\vec{a}and\vec{b}is\theta$ and $\vec{a} \times (\vec{a} \times \vec{b}) = c$. Then $tan\theta$ is equal to a. 0 b. 2/3 c. 3/5 d. 3/4

351. Two vectors in space are equal only if they have equal component in

a. a given direction b. two given directions c. three given

directions d. in any arbitrary direction

Watch Video Solution

352. Let
$$\vec{a} = \hat{i} - \hat{j}$$
, $\vec{b} = \hat{j} - \hat{k}$ and $\vec{c} = \hat{k} - \hat{i}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d} = 0 = \left[\vec{b}\vec{c}\vec{d}\right]$, then d equals $\mathbf{a} \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$ b. $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$ c. $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ d. $\pm \hat{k}$

353. If vectors $\vec{a}and\vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to
$$a$$
 is a. \vec{b} + $\frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$ b. $\frac{\vec{a}\vec{b}}{|\vec{b}|^2}$ c. \vec{b} - $\frac{\vec{b}\vec{a}}{|\vec{a}|^2}$ d. $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

Watch Video Solution

354. If $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$(\vec{a}.\vec{c})|\vec{b}|^2 = (\vec{a}.\vec{b})(\vec{b}.\vec{c})(\vec{c}.\vec{a})$$
 b. $\vec{a}\vec{b} = 0$ c. $\vec{a}\vec{c} = 0$ d. $\vec{b}\vec{c} = 0$

355.
$$\left[\left(\vec{a} \times \vec{b} \right) \left(\vec{c} \times \vec{d} \right) \left(\vec{e} \times \vec{f} \right) \right]$$
 is equal to
(a) $\left[\vec{a} \vec{b} \vec{d} \right] \left[\vec{c} \vec{e} \vec{f} \right] - \left[\vec{a} \vec{b} \vec{c} \right] \left[\vec{d} \vec{e} \vec{f} \right]$
(b) $\left[\vec{a} \vec{b} \vec{e} \right] \left[\vec{f} \vec{c} \vec{d} \right] - \left[\vec{a} \vec{b} \vec{f} \right] \left[\vec{e} \vec{c} \vec{d} \right]$

$$(c) \left[\vec{c} \, \vec{d} \, \vec{a} \right] \left[\vec{b} \, \vec{e} \, \vec{f} \right] - \left[\vec{a} \, \vec{d} \, \vec{b} \right] \left[\vec{a} \, \vec{e} \, \vec{f} \right] (d) \left[\vec{a} \, \vec{c} \, \vec{e} \right] \left[\vec{b} \, \vec{d} \, \vec{f} \right]$$

Watch Video Solution

357. If \vec{a} and \vec{b} are unit vectors, then angle between \vec{a} and \vec{b} for $\sqrt{3} \vec{a} - \vec{b}$ to be unit vector is

358. If $\vec{a} \perp \vec{b}$, then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equation s

$$\vec{v}\vec{a} = 0 and\vec{v}\vec{b} = 1 and\left[\vec{v}\vec{a}\vec{b}\right] = 1 \text{ is } \frac{\vec{b}}{\left|\vec{b}\right|^2} + \frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|^2} \text{ b. } \frac{\vec{b}}{\left|\vec{b}\right|^{\Box}} + \frac{\vec{a}\times\vec{b}}{\left|\vec{a}\times\vec{b}\right|^2} \text{ c.}$$

$$\frac{\vec{b}}{\left|\vec{b}\right|^{2}} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^{\Box}} \text{ d. none of these}$$

Watch Video Solution

359. If $\vec{a}' = \hat{i} + \hat{j}$, $\vec{b}' = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{c}' = 2\hat{i} + \hat{j} - \hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a} , \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}' is reciprocal vector \vec{a})

Watch Video Solution

360. If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{c} = \hat{k} + \hat{i}$, then in the reciprocal system of vectors \vec{a} , \vec{b} , \vec{c} reciprocal \vec{a} of vector \vec{a} is a. $\frac{\hat{i} + \hat{j} + \hat{k}}{2}$ b. $\frac{\hat{i} - \hat{j} + \hat{k}}{2}$ c. $\frac{-\hat{i} - \hat{j} + \hat{k}}{2}$ d. $\frac{\hat{i} + \hat{j} - \hat{k}}{2}$

361. If unit vectors $\vec{a}and\vec{b}$ are inclined at angle 2θ such that $\left|\vec{a} - \vec{b}\right| < 1and0 \le \theta \le \pi$, then θ lies in interval a.[0, $\pi/6$] b. $[5\pi/6, \pi]$ c. $[\pi/6, \pi/2]$ d. $[\pi/2, 5\pi/6]$

Watch Video Solution

362. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p} , \vec{q} and \vec{r} the vectors

defined by the relation
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]} and \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$
. Then the value of the expression $\left(\vec{a} + \vec{b}\right)\vec{p} + \left(\vec{b} + \vec{c}\right)\vec{q} + \left(\vec{c} + \vec{a}\right)\vec{r}$ is a.0 b. 1 c. 2 d.

3

363. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_2\hat{k}$$
, $\vec{b} = b_1\hat{i} + a_2\hat{j} + b_2\hat{k}$, and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_2\hat{k}$,
be three non-zero vectors such that \vec{c} is a unit vector perpendicular to

both vectors \vec{a} and b . If the angle between a and b is $\pi/6$, then

A. (a) 0

B. (b) 1

C. (c)
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

D. (d) $\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right) \left(c_1^2 + c_2^2 + c_3^2 \right)$

Answer: null

intersects AB at some point E, then a. $m \ge 1/2$ b. $n \ge 1/3$ c. m = n d. m < n

365. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vector

 \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a.

 $\hat{i} - 3\hat{j} + 3\hat{k}$ b. $-3\hat{i} - 3\hat{j} + 3\hat{k}$ c. $3\hat{i} - \hat{j} + 3\hat{k}$ d. $\hat{i} + 3\hat{j} - 3\hat{k}$

Watch Video Solution

366. If \hat{a} , \hat{b} , and \hat{c} are unit vectors, then $|\hat{a} + \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\hat{c} - \hat{a}|^2$ does

not exceed

Watch Video Solution

367. Which of the following expressions are meaningful? a. \vec{u} . $(\vec{v} \times \vec{w})$ b.

$$\vec{u}$$
. \vec{v} . \vec{w} c. $(\vec{u}\vec{v})$. \vec{w} d. $\vec{u} \times (\vec{v}$. $\vec{w})$

368. Find the value of λ if the volume of a tetrashedron whose vertices are with position vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 3\hat{k}$, $5\hat{i} - \hat{j} + \lambda\hat{k}and7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic unit.

Watch Video Solution

369. Let $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} = \hat{k}and\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ be three vectors. A

vector in the plane of \vec{b} and \vec{c} , whose projection on \vec{a} is of magnitude $\sqrt{2/3}$, is a. $2\hat{i} + 3\hat{j} - 3\hat{k}$ b. $2\hat{i} - 3\hat{j} + 3\hat{k}$ c. $-2\hat{i} - \hat{j} + 5\hat{k}$ d. $2\hat{i} + \hat{j} + 5\hat{k}$

Watch Video Solution

370. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})\vec{a} \times \vec{d} = 0$, then which of the following may be true? \vec{a} , \vec{b} , \vec{c} and \vec{d} are necessarily coplanar b. \vec{a} lies in the plane of \vec{c} and \vec{d} c. \vec{b} lies in the plane of \vec{a} and \vec{d} d. \vec{c} lies in the plane of \vec{a} and \vec{d}

371. Vector $\frac{1}{3}(2i - 2j + k)$ is (A) a unit vector (B) makes an angle $\pi/3$ with vector $(2\hat{i} - 4\hat{j} + 3\hat{k})$ (C) parallel to vector $(-\hat{i} + \hat{j} - \frac{1}{2}\hat{k})$ (D) perpendicular to vector $3\hat{i} + 2\hat{j} - 2\hat{k}$

Watch Video Solution

372. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$. Find the value of $[\vec{u} \ \vec{v} \ \vec{w}]$.

Watch Video Solution

373. The scalars*landm* such that $l\vec{a} + m\vec{b} = \vec{c}$, where \vec{a} , \vec{b} and \vec{c} are given vectors, are equal to

374. If *OABC* is a tetrahedron where *O* is the orogin anf *A*, *B*, and*C* are the other three vertices with position vectors, \vec{a} , \vec{b} , and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron is

given by position vector
$$\frac{a^2(\vec{b} \times \vec{c}) + b^2(\vec{c} \times \vec{a}) + c^2(\vec{a} \times \vec{b})}{2[\vec{a}\vec{b}\vec{c}]}$$

Watch Video Solution

375. If K is the length of any edge of a regular tetrahedron, then the

distance of any vertex from the opposite face is

376. In $\triangle ABC$, a point *P* is taken on *AB* such that AP/BP = 1/3 and point *Q* is taken on *BC* such that CQ/BQ = 3/1. If *R* is the point of intersection of the lines *AQandCP*, using vector method, find the area of *ABC* if the area of *BRC* is 1 unit

377. Let ABCD be a parallelogram whose diagonals intersect at P and let

O be the origin. Then prove that $\vec{O}A + \vec{O}B + \vec{O}C + \vec{O}D = 4\vec{O}P$

378. Find
$$\vec{a}\vec{b}$$
 when: $\vec{a} = \hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 2\hat{k}$

379. if
$$\vec{a}=2\hat{i}-3\hat{j}+\hat{k}$$
 and $\vec{b}=\hat{i}+2\hat{j}-3\hat{k}$ then $\vec{a}X\vec{b}$ is

380. If
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$
, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$ and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is

- A. (a) parallel to $(y z)\hat{i} + (z x)\hat{j} + (x y)\hat{k}$
- B. (b) orthogonal to $\hat{i} + \hat{j} + \hat{k}$
- C. (c) orthogonal to $(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$
- D. (d) orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

Answer: null

Watch Video Solution

381. Find $| \rightarrow a \times \rightarrow b|$, if $\rightarrow a = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\rightarrow b = 3\hat{i} + 5\hat{j} - 2\hat{k}$.

Watch Video Solution

382. find the value of x,y and z so that the vectors $\vec{a} = x\hat{i} + 2\hat{j} + z\hat{k}$ and $\vec{b} = 2\hat{i} + y\hat{j} + \hat{k}$ are equal

383. The lengths of two opposite edges of a tetrahedron are *a* and *b*; the shortest distance between these edges is *d*, and the angel between them is θ Prove using vectors that the volume of the tetrahedron is $\frac{abdsin\theta}{6}$.

384. Volume of the parallelopiped whose adjacent edges are vectors $\vec{a}, \vec{b}, \vec{c}$ is

Watch Video Solution

385. If vectors $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}and\vec{C}$ form a left-handed system, then \vec{C} is a.11 $\hat{i} - 6\hat{j} - \hat{k}$ b.-11 $\hat{i} + 6\hat{j} + \hat{k}$ c. 11 $\hat{i} - 6\hat{j} + \hat{k}$ d. -11 $\hat{i} + 6\hat{j} - \hat{k}$

386. Let a=2i-j+k, b=i+2j-k and c=i+j-2k be three vectors. A vector in the

plane of b and c whose projection on a is of magnitude $\left(\frac{\sqrt{3}}{2}\right)$ is

387. Vectors *AandB* satisfying the vector equation
$$\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b}and\vec{A} \cdot \vec{a} = 1$$
, where $\vec{a}and\vec{b}$ are given vectors, are a.

$$\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) - \vec{a}}{a^2} \quad \text{b.} \quad \vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) + \vec{a}\left(a^2 - 1\right)}{a^2} \quad \text{c.} \quad \vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) + \vec{a}}{a^2} \quad \text{d.}$$
$$\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) - \vec{a}\left(a^2 - 1\right)}{a^2}$$

Watch Video Solution

388. if $\vec{\alpha} \mid |(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta)$. $(\vec{\alpha} \times \vec{\gamma})$ equals to $a. |\vec{\alpha}|^2 (\vec{\beta}. \vec{\gamma})$ b. $|\vec{\beta}|^2 (\vec{\gamma}. \vec{\alpha}) c. |\vec{\gamma}|^2 (\vec{\alpha}. \vec{\beta}) d. |\vec{\alpha}| |\vec{\beta}| |\vec{\gamma}|$

389. Let $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$, $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}and\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ are three coplanar vectors with $a \neq b$, $and\vec{v} = \hat{i} + \hat{j} + \hat{k}$ Then v is perpendicular to $\vec{\alpha}$ b. $\vec{\beta}$ c. $\vec{\gamma}$ d. none of these

Watch Video Solution

390. $a_1, a_2, a_3, \in \mathbb{R} - \{0\}$ and $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ for all $x \in \mathbb{R}$,

then

A. (a) vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = 4\hat{i} + 2\hat{j} + \hat{k}$ are perpendicular

to each other

B. (b) vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + 2\hat{k}$ are parallel to

each other

C. (c) If vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is of length $\sqrt{6}$ units, then one of the

ordered triplet is $(a_1, a_2, a_3) = (1, -1, -2)$

D. (d) If $2a_1 + 3a_2 + 6a_3 = 26$, then $\left| a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \right|$ is $2\sqrt{6}$

Answer: null

391. If *P* is any arbitrary point on the circumcircle of the equilateral triangle of side length *l* units, then $|\vec{P}A|^2 + |\vec{P}B|^2 + |\vec{P}C|^2$ is always equal to $2l^2$ b. $2\sqrt{3}l^2$ c. l^2 d. $3l^2$

Watch Video Solution

392. Let $\vec{a}and\vec{b}$ be two non-zero perpendicular vectors. A vector \vec{x}

satisfying the equation $\vec{x} \times \vec{b} = \vec{a}$ is $\vec{x} = \beta \vec{b} - \frac{1}{|b|^2} \vec{a} \times \vec{b}$ then β can be

393. If $\vec{a}and\vec{b}$ are two vectors and angle between them is θ , then

$$\left|\vec{a} \times \vec{b}\right|^{2} + \left(\vec{a}\vec{b}\right)^{2} = \left|\vec{a}\right|^{2}\left|\vec{b}\right|^{2} \qquad \left|\vec{a} \times \vec{b}\right| = \left(\vec{a}\vec{b}\right), \text{ if } \theta = \pi/4$$
$$\vec{a} \times \vec{b} = \left(\vec{a}\vec{b}\right)\hat{n}, \text{ (where \hat{n} is unit vector,) if } \theta = \pi/4 \left(\vec{a} \times \vec{b}\right)\vec{a} + \vec{b} = 0$$

Watch Video Solution

394. Let
$$\vec{r}$$
 be a unit vector satisfying
 $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}and |\vec{b}| = \sqrt{2}$. Then
Watch Video Solution

395. If vector
$$\vec{b} = (\tan \alpha, -1, 2\sqrt{\sin \alpha/2})$$
 and $\vec{c} = (\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\sin \alpha/2}})$ are orthogonal and vector $\vec{a} = (1, 3, \sin 2\alpha)$ makes an obtuse angle with

the z-axis, then the value of α is

396. Let \vec{a} , \vec{b} , and \vec{c} be non-zero vectors and $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$ and $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$. Vectors \vec{V}_1 and \vec{V}_2 are equal. Then (a). $\vec{a}an\vec{b}$ are orthogonal (b). $\vec{a}and\vec{c}$ are collinear (c). $\vec{b}and\vec{c}$ are orthogonal (d). $\vec{b} = \lambda (\vec{a} \times \vec{c})$ when λ is a scalar

Watch Video Solution

397. $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2\hat{i} + 3\hat{j} - 3\hat{k}$ b. $-2\hat{i} - \hat{j} + 5\hat{k}$ c. $2\hat{i} + 3\hat{j} + 3\hat{k}$ d. $2\hat{i} + \hat{j} + 5\hat{k}$

Watch Video Solution

398. Let $\vec{P}R = 3\hat{i} + \hat{j} - 2\hat{k}and\vec{S}Q = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram *PQRS*, $and\vec{P}T = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the

b. 20 c. 10 d. 30

399. If in a right-angled triangle ABC, the hypotenuse AB = p, then

 \vec{AB} . $\vec{AC} + \vec{BC}$. $\vec{BA} + \vec{CA}$. \vec{CB} is equal to $2p^2$ b. $\frac{p^2}{2}$ c. p^2 d. none of these

Watch Video Solution

400. If
$$\vec{a} = (\hat{i} + \hat{j} + \hat{k})$$
, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \hat{b} is $\hat{i} - \hat{j} + \hat{k}$ b. $2\hat{j} - \hat{k}$ c. \hat{i}
d. $2\hat{i}$

Watch Video Solution

401. If \vec{a} satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$, then \vec{a} is equal to a. $\lambda \hat{i} + (2\lambda - 1)\hat{j} + \lambda \hat{k}, \lambda \in R$ b. $\lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$ c. $\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R \text{ d.} \lambda \hat{i} - (1 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$ **402.** If $\vec{r} \vec{a} = \vec{r} \vec{b} = \vec{r} \vec{c} = 0$, where \vec{a} , \vec{b} , and \vec{c} are non-coplanar, then a.

$$\vec{r} \perp (\vec{c} \times \vec{a})$$
 b. $\vec{r} \perp (\vec{a} \times \vec{b})$ c. $\vec{r} \perp (\vec{b} \times \vec{c})$ d. $\vec{r} = \vec{0}$

Watch Video Solution

· · ·

403. The unit vector orthogonal to vector $-\hat{i} + \hat{j} + 2\hat{k}$ and making equal angles with the x and y-axis $a \pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - \hat{k} \right)$ b. $\pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$ c. $\pm \frac{1}{3} \left(2\hat{i} - 2\hat{j} - \hat{k} \right)$ d. none of these

Watch Video Solution

404. Vectors $3\vec{a} - 5\vec{b}$ and $2\vec{a} + \vec{b}$ are mutually perpendicular. If $\vec{a} + 4\vec{b}$ and $\vec{b} - \vec{a}$ are also mutually perpendicular, then the cosine of the angle between a and b is a. $\frac{19}{5\sqrt{43}}$ b. $\frac{19}{3\sqrt{43}}$ c. $\frac{19}{2\sqrt{45}}$ d. $\frac{19}{6\sqrt{43}}$

405. If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to
$$\vec{a}$$
 is a. \vec{b} + $\frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$ b. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ c. \vec{b} - $\frac{(\vec{b} \cdot \vec{a})\vec{a}}{|\vec{a}|^2}$ d. $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

Watch Video Solution

406. The value of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}and\vec{b} = 7\hat{i} - 2\hat{j} + \hat{k}$ is obtuse and the angle between b and the z-axis acute and less than $\pi/6$ is given by

Watch Video Solution

407. Let $\vec{a} \cdot \vec{b} = 0$, where \vec{a} and \vec{b} are unit vectors and the unit vector \vec{c} is

inclined at an angle heta to both $ec{a}andec{b}$ If

$$\vec{c} = m\vec{a} + n\vec{b} + p\left(\vec{a} \times \vec{b}\right), (m, n, p \in R), \text{ then a.} -\frac{\pi}{4} \le \theta \le \frac{\pi}{4} \text{ b.} \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$$

c. $0 \le \theta \le \frac{\pi}{4} \text{ d.} \ 0 \le \theta \le \frac{3\pi}{4}$
Watch Video Solution
408. A parallelogram is constructed on
 $3\vec{a} + \vec{b}and\vec{a} - 4\vec{b}, where |\vec{a}| = 6and |\vec{b}| = 8, and\vec{a}and\vec{b} \text{ are anti-parallel. Then}$
the length of the longer diagonal is 40 b. 64 c. 32 d. 48

Watch Video Solution

409. Let the position vectors of the points *PandQ* be $4\hat{i} + \hat{j} + \lambda\hat{k}and2\hat{i} - \hat{j} + \lambda\hat{k}$, respectively. Vector $\hat{i} - \hat{j} + 6\hat{k}$ is perpendicular to the plane containing the origin and the points *PandQ*. Then λ equals a -1/2 b. 1/2 c. 1 d. none of these

410. If a and c are unit vectors and |b| = 4. The angel between aandc is

 $\cos^{-1}(1/4)$ anda × b = 2a × c then, b - 2c = λa The value of λ is

Watch Video Solution

411. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and
 $\left| \left(\vec{d} \cdot \vec{c} \right) \left(\vec{a} \times \vec{b} \right) + \left(\vec{d} \cdot \vec{a} \right) \left(\vec{b} \times \vec{c} \right) + \left(\vec{d} \cdot \vec{b} \right) \left(\vec{c} \times \vec{a} \right) \right| = 0$, then a.
 $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$ b. $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| d \right|$ c. \vec{a} , \vec{b} , and \vec{c} are coplanar d. none of these

Watch Video Solution

412. Let $\vec{a}, \vec{b}, and\vec{c}$ be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a} + \vec{b} + \vec{c})$. Now $\vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a})$. Then $a.\frac{\vec{d}\vec{a} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]} = 2$ b.

 $\frac{\vec{d}\vec{a} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]} = -2 \text{ c. minimum value of } x^2 + y^2 \text{ is } \pi^2/4 \text{ d. minimum value of}$ $x^2 + y^2 \text{ is } 5\pi^2/4$

Watch Video Solution

413. If
$$\vec{a} + 2\vec{b} + 3\vec{c} = 0$$
, then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = a$. $2(\vec{a} \times \vec{b})$ b.
 $6(\vec{b} \times \vec{c}) c. 3(\vec{c} \times \vec{a}) d. \vec{0}$

Watch Video Solution

414. If \vec{a} and \vec{b} are two non-collinear unit vector, and $|\vec{a} + \vec{b}| = 3 then(2\vec{a} - 5\vec{b}).(3\vec{a} + \vec{b})=$ Watch Video Solution 415. The angles of triangle, two of whose sides are represented by vectors

$$\sqrt{3}(\vec{a} \times \vec{b})$$
 and $\vec{b} - (\hat{a}\vec{b})\hat{a}$, where \vec{b} is a non zero vector and \hat{a} is unit vector

in the direction of \vec{a} , are

Watch Video Solution

416. \vec{a} , \vec{b} , and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$, and the angel between \vec{a} and \vec{b} is 30° , then \vec{c} is a. $(\hat{i} - 2\hat{j} + 2\hat{k})/3$ b. $(-\hat{i} + 2\hat{j} - 2\hat{k})/3$ c. $(2\hat{i} + 2\hat{j} - \hat{k})/3$ d. $(-2\hat{i} - 2\hat{j} + \hat{k})/3$

Watch Video Solution

417. Vectors perpendicular to $\hat{i} - \hat{j} - \hat{k}$ and in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are $\hat{i} + \hat{k}$ b. $2\hat{i} + \hat{j} + \hat{k}$ c. $3\hat{i} + 2\hat{j} + \hat{k}$ d. $-4\hat{i} - 2\hat{j} - 2\hat{k}$

418. If side \vec{AB} of an equilateral trangle ABC lying in the x-y plane $3\hat{i}$, then side \vec{CB} can be a. $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ b. $-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$ d. $\frac{3}{2}(\hat{i}+\sqrt{3}\hat{j})$

Watch Video Solution

419. 36. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot \vec{c} \times \vec{d} = 1$ and \vec{a} . $\vec{c} = \frac{1}{2}$ then a) \vec{a} , \vec{b} and \vec{c} are non-coplanar b) \vec{b} , \vec{c} , \vec{d} are non -coplanar c) \vec{b} , \vec{d} are non parallel d) \vec{a} , \vec{d} are parallel and \vec{b} , \vec{c} are parallel

Watch Video Solution

420. Let two non-collinear unit vector \hat{a} a n d \hat{b} form an acute angle. A point *P* moves so that at any time *t*, the position vector *OP*(*whereO* is the origin) is given by $\hat{a}cost + \hat{b}sintWhenP$ is farthest from origin *O*, let *M* be the length of *OPand* \hat{u} be the unit vector along *OP*. Then (a)

$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|} andM = \left(1 + \hat{a}\hat{b}\right)^{1/2} \text{ (b)} \quad \hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|} andM = \left(1 + \hat{a}^{\wedge}\right)^{1/2} \text{ (c)}$$
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|} andM = \left(1 + 2\hat{a}\hat{b}\right)^{1/2} \text{ (d)} \hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|} andM = \left(1 + 2\hat{a}\hat{b}\right)^{1/2}$$

Watch Video Solution

421. Let
$$\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - \hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projection of c is $1/\sqrt{3}$ is a. $4\hat{i} - \hat{j} + 4\hat{k}$ b. $3\hat{i} + \hat{j} + 3\hat{k}$ c. $2\hat{i} + \hat{j} + 2\hat{k}$ d. $4\hat{i} + \hat{j} - 4\hat{k}$

Watch Video Solution

422. If \vec{a} , \vec{b} and \vec{c} are three non-zero, non coplanar vector $\vec{b}_1 = \vec{b} - \frac{\vec{b}\vec{a}}{|\vec{a}|^2}\vec{a}$,

•

,

$$\vec{c}_{1} = \vec{c} - \frac{\vec{\cdot} \vec{a}}{\left|\vec{a}\right|^{2}} \vec{a} + \frac{\vec{b} \vec{c}}{\left|\vec{c}\right|^{2}} \vec{b}_{1} , \qquad , c_{2} = \vec{c} - \frac{\vec{\cdot} \vec{a}}{\left|\vec{a}\right|^{2}} \vec{a} - \frac{\vec{b} \vec{c}}{\left|\vec{b}_{1}\right|^{2}}$$

 $b_{1}, \vec{c}_{3} = \vec{c} - \frac{\vec{\cdot} \vec{a}}{|\vec{c}|^{2}}\vec{a} + \frac{\vec{b} \vec{c}}{|\vec{c}|^{2}}\vec{b}_{1}, \vec{c}_{4} = \vec{c} - \frac{\vec{\cdot} \vec{a}}{|\vec{c}|^{2}}\vec{a} = \frac{\vec{b} \vec{c}}{|\vec{b}|^{2}}\vec{b}_{1} \text{ then the set of}$ orthogonal vectors is $(\vec{a}, \vec{b}_{1}, \vec{c}_{3})$ b. $(\vec{a}, \vec{b}_{1}, \vec{c}_{2})$ c. $(\vec{a}, \vec{b}_{1}, \vec{c}_{1})$ d. $(\vec{a}, \vec{b}_{2}, \vec{c}_{2})$

Watch Video Solution

423. The unit vector which is orthogonal to the vector $3\hat{j} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$ b. $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$ c. $\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$

d.
$$\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$$

Watch Video Solution

424. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$, then angle θ between \vec{a} and \vec{b} is $0 \text{ b} \cdot \pi/2 \text{ c} \cdot \pi/4 \text{ d} \cdot \pi$

425. If \vec{a} , \vec{b} , \vec{c} are 3 unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b}}{2}$ then $(\vec{b} \text{ and } \vec{c})$ being non parallel). (a)angle between $\vec{a} \otimes \vec{b}$ is $\frac{\pi}{3}$ (b)angle between \vec{a} and \vec{c} is $\frac{\pi}{3}$ (c)angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$ (d)angle between \vec{a} and \vec{c} is $\frac{\pi}{2}$

Watch Video Solution

426. If in triangle *ABC*,
$$\vec{AB} = \frac{\vec{u}}{|\vec{u}|} - \frac{\vec{v}}{|\vec{v}|} and \vec{AC} = \frac{2\vec{u}}{|\vec{u}|}$$
, where $|\vec{u}| \neq |\vec{v}|$, then
a. $1 + \cos 2A + \cos 2B + \cos 2C = 0$

b.sinA = cosC

c. projection of AC on BC is equal to BC

d. projection of AB on BC is equal to AB
427. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}and\vec{c} = 3\hat{j} - 2\hat{k}$ Let $\vec{x}, \vec{y}, and \vec{z}$ be three vectors in the plane of $\vec{a}, \vec{b}; \vec{b}, \vec{c}; \vec{c}, \vec{a}$, respectively. Then $a.\vec{x}.\vec{d} = -1$ b. $\vec{y}.\vec{d} = 1$ c. $\vec{z}.\vec{d} = 0$ d. $\vec{r}.\vec{d} = 0$, where $\vec{r} = \lambda\vec{x} + \mu\vec{y} + \delta\vec{z}$

Watch Video Solution

428. If
$$a \times (b \times c) = (a \times b) \times c$$
, then $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0} \ b.\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0} \ c.$
 $\vec{b} \times (\vec{c} \times \vec{a}) = 0 \ d. \ (\vec{c} \times \vec{a}) \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$

Watch Video Solution

429. If $\hat{a}, \hat{b}, and\hat{c}$ are three unit vectors inclined to each other at angle θ ,

then the maximum value of
$$\theta$$
 is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2\pi}{3}$ d. $\frac{5\pi}{6}$

430. Let the pairs a, b, and c, d each determine a plane. Then the planes are parallel if $a.(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$ b. $(\vec{a} \times \vec{c}).(\vec{b} \times \vec{d}) = \vec{0}$ c. $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0} d.(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \vec{0}$

431. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vectorvariable point. If R moves such that $(\vec{r} - \vec{p}) \times (\vec{r} - \vec{q}) = 0$ then the locus of R is

Watch Video Solution

432. Two adjacent sides of a parallelogram *ABCD* are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. Then the value of $|AC \times BD|$ is a. $20\sqrt{5}$ b. $22\sqrt{5}$ c. $24\sqrt{5}$ d. $26\sqrt{5}$

433. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then

the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by

434. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}\vec{b} = 0 = \vec{a}\vec{c}$ and the angle between $\vec{b}and\vec{c}$ is $\pi/3$, then the value of $\left|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}\right|$ is 1/2 b. 1 c. 2 d. none of these

Watch Video Solution

435. Let $\vec{a} = \hat{i} + \hat{j}; \vec{b} = 2\hat{i} - \hat{k}$ Then vector \vec{r} satisfying $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ then \vec{r} is a. $\hat{i} - \hat{j} + \hat{k}$ b. $3\hat{i} - \hat{j} + \hat{k}$ c. $3\hat{i} + \hat{j} - \hat{k}$ d. $\hat{i} - \hat{j} - \hat{k}$

436. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b} < 0$ and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, then the angle between vectors \vec{a} and \vec{b} is $a.\pi b. 7\pi/4 c. \pi/4 d. 3\pi/4$

437. \vec{a} , \vec{b} , and \vec{c} are three vectors of equal magnitude. The angel between each pair of vectors is $\pi/3$ such that $\left|\vec{a} + \vec{b} + \vec{c}\right| = \sqrt{6}$. Then $\left|\vec{a}\right|$ is equal to a.2 b. -1 c. 1 d. $\sqrt{6}/3$

Watch Video Solution

438. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is $\mathbf{a}.\vec{a} + \vec{b} + \vec{c}$ b. $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|} \mathbf{c}. \frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2} \mathbf{d}. |\vec{a}|\vec{a} - |\vec{b}|\vec{b} + |\vec{c}|\vec{c}$

439. Let
$$\vec{a}and\vec{b}$$
 be two non-collinear unit vector. If
 $\vec{u} = \vec{a} - (\vec{a}\vec{b})\vec{b}and\vec{v} = \vec{a} \times \vec{b}$, then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}| + |\vec{u}\vec{a}|$ c. $|\vec{u}| + |\vec{u}\vec{b}|$ d.
 $|\vec{u}| + \hat{u}|\vec{a} + \vec{b}|$

440. The vertex A triangle ABC is on the line $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$ and the vertices BandC have respective position vectors $\hat{i}and\hat{j}$. Let Delta be the area of the triangle and Delta $[3/2, \sqrt{33}/2]$. Then the range of values of λ corresponding to A is a.[-8, 4] \cup [4, 8] b. [-4, 4] c. [-2, 2] d. [-4, -2] \cup [2, 4]

Watch Video Solution

441. If *a* is real constant *A*, *B* and *C* are variable angles and $\sqrt{a^2 - 4}\tan A + a\tan B + \sqrt{a^2 + 4}\tan C = 6a$, then the least value of

 $\tan^2 A + \tan^2 B + \tan^2 C$ is a. 6 b. 10 c. 12 d. 3

442. The position vectors of the vertices *A*, *BandC* of a triangle are three unit vectors \vec{a} , \vec{b} , and \vec{c} , respectively. A vector \vec{d} is such that $\vec{d}\vec{a} = \vec{d}\vec{b} = \vec{d}\vec{c}$ and $\vec{d} = \lambda(\vec{b} + \vec{c})$ Then triangle *ABC* is a. acute angled b. obtuse angled c. right angled d. none of these

Watch Video Solution

443. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b} \cdot \vec{q} = 0$ and $|\vec{b}|^2 = 1$, where μ is a scalar. Then $\left|\begin{pmatrix} \cdot \\ \vec{a} \vec{q} \end{pmatrix} \vec{p} - \begin{pmatrix} \cdot \\ \vec{p} \vec{q} \end{pmatrix} \vec{a}\right|$ is equal to (a) $2|\vec{p}, \vec{q}|$ (b) $(1/2)|\vec{p}, \vec{q}|$ (c) $|\vec{p} \times \vec{q}|$ (d) $|\vec{p}, \vec{q}|$

444. In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other . If CD: CE = CG:CB = 2:1 then the value of area $(\triangle AEG)$: *area* $(\triangle ABD)$ is equal to (a) 7/2 (b)3 (c)4 (d)9/2

445. In a quadrilateral ABCD, $\vec{A}C$ is the bisector of $\vec{A}Band\vec{A}D$, angle between $\vec{A}Band\vec{A}D$ is $2\pi/3$, $15\left|\vec{A}C\right| = 3\left|\vec{A}B\right| = 5\left|\vec{A}D\right|$. Then the angle between $\vec{B}Aand\vec{C}D$ is $\frac{\cos^{-1}(\sqrt{14})}{7\sqrt{2}}$ b. $\frac{\cos^{-1}(\sqrt{21})}{7\sqrt{3}}$ c. $\frac{\cos^{-1}2}{\sqrt{7}}$ d. $\frac{\cos^{-1}(2\sqrt{7})}{14}$ Watch Video Solution

446. Position vector \hat{k} is rotated about the origin by angle 135^0 in such a way that the plane made by it bisects the angle between \hat{i} and \hat{j} . Then its new position is

A. a.
$$\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$$

B. b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$
C. c. $\frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$

D. d. none of these

Answer: null

447. A non-zero vector \vec{a} is such that its projections along vectors

$$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}} \text{ and } \hat{k} \text{ are equal, then unit vector along } \vec{a} \text{ is a.} \frac{\sqrt{2}\hat{j}-\hat{k}}{\sqrt{3}} \text{ b.}$$
$$\frac{\hat{j}-\sqrt{2}\hat{k}}{\sqrt{3}} \text{ c.} \frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}} \text{ d.} \frac{\hat{j}-\hat{k}}{\sqrt{2}}$$

448. Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a} , then \vec{c} is $a \cdot \frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$ b. $\frac{1}{\sqrt{3}} \left(-\hat{i} - \hat{j} - \hat{k} \right)$ c. $\frac{1}{\sqrt{2}} \left(-\hat{k} - 2\hat{i} \right) d \frac{1}{\sqrt{2}} \left(\hat{i} - \hat{j} - \hat{k} \right)$

$$\overline{\sqrt{5}}\left(-k-2j\right)\mathsf{d}.\ \overline{\sqrt{3}}\left(i-j-k\right)$$

Watch Video Solution

449. Let $\vec{a} = 2i + j - 2kand\vec{b} = i + j$ If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ between $\vec{a} \times \vec{b}$ and $\vec{c}is30^{0}, then |(\vec{a} \times \vec{b}) \times \vec{c}|$ I equal to a. 2/3 b. 3/2 c. 2 d. 3

Watch Video Solution

450. Let *ABCD* be a tetrahedron such that the edges *AB*, *AC* and *AD* are mutually perpendicular. Let the area of triangles *ABC*, *ACD* and *ADB* be 3, 4 and 5*sq. units*, respectively. Then the area of triangle *BCD* is $a.5\sqrt{2}$

b. 5

451. Vector \vec{a} in the plane of $\vec{b} = 2\hat{i} + \hat{j}and\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that it is equally inclined to $\vec{b}and\vec{d}$ where $\vec{d} = \hat{j} + 2\hat{k}$. The value of \vec{a} is a. $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$ b. $\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$ c. $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ d. $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$

Watch Video Solution

452. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is a. $3\pi/4$ b. $\pi/4$ c. $\pi/2$ d. π

453. Let \vec{u} , \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = 0$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$

and $|\vec{w}| = 5$, then $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$ is a.47 b. -25 c. 0 d. 25

454. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a} + \vec{b} + \vec{c})$. $[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ equals a.0 b. $[\vec{a}\vec{b}\vec{c}]$ c. $2[\vec{a}\vec{b}\vec{c}]$ d. $-[\vec{a}\vec{b}\vec{c}]$

Watch Video Solution

455. Let \vec{p} and \vec{q} be any two orthogonal vectors of equal magnitude 4 each. Let \vec{a} , \vec{b} , and \vec{c} be any three vectors of lengths $7\sqrt{15}$ and $2\sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector

$$\begin{pmatrix} \vec{a} \vec{p} \\ \vec{a} \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{a} \vec{q} \\ \vec{a} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{a} \vec{p} \times \vec{q} \\ \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{b} \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{b} \vec{q} \\ \vec{b} \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \times \vec{q} \\ \vec{b} \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{b} \vec{q} \\ \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{b} \vec{p} \\ \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{b} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{b} \vec{p} \end{pmatrix} \vec{p} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p} \end{pmatrix} \vec{p}$$

from the origin.

456. Let \vec{a} , $\vec{b}and\vec{c}$ be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to $[\vec{a}\vec{b}\vec{c}]\vec{r}$ b. $2[\vec{a}\vec{b}\vec{c}]\vec{r}$ c. $3[\vec{a}\vec{b}\vec{c}]\vec{r}$ d. none of these

Watch Video Solution

457. Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and

$$\left(ec{a} - ec{b}
ight)$$
, where $ec{a} = \hat{i} + \hat{j} + \hat{k}, \, ec{b} = \hat{i} + 2 \hat{j} + 3 \hat{k}$.

Watch Video Solution

458. Consider three vectors
$$\vec{a}, \vec{b}$$
 and \vec{c} Statement 1
 $\vec{a} \times \vec{b} = ((\hat{i} \times \vec{a}), \vec{b})\hat{i} + ((\hat{j} \times \vec{a}), \vec{b})\hat{j} + ((\hat{k} \times \vec{a}), \vec{b})\hat{k}$ Statement 2:
 $\vec{c} = (\hat{i}, \vec{c})\hat{i} + (\hat{j}, \vec{c})\hat{j} + (\hat{k}, \vec{c})\hat{k}$

459. Column I, Column II The possible value of \vec{a} if $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{i} + 2\hat{i} - \hat{k})$ and $\vec{r} = (\hat{i} + 2\hat{j}) + \mu(-\hat{i} + \hat{j} + a\hat{k})$ are not consistent, where $\lambda and\mu$ are scalars, is, p. -4 The angel between vectors $\vec{a} = \lambda\hat{i} - 3\hat{j} - \hat{k}and\vec{b} = 2\lambda\hat{i} + \lambda\hat{j} - \hat{k}$ is acute, whereas vector \vec{b} makes an obtuse angel with the axes of coordinates. Then λ may be, q. -2 The possible value of a such that $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{j} + (1 + a)kand3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar is, r. 2 If $\vec{A} = 2\hat{i} + \lambda\hat{j} + 3\hat{k}, \vec{B} = 2\hat{i} + \lambda\hat{j} + \hat{k}, \vec{C} = 3\hat{i} + \hat{j}and\vec{A} + \lambda\vec{B}$ is perpendicular to \vec{C} then $|2\lambda|$ is, s. 3

Watch Video Solution

460. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}| - |\vec{C}|$. Prove that $\left[\left(\vec{A} + \vec{B}\right) \times \left(\vec{A} + \vec{C}\right)\right] \times \left(\vec{B} + \vec{C}\right)$. $\left(\vec{B} + \vec{C}\right) = 0$

461. A parallelogram is constructed on $3\vec{a} + \vec{b}and\vec{a} - 4\vec{b}$, where $|\vec{a}| = 6and |\vec{b}| = 8$, and $\vec{a}and\vec{b}$ are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

Watch Video Solution

462. Statement 1: Vector $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angel between $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}and\vec{b} = 8\hat{i} + \hat{j} - 4\hat{k}$ Statement 2: \vec{c} is equally inclined to $\vec{a}and\vec{b}$

Watch Video Solution

463. Statement 1: A component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction perpendicular to the direction of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}is\hat{i} - \hat{j}$ Statement 2: A component of vector in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is $2\hat{i} + 2\hat{j} + 2\hat{k}$

464. Statement 1 : Points A(1, 0), B(2, 3), C(5, 3), andD(6, 0) are concyclic. Statement 2 : Points A, B, C, andD form an isosceles trapezium or ABandCD meet at E Then EAEB = ECED

Watch Video Solution

465. Let \vec{r} be a non-zero vector satisfying $\vec{r} \vec{a} = \vec{r} \vec{b} = \vec{r} \vec{c} = 0$ for given non-zero vectors \vec{a}, \vec{b} and \vec{c} Statement 1: $\begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = 0$ Statement 2: $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$

Watch Video Solution

466. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$; $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$; $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be

three non-zero vectors such that \vec{c} is a unit vector perpendicular to both

$$\vec{a} \otimes \vec{b}$$
. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} =$

467. Statement-I $A = 2\hat{i} + 3\hat{j} + 6\hat{k}, B = \hat{i} + \hat{j} - 2\hat{k}$ and $C = \hat{i} + 2\hat{j} + \hat{k}$, then

 $|A \times (A \times (A \times B)) \cdot C| = 243$

Statement-II $|A \times (A \times (A \times B)) \cdot C| = |A|^2 2|[ABC]|$

Watch Video Solution

468. If \vec{a} and \vec{b} and \vec{c} are mutually perpendicular unit vectors, write the value of $\left| \vec{a} + \vec{b} + \vec{c} \right|$.

Watch Video Solution

469. Let vectors \vec{a} , \vec{b} , \vec{c} , and \vec{d} be such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$. Let $P_1 and P_2$ be planes determined by the pair of vectors \vec{a} , \vec{b} , and \vec{c} , \vec{d} , respectively. Then the angle between $P_1 and P_2$ is a.0 b. $\pi/4$ c. $\pi/3$ d. $\pi/2$

470. The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0)and\vec{b} = (0, 1, 1)$ is a. one b. two c. three d. infinite

471.
 For
 any
 two

$$\vec{a}$$
 and \vec{b} , $(\vec{a} \times \hat{i})$. $(\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j})$. $(\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k})$. $(\vec{b} \times \hat{k})$ is always

 equal to a. \vec{a} . \vec{b} b. $2\vec{a}$. \vec{b} c. zero d. none of these

Watch Video Solution

472. Let $\vec{f}(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$, where[.] denotes the greatest

integer function. Then the vectors $f\left(\frac{5}{4}\right)andf(t)$, 0 < t < 1 are(a) parallel to

each other(b) perpendicular(c) inclined at $\cos^{-1}2\left(\sqrt[4]{7(1-t^2)}\right)$ (d)inclined

at
$$\cos^{-1}\left(\frac{8+t}{9\sqrt{1+t^2}}\right);$$

Watch Video Solution

473. If
$$\vec{a}$$
 is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b})\vec{a} \times \vec{c}$ is equal to $|\vec{a}|^2 (\vec{b}\vec{c})$ b.

$$\left|\vec{b}\right|^{2} \left(\vec{a}\vec{c}\right)$$
 c. $\left|\vec{c}\right|^{2} \left(\vec{a}\vec{b}\right)$ d. none of these

Watch Video Solution

474. The three vectors $\hat{i} + \hat{j}, \hat{j} + \hat{k}, \hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: _____

475. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and
 $\left| \left(\vec{d} \cdot \vec{c} \right) \left(\vec{a} \times \vec{b} \right) + \left(\vec{d} \cdot \vec{a} \right) \left(\vec{b} \times \vec{c} \right) + \left(\vec{d} \cdot \vec{b} \right) \left(\vec{c} \times \vec{a} \right) \right| = 0$, then a.
 $\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$ b. $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| d \right|$ c. \vec{a} , \vec{b} , and \vec{c} are coplanar d. none of

these

Watch Video Solution

476. If |a| = 2and|b| = 3 and ab = 0, then $(a \times (a \times (a \times (a \times b))))$ is equal to

48*b*̂ b. - 48*b*̂ c. 48*a*̂ d. - 48*a*̂

Watch Video Solution

477. If the two diagonals of one its faces are $6\hat{i} + 6\hat{k}and4\hat{j} + 2\hat{k}$ and of the edges not containing the given diagonals is $c = 4\hat{j} - 8\hat{k}$, then the volume of a parallelepiped is a. 60 b. 80 c. 100 d. 120

478. The volume of a tetrahedron formed by the coterminous edges \vec{a} , \vec{b} , and \vec{c} is 3. Then the volume of the parallelepiped formed by the coterminous edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is 6 b. 18 c. 36 d. 9

479. If \vec{a} , \vec{b} , and \vec{c} are three mutually orthogonal unit vectors, then the triple product $\begin{bmatrix} \vec{a} + \vec{b} + \vec{c} \vec{a} + \vec{b} \vec{b} + \vec{c} \end{bmatrix}$ equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

Watch Video Solution

480. Vector \vec{c} is perpendicular to vectors $\vec{a} = (2, -3, 1)and\vec{b} = (1, -2, 3)$ and satisfies the condition $\vec{\cdot} (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$. Then vector \vec{c} is equal to a.(7, 5, 1) b. -7, -5, -1 c. 1, 1, -1 d. none of these

481. Given $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j}; \vec{a} \perp \vec{b}, \vec{a}\vec{c} = 4$. Then $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^2 = |\vec{a}| \mathbf{b}. \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^= |\vec{a}| \mathbf{c}. \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^= \mathbf{0} \mathbf{d}. \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^= |\vec{a}|^2$

Watch Video Solution

482. $\vec{a}and\vec{b}$ are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a} , $\vec{b}and\vec{a} \times \vec{b}$ is a. $\frac{1}{\sqrt{2}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$ b. $\frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{a} + \vec{b} \right)$ c. $\frac{1}{\sqrt{3}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$ d. $\frac{1}{3} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$

Watch Video Solution

483. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r} + b\vec{s}|$ is minimum, then the value of $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$ is equal to a.2 $|\vec{r}|^2$ b. $|\vec{r}|^2/2$ c. 3 $|\vec{r}|^2$ d. $|r|^2$

484. The scalar
$$\vec{A}(\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$$
 equals a.0 b. $[\vec{A}\vec{B}\vec{C}] + [\vec{B}\vec{C}\vec{A}]$ c. $[\vec{A}\vec{B}\vec{C}]$ d. none of these

485. The volume of he parallelepiped whose sides are given by $\vec{O}A = 2i - 2j, \vec{O}B = i + j - kand\vec{O}C = 3i - k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2

Watch Video Solution

486. For non-zero vectors \vec{a} , \vec{b} , and \vec{c} , $\left| \left(\vec{a} \times \vec{b} \right) \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|$ holds if and only if $\mathbf{a}.\vec{a} \cdot \vec{b} = 0$, $\vec{b} \cdot \vec{c} = 0$ b. $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$ c. $\vec{c} \cdot \vec{a} = 0$, $\vec{a} \cdot \vec{b} = 0$ d. $\vec{a} \cdot \vec{b} = 0$, $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$

487. For three vectors \vec{u} , \vec{v} and \vec{w} which of the following expressions is not

equal to any of the remaining three ? a. $\vec{u}\vec{v} \times \vec{w}$ b. $(\vec{v} \times \vec{w})\vec{u}$ c. $\vec{v}\vec{u} \times \vec{w}$ d.

 $(\vec{u} \times \vec{v})\vec{w}$

Watch Video Solution

488. Let \vec{A} be a vector parallel to the line of intersection of planes P_1andP_2 Plane P_1 is parallel to vectors $2\hat{j} + 3\hat{k}and4\hat{j} - 3kandP_2$ is parallel to $\hat{j} - \hat{k}and3\hat{i} + 3\hat{j}$. Then the angle betweenvector \vec{A} and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is $a.\pi/2$ b. $\pi/4$ c. $\pi/6$ d. $3\pi/4$

489. If
$$\vec{a}\vec{b} = \beta and\vec{a} \times \vec{b} = \vec{c}$$
, then \vec{b} is $\frac{\left(\beta\vec{a} - \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$ b. $\frac{\left(\beta\vec{a} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$ c.
 $\frac{\left(\beta\vec{c} - \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$ d. $\frac{\left(\beta\vec{a} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$

490. Let \vec{a} , $\vec{b}and\vec{c}$ be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})$ is always equal to $[\vec{a}\vec{b}\vec{c}]\vec{r}$ b. $2[\vec{a}\vec{b}\vec{c}]\vec{r}$ c. $3[\vec{a}\vec{b}\vec{c}]\vec{r}$ d. none of these

Watch Video Solution

491. Let $\vec{a}and\vec{b}$ be mutually perpendicular unit vectors. Then for any

arbitrary
$$\vec{r}$$
, a. $\vec{r} = \left(\vec{r}\hat{a}\right)\hat{a} + \left(\vec{r}\hat{b}\right)\hat{b} + \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b})$ b.

$$\vec{r} = \left(\vec{r}\hat{a}\right) - \left(\vec{r}\hat{b}\hat{b}\right)\hat{b} - \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b})$$
c.
$$\vec{r} = \left(\vec{r}\hat{a}\hat{b}\hat{a} - \left(\vec{r}\hat{b}\hat{b}\hat{b} + \left(\vec{r}\hat{a}\times\hat{b}\right)(\hat{a}\times\hat{b})\right)$$
none of these

492. Value of
$$\left[\vec{a} \times \vec{b}\vec{a} \times \vec{c}\vec{d}\right]$$
 is always equal to $\left(\vec{a}\vec{d}\right)\left[\vec{a}\vec{b}\vec{c}\right]$ b.

$$\left(\vec{a}\,\vec{c}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$$
 c. $\left(\vec{a}\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$ d. none of these

493. Let $\vec{a}and\vec{b}$ be unit vectors that are perpendicular to each other. Then $\left[\vec{a} + (\vec{a} \times \vec{b})\vec{b} + (\vec{a} \times \vec{b})\vec{a} \times \vec{b}\right]$ will always be equal to 1 b. 0 c. -1 d. none of these

Watch Video Solution

494. Let $\vec{r}, \vec{a}, \vec{b}and\vec{c}$ be four nonzero vectors such that $\vec{r} \vec{a} = 0, |\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}| and |\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$ Then [abc] is equal to |a||b||c|b. -|a||b||c| c. 0 d. none of these

495. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three nonzero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\pi/6$, then the value of $|a_1b_1c_1a_2b_2c_2a_3b_3c_3|^2$ is a.0 b. 1 c. $\frac{1}{4}(a1^2 + a2^2 + a3^2)(b1^2 + b2^2 + b3^2)$ d. $\frac{3}{4}(a1^2 + a2^2 + a3^2)(b1^2 + b2^2 + b3^2)$

496. If $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$, then $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$ is equal to a vector perpendicular to the plane of *a*, *b*, *c* b. a scalar quantity c. $\vec{0}$ d. none of these

Watch Video Solution

497. If \vec{a} , \vec{b} , and \vec{c} are such that $\left[\vec{a}\vec{b}\vec{c}\right] = 1$, $\vec{c} = \lambda \vec{a} \times \vec{b}$, angle, between \vec{a} and \vec{b} is $\frac{2\pi}{3}$, $\left|\vec{a}\right| = \sqrt{2}$, $\left|\vec{b}\right| = \sqrt{3}$ and $\left|\vec{c}\right| = \frac{1}{\sqrt{3}}$, then the angel between

$$\vec{a}$$
 and \vec{b} is $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

498. A vector of magnitude $\sqrt{2}$ coplanar with the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}and\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\vec{c} = \hat{i} + \hat{j} + \hat{k}$, is a.- $\hat{j} + \hat{k}$ b. $\hat{i} - \hat{k}$ c. $\hat{i} - \hat{j}$ d. $\hat{i} - \hat{j}$

Watch Video Solution

499. Let *P* be a point interior to the acute triangle *ABC* If PA + PB + PC is a null vector, then w.r.t traingel *ABC*, point *P* is its a. centroid b. orthocentre c. incentre d. circumcentre

500. *G* is the centroid of triangle $ABCandA_1andB_1$ are rthe midpoints of sides ABandAC, respectively. If $Delta_1$ is the area of quadrilateral

 GA_1AB_1and Delta is the area of triangle ABC, then Delta/Delta₁ is equal

to a. $\frac{3}{2}$ b. 3 c. $\frac{1}{3}$ d. none of these

501. Points
$$\vec{a}, \vec{b}, \vec{c}, and\vec{d}$$
 are coplanar and
 $(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = 0$. Then the least value of
 $\sin^2\alpha + \sin^22\beta + \sin^23\gamma$ is a. $\frac{1}{14}$ b. 14 c. 6 d. $1/\sqrt{6}$

Watch Video Solution

502. If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2, respectively, and

$$\left(1 - 3\vec{a}\vec{b}\right)^{2} + \left|2\vec{a} + \vec{b} + 3\left(\vec{a} \times \vec{b}\right)\right|^{2} = 47, \text{ then the angel between } \vec{a}and\vec{b}$$

is $\pi/3$ b. π - cos⁻¹(1/4) c. $\frac{2\pi}{3}$ d. cos⁻¹(1/4)

503. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3, respectively, such that $\left|2\left(\vec{a} \times \vec{b}\right)\right| + \left|3\left(\vec{a} \cdot \vec{b}\right)\right| = k$, then the maximum value of k is a. $\sqrt{13}$ b. $2\sqrt{13}$ c. $6\sqrt{13}$ d. $10\sqrt{13}$

504. If \vec{a} and \vec{b} are two vectors such that $\left| \vec{a} \times \vec{b} \right| = 3$ and $\vec{a}\vec{b} = 1$, find the

angle between \vec{a} and \vec{b} .

Watch Video Solution

505. If the vector product of a constant vector $\vec{O}A$ with a variable vector $\vec{O}B$ in a fixed plane OAB be a constant vector, then the locus of B is a. a straight line perpendicular to $\vec{O}A$ b. a circle with centre O and radius equal to $|\vec{O}A|$ c. a straight line parallel to $\vec{O}A$ d. none of these

506. Let $\vec{u}, \vec{v}and\vec{w}$ be such that $|\vec{u}| = 1, |\vec{v}| = 2and |\vec{w}| = 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors $\vec{v}and\vec{w}$ are perpendicular to each other, then $|\vec{u} - \vec{v} + \vec{w}|$ equals 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d.

A. 2

B. sqrt(7)`

C. sqrt(14)`

D. 14`

Answer: 3

Watch Video Solution

507. If the two adjacent sides of two rectangles are represented by vectors $\vec{p} = 5\vec{a} - 3\vec{b}$; $\vec{q} = -\vec{a} - 2\vec{b}$ and $\vec{r} = -4\vec{a} - \vec{b}$; $\vec{s} = -\vec{a} + \vec{b}$, respectively, then the angel between the vector

$$\vec{x} = \frac{1}{3} (\vec{p} + \vec{r} + \vec{s})$$
 and $\vec{y} = \frac{1}{5} (\vec{r} + \vec{s})$ is $a.-\cos^{-1} \left(\frac{19}{5\sqrt{43}}\right)$ b.

$$\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$
 c. π - $\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$ d. cannot be evaluate

508. Let *P*, *Q*, *R* and *S* be the points on the plane with position vectors -2i - j, 4i, 3i + 3j and -3j + 2j, respectively. The quadrilateral *PQRS* must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

> Watch Video Solution

509. \vec{u} , \vec{v} and \vec{w} are three non-coplanar unit vectors and α , β and γ are the angles between \vec{u} and \vec{v} , \vec{v} and \vec{w} , $and \vec{w}$ and \vec{u} , respectively, and \vec{x} , \vec{y} and \vec{z} are unit vectors along the bisectors of the angles α , β and γ , respectively. Prove that

$$\left[\vec{x} \times \vec{y} \, \vec{y} \times \vec{z} \, \vec{z} \times \vec{x}\right] = \frac{1}{16} \left[\vec{u} \, \vec{v} \, \vec{w}\right]^2 \sec^2\left(\frac{\alpha}{2}\right) \sec^2\left(\frac{\beta}{2}\right) \sec^2\left(\frac{\gamma}{2}\right).$$

510. If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
; $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ and $[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}] = \lambda [\vec{a}\vec{b}\vec{c}]$, then find the value of $\frac{\lambda}{4}$.

511. Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(t, 1, 1) is minimum.

Watch Video Solution

512. The condition for equations $\vec{r} \times \vec{a} = \vec{b}and\vec{r} \times \vec{c} = \vec{d}$ to be consistent

513. If *aandb* are nonzero non-collinear vectors, then $\begin{bmatrix} \vec{a} \vec{b} \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \vec{a} \vec{b} \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \vec{a} \vec{b} \hat{k} \end{bmatrix} \hat{k}$ is equal to $\mathbf{a} \cdot \vec{a} \times \vec{b}$ b. $\vec{a} + \vec{b}$ c. $\vec{a} - \vec{b}$ d. $\vec{b} \times \vec{a}$

Watch Video Solution

514.
$$(\vec{a} + \vec{b})\vec{b} + \vec{c} \times (\vec{a} + \vec{b} + \vec{c}) = [\vec{a} \ \vec{b} \ \vec{c}]$$
 b. $\langle 0 \rangle$ c. $2[\vec{a} \ \vec{b} \ \vec{c}]$ d. $-[\vec{a} \ \vec{b} \ \vec{c}]$

Watch Video Solution

515. A vector of magnitude 10 along the normal to the curve $3x^2 + 8xy + 2y^2 - 3 = 0$ at its point P(1, 0) can be (A) $\hat{6i} + 8\hat{j}$ (B) $-8\hat{i} + 3\hat{j}$ (C) $\hat{6i} - 8\hat{j}$ (D) $8\hat{i} + 6\hat{j}$

516. If $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$ and at least one of *a*, *bandc* is nonzero, then vectors $\vec{\alpha}, \vec{\beta}and\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

517. If
$$(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$$
, where \vec{a} , \vec{b} , and \vec{c} are nonzero vectors, then 1.
 \vec{a} , \vec{b} , and \vec{c} can be coplanar 2. \vec{a} , \vec{b} , and \vec{c} must be coplanar 3. \vec{a} , \vec{b} , and \vec{c} cannot be coplanar 4.none of these

Watch Video Solution

518. If
$$\vec{a}, \vec{b}, \vec{c}$$
 are any three noncoplanar vector, then $\left(\vec{a} + \vec{b} + \vec{c}\right) \left[\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right)\right]$ is :

519. If $\vec{x} + \vec{c} \times \vec{y} = \vec{a} and \vec{y} + \vec{c} \times \vec{x} = \vec{b}$, where \vec{c} is a nonzero vector, then

which of the following is not correct?
$$\mathbf{a}.\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c}.\vec{a})\vec{c}}{1 + \vec{c}.\vec{c}}$$
 b.
 $1 + \vec{c}.\vec{c}$
 $\vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c}.\vec{a})\vec{c}}{1 + \vec{c}.\vec{c}}$ c. $\vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c}.\vec{b})\vec{c}}{1 + \vec{c}.\vec{c}}$ d. none of these
 $1 + \vec{c}.\vec{c}$ Vatch Video Solution

520. If $\vec{a}and\vec{b}$ are two unit vectors incline at angle $\pi/3$, then $\left\{\vec{a} \times \left(\vec{b} + \vec{a} \times \vec{b}\right)\right\}\vec{b} \text{ is equal to } \frac{-3}{4}\text{ b. } \frac{1}{4}\text{ c. } \frac{3}{4}\text{ d. } \frac{1}{2}$ Watch Video Solution

521. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and \vec{b} , $\vec{r} \times \vec{a}$ is equal to

a.
$$\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} \vec{b} - (\vec{r} \cdot \vec{b}) (\vec{b} \times \vec{a})$$

b. $\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} (\vec{a} + \vec{b})$
c. $\begin{bmatrix} \vec{r} \, \vec{a} \, \vec{b} \end{bmatrix} \vec{a} - (\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b}$

d. none of these

Watch Video Solution

522. Let V be the volume of the parallelepiped formed by the vectors $\vec{a} = a_i\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. If a_r, b_r and c r, where r = 1, 2, 3, are non-negative real numbers and $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$ show that $V \le L^3$

Watch Video Solution

523. Find 3-dimensional vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ satisfying $\vec{v}_1 \cdot \vec{v}_1 = 4, \vec{v}_1 \cdot \vec{v}_2 = -2, \vec{v}_1 \cdot \vec{v}_3 = 6,$ $\vec{v}_2 \cdot \vec{v}_2 = 2, \vec{v}_2 \cdot \vec{v}_3 = -5, \vec{v}_3 \cdot \vec{v}_3 = 29$
524. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$

Find the value of $\left[\vec{u}\vec{v}\vec{w}\right]$

Watch Video Solution

525. For any two vectors \vec{u} and \vec{v} prove that $(\vec{u}, \vec{v})^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$

Watch Video Solution

526. If the incident ray on a surface is along the unit vector \vec{v} , the reflected ray is along the unit vector \vec{w} and the normal is along the unit vector \vec{a} outwards, express \vec{w} in terms of \vec{a} and \vec{v}

Watch Video Solution

527. $P_1 n dP_2$ are planes passing through origin $L_1 and L_2$ are two lines on $P_1 and P_2$, respectively, such that their intersection is the origin. Show that there exist points A, BandC, whose permutation A', B'andC', respectively, can be chosen such that A is on L_1 , $BonP_1$ but not on $L_1 andC$ not on P_1 ; A' is on L_2 , $B'onP_2$ but not on $L_2 andC'$ not on P_2

528. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$, prove that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$, Watch Video Solution

Watch Video Solution

529. Given two vectors $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}and\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ Column I, Column II A vector coplanar with $\vec{a}and\vec{b}$, p. $-3\hat{i} + 3\hat{j} + 4\hat{k}$ A vector which is perpendicular to both $\vec{a}and\vec{b}$, q. $2\hat{i} - 2\hat{j} + 3\hat{k}$ A vector which is equally inclined to $\vec{a}and\vec{b}$, r. $\hat{i} + \hat{j}$ A vector which forms a triangle with $\vec{a}and\vec{b}$, s. $\hat{i} - \hat{j} + 5\hat{k}$

530. Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}and\vec{W} = \hat{i} + 3\hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product [*UVW*] is a.-1 b. $\sqrt{10} + \sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$

Watch Video Solution

531. If the vectors \vec{a} , \vec{b} , \vec{c} are non-coplanar and l,m,n are distinct real numbers, then $[(l\vec{a} + m\vec{b} + n\vec{c})(l\vec{b} + m\vec{c} + n\vec{a})(l\vec{c} + m\vec{a} + n\vec{b})] = 0$, implies (A) lm+mn+nl = 0 (B) l+m+n = 0 (C) $l^2 + m^2 + n^2 = 0$

Watch Video Solution

532. If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product

$$\left[2\vec{a} - \vec{b}2\vec{b} - \vec{c}2\vec{c} - \vec{a}\right]$$
 is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$

Watch Video Solution