

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

1. $\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\overrightarrow{a} \times \overrightarrow{b} = 5\hat{i} + 2\hat{j} - 12\hat{k}$, \overrightarrow{a} . $\overrightarrow{b} = 11$, then $b_1 + b_2 + b_3 =$

A. 3

B. 5

C. 7

D. 9

Answer: B

2. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are unit vectors such that \overrightarrow{a} . $\overrightarrow{b} = \frac{1}{2}$, \overrightarrow{c} . $\overrightarrow{d} = \frac{1}{2}$
and angle between $\overrightarrow{a} \times \overrightarrow{b}$ and $\overrightarrow{c} \times \overrightarrow{d}$ is $\frac{\pi}{6}$ then the value of $\left| \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d} \right] \overrightarrow{c} - \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] \overrightarrow{d} \right| =$
A. $3/2$
B. $3/4$
C. $3/8$
D. 2

Answer: C

Watch Video Solution

3. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$$
 be vectors such that $\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] = 2$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = 2$

Then the value of μ is

A. 0	
B. 1	
C. 3	
D. 4	

Answer: D

4. Let
$$(\overrightarrow{p} \times \overrightarrow{q}) \times \overrightarrow{p} + (\overrightarrow{p} \cdot \overrightarrow{q}) \overrightarrow{q}$$

 $= (x^2 + y^2) \overrightarrow{q} + (14 - 4x - 6y) \overrightarrow{p}$
Where \overrightarrow{p} and \overrightarrow{q} are two non-collinear vectors, \overrightarrow{p} is unit vector and x,y
are scalars. Then the value of $(x + y)$ is

A. (a) 4 B. (b) 5

C. (c) 6

D. (d) 7

Answer: B

Watch Video Solution

5. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}, \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$, then the value of $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}|$ is

A. 1/3

B. 1

C. 3

D. 6

Answer: C

6. Let \hat{a} and \hat{b} be two unit vectors such that $\hat{a} \cdot \hat{b} = \frac{1}{3}$ and $\hat{a} \times \hat{b} = \hat{c}$, Also $\overrightarrow{F} = \alpha \hat{a} + \beta \hat{b} + \lambda \hat{c}$, where, α , β , λ are scalars. If $\alpha = k_1 \left(\overrightarrow{F} \cdot \hat{a}\right) - k_2 \left(\overrightarrow{F} \cdot \hat{b}\right)$ then the value of $2(k_1 + k_2)$ is A. (a) $2\sqrt{3}$ B. (b) $\sqrt{3}$ C. (c) 3 D. (d) 1

Answer: C

Watch Video Solution

7. Let a and c be unit vectors inclined at $\frac{\pi}{3}$ with each other. If $(a imes (b imes c)) \cdot (a imes c) = 5$, then -[a b c]-1 =

A. - 10

- $\mathsf{B.}-5$
- C. 20

D. none of these

Answer: A

Watch Video Solution

8. if
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\left|\overrightarrow{c}\right| = 1$
Such that $\left[\overrightarrow{a} \times \overrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \overrightarrow{c} \times \overrightarrow{a}\right]$ has maximum value, then the value of $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right|^2$ is (a) 0 (b) 1 (c) $\frac{4}{3}$ (d) none of these

A. 0

B. 1

$$\mathsf{C}.\,\frac{4}{3}$$

D. none of these

Answer: A

Watch Video Solution

9. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that if the angles between the vectors \overrightarrow{a} and \overrightarrow{b} , \overrightarrow{b} and \overrightarrow{c} , \overrightarrow{c} and \overrightarrow{a} are respectively $\frac{\pi}{6}$, $\frac{\pi}{4}$ and $\frac{\pi}{3}$, then find out the angle the vector \overrightarrow{a} makes with the plane containing \overrightarrow{b} and \overrightarrow{c} is

A. (a)
$$\cos^{-1} \sqrt{1 - \sqrt{2/3}}$$

B. (b) $\cos^{-1} \sqrt{2 - \sqrt{3/2}}$
C. (c) $\cos^{-1} \sqrt{\sqrt{3/2} - 1}$
D. (d) $\cos^{-1} \sqrt{\sqrt{2/3}}$

Answer: B

10. let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors having magnitudes 1, 1 and 2, respectively, if $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between \overrightarrow{a} and \overrightarrow{c} is _____

A. $\pi/4$

B. $\pi/6$

C. $\pi/3$

D. $\pi/2$

Answer: B

Watch Video Solution

11. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are reciprocal

vectors, then

$$\left(l\overrightarrow{a}+m\overrightarrow{b}+n\overrightarrow{c}\right)$$
. $\left(l\overrightarrow{p}+m\overrightarrow{q}+n\overrightarrow{r}\right)$ is equal to

A.
$$l^2+m^2+n^2$$

B. lm+mn+nl

C. 0

D. None of these

Answer: A

Watch Video Solution

12. Let $\overrightarrow{a} = \hat{i} - 3\hat{j} + 4\hat{k}$, $\overrightarrow{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}$, $\overrightarrow{C} = 5\hat{i} + 2\hat{j} + 5\hat{k}$ and a vector \overrightarrow{R} satisfies $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$, $\overrightarrow{R} \cdot \overrightarrow{A} = 0$, then the value of $\frac{\left|\overrightarrow{B}\right|}{\left|\overrightarrow{R} - \overrightarrow{C}\right|}$ is

A. 1

B. 2

C. 3

D. 4

Answer: B

13. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2\overrightarrow{b} \times \overrightarrow{c}$, $3\overrightarrow{c} \times \overrightarrow{a}$ and $4\overrightarrow{a} \times \overrightarrow{b}$ where $\overrightarrow{a} = (1 + \sin\theta)\hat{i} + \cos\theta\hat{j} + \sin 2\theta\hat{k}$, $\overrightarrow{b} = \sin\left(\theta + \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta + \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta + \frac{4\pi}{3}\right)\hat{k}$, $\overrightarrow{c} = \sin\left(\theta - \frac{2\pi}{3}\right)\hat{i} + \cos\left(\theta - \frac{2\pi}{3}\right)\hat{j} + \sin\left(2\theta - \frac{4\pi}{3}\right)\hat{k}$ is 18 cubic units, then the values of θ , in the interval $\left(0, \frac{\pi}{2}\right)$, is/are

A.
$$\frac{}{9}$$

B. $\frac{2\pi}{9}$
C. $\frac{\pi}{3}$
D. $\frac{4\pi}{9}$

 π

Answer: A::B::D

14. Let \overrightarrow{a} and \overrightarrow{b} be two non-zero perpendicular vectors. A vector \overrightarrow{r} satisfying the equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a}$ can be

Answer: A::B::C::D

15. If a, b, c are three non-zero vectors, then which of the following statement(s) is/are ture?

$$A. \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right), \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right), \left(\overrightarrow{c} \times \overrightarrow{a}\right), \overrightarrow{c} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$$

form a right handed system

B.
$$\overrightarrow{c}$$
, $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$, $\overrightarrow{a} \times \overrightarrow{b}$ from a right handed system
C. \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. $\overrightarrow{a} < 0$ if $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$
D. $\frac{\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right)}{\left(\overrightarrow{b} \times \overrightarrow{c}\right)$. $\left(\overrightarrow{a} \times \overrightarrow{c}\right)} = -1$ if $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$

Answer: B::C::D

Watch Video Solution

16. Vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three unit vectors and \overrightarrow{c} is equally inclined to both \overrightarrow{a} and \overrightarrow{b} . Let $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$ $= (4 + x^2)\overrightarrow{b} - (4x\cos^2\theta)\overrightarrow{a}$, then \overrightarrow{a} and \overrightarrow{b} are non-collinear vectors, x > 0

A. (a) x=2

B. (b)
$$heta=0^\circ$$

C. (c) $heta=x$
D. (d) $x=4$

Answer: A::B::C

17. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are unequal unit vectors such that
 $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left[\left(\overrightarrow{b} + \overrightarrow{a}\right) \times \left(2\overrightarrow{a} + \overrightarrow{b}\right)\right] = \overrightarrow{a} + \overrightarrow{b}$ then angle
 θ between \overrightarrow{a} and \overrightarrow{b} is
A. $\frac{\pi}{2}$
B. 0
C. π
 π

 $\mathsf{D}.\,\frac{1}{4}$

Answer: A::C

18.
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}, \ \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$$
 and non zero vector \overrightarrow{c} are such that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

Then vector \overrightarrow{c} may be given as

A. (a) $4\hat{i} + 2\hat{j} + 4\hat{k}$ B. (b) $4\hat{i} - 2\hat{j} + 4\hat{k}$ C. (c) $\hat{i} + \hat{j} + \hat{k}$ D. (d) $\hat{i} - 4\hat{j} + \hat{k}$

Answer: A

19. Volume of the parallelopiped whose adjacent edges are vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ is

A. 18	
B. 54	
C. 12	
D. 36	

Answer: D

Watch Video Solution

20. A vector along the bisector of angle between the vectors \overrightarrow{b} and \overrightarrow{c} is,

A.
$$ig(2+\sqrt{3}ig) \hat{i} + ig(1-\sqrt{3}ig) \hat{j} + ig(2+\sqrt{3}ig) \hat{k}$$

B.
$$\left(2+\sqrt{3}
ight)\hat{i}+\left(1-\sqrt{3}
ight)\hat{j}-\left(2+\sqrt{3}
ight)\hat{k}$$

C.
$$ig(2+\sqrt{3}ig) \hat{i} - ig(1-\sqrt{3}ig) \hat{j} - ig(2+\sqrt{3}ig) \hat{k}$$

D.
$$\left(2+\sqrt{3}
ight)\hat{i}-\left(1-\sqrt{3}
ight)\hat{j}+\left(2+\sqrt{3}
ight)\hat{k}$$

Answer: A

View Text Solution