©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - X BOARD PREVIOUS YEAR PAPER ENGLISH

X Boards

Others

1. What is the common difference of an A P. in which $a_{21}-a_{7}=84$

- Watch Video Solution

2. If a tower 30 m high, casts a shadow $10 \sqrt{3} \mathrm{~m}$ long on the ground, then what is the angle of elevation of the sun?
3. The probability of selecting a rotten apple randomly from a heap of 900 apples is $0 \cdot 18$. What is the number of rotten apples in the heap ?

- Watch Video Solution

4. Find the value of p, for which one root of the quadratic equation $p x^{2}-14 x+8=0$ is 6 times the other.

- Watch Video Solution

5. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}$, is the first negative term?

- Watch Video Solution

6. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.
7. If $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+c^{2}+d^{2}=0$ has no real root

- Watch Video Solution

8. In an A.P. first term is 5 , last term is 45 and sum $=400$. Find the no. of terms and common difference of A.P.

- Watch Video Solution

9. On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.

- Watch Video Solution

10. A bag contains 6 red balls and some blue balls. If the probability of drawing a blue ball from the bag is twice that of a red ball, find the number of blue balls in the bag.

- Watch Video Solution

11. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divide the line segment joining the points $P(2,2)$ and $Q(3,7)$? Also find the value of y.

- Watch Video Solution

12. Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the
area of the shaded region.

- Watch Video Solution

13. Water in a canal, 2.4 m wide and 1.8 m deep, is flowing with a speed of $50 \mathrm{~km} /$ hour. How much area can it irrigate in 40 minutes, if 10 cm of standing water is required for irrigation?

- Watch Video Solution

14. The slant height of a frustum of a cone is 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm . Find the curved
surface area of the frustum.

- Watch Video Solution

15. Solve for $x: \frac{1}{x+1}+\frac{3}{5 x+1}=\frac{5}{x+4}, x \neq-1,-\frac{1}{5},-4$

- Watch Video Solution

16. Two taps running together can fill a tank in $3\left(\frac{1}{13}\right)$ hours. If one tap takes 3 hours more than the other to fill the tank, then how much time will each tap take to fill the tank ?

- Watch Video Solution

17. If the ratio of the sum of first n terms of two AP's is $(7 n+1):(4 n+27)$, then find the ratio of their mth terms.
18. about to only mathematics

- Watch Video Solution

19. $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$

- Watch Video Solution

20. An aeroplane flying at a height 300 metre above the ground passes vertically above another plane at an instant when the angles of elevation of the two planes from the same point on the ground are 60° and 45° respectively. Then the height of the lower plane from the ground in metres is

- Watch Video Solution

21. If two different dice are rolled together, the probability of getting an even number of both dice is

- Watch Video Solution

22. Q . For what value of k will $\mathrm{k}+9,2 \mathrm{k}-1$ and $2 \mathrm{k}+7$ are the consecutive terms of an A.P.

- Watch Video Solution

23. A ladder leaning against a wall makes an angle of 60° with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.

- Watch Video Solution

24. A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen and

(2) a face card

- Watch Video Solution

25. If -5 is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots, find the value of k.

- Watch Video Solution

26. Let P and Q be the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$ such that P is nearer to A. Find the coordinates of P and Q.

- Watch Video Solution

27. In Fig.2, a quadrilateral $A B C D$ is drawn to circumscribe a circle, with centre O, in such a way that the sides $A B, B C, C D$ and $D A$ touch the circle
at the points P, Q, R and S respectively. Prove that $A B+C D=B C+D A$.

- Watch Video Solution

28. Prove that the points $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a rightangled isosceles triangle.

- View Text Solution

29. The fourth term of an A.P is zero. Prove that the 25th term is triple its 11th term

- Watch Video Solution

30. In the given figure, from an external point P,two tangents PT and PS are drawn to a circle with centre O and radius r.lf $\mathrm{OP}=2 \mathrm{r}$, show that
$\angle O T S=\angle O S T=30^{\circ}$
31. In fig. O is the center of a circle such that diameter $A B=13 \mathrm{~cm}$ and $A C=12$ $\mathrm{cm} . \mathrm{BC}$ is joined. Find the area of the shaded region.

- Watch Video Solution

32. If the point $P(x, y)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-$
$b, a+b)$. Prove that $b x=a y$.
33. Find the area of the shaded region in Fig. 12.20, if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and $\angle A O C \backslash=\backslash 40 o$

- Watch Video Solution

34. If the ratio of the sum of first n terms of two AP's is $(7 n+1):(4 n+27)$, then find the ratio of their mth terms.

- Watch Video Solution

35. Solve for $x: \frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3}^{\prime}, \mathrm{x}$ is not equal to $1,2,3$.

- Watch Video Solution

36. A conical vessel whose internal radius is 5 cm and height 24 cm is full of water. The water is emptied into a cylindrical vessel with internal radius 10 cms . Find the height to which the water rises.

- Watch Video Solution

37. A sphere of diameter 12 cm , is dropped in a right circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in water, the water level in the cylindrical vessel rises by $3 \frac{5}{9} \mathrm{~cm}$. Find the diameter of the cylindrical vessel.

- Watch Video Solution

38. A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill.
39. Three different coins are tossed together. Find the probability of getting (1) exactly 2 heads (2) atleast 2 heads

- Watch Video Solution

40. Draw a pair of tangent to a circle of radius 5 cm which are inclined to each other at an angle of 60°. Give steps of construction.

- Watch Video Solution

41. . In the given figure, two equal circles, with centres O and O ', touch each other at X. OO' produced me the circle with centre O^{\prime} at A. $A C$ is tangent to the circle with centreO, at the point C . $\mathrm{O}^{\prime} \mathrm{D}$ is perpendicular to AC . Find the value of $\frac{D O^{\prime}}{C O}$.
42. Solve for $\mathrm{x}: \frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$

- Watch Video Solution

43. The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°. From a point y 40 m vertically above X , the angle of elevation the top Q of tower is 45°. Find the height of the tower PQ and the distance PX.(Use $\sqrt{3}=1.73$)

- Watch Video Solution

44. The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°.From a point y 40 m vertically above X , the angle of elevation the top Q of tower is 45°. Find the height of the tower PQ and the distance PX.(Use $\sqrt{3}=1.73$)

- Watch Video Solution

45. The houses of a row are numbered from 1 to 49 . Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the no. of the houses following it. Find the value of the x .

- Watch Video Solution

46. A number x is selected at random from the numbers $1,4,9,16$ and another number y is selected random from the numbers $1,2,3,4$. Find the probability that the value of xy is more than 16 .

- Watch Video Solution

47. In the given figure, is shown a sector OAP of a circle with centre 0 , containing $\angle \theta$. AB is perpendicular to the radius OA and meets OP produced at B. Prove that the perimeter of shaded region is
$r\left[\tan \theta+\sec \theta+\pi \frac{\theta}{180}-1\right]$

- Watch Video Solution

48. A motor boat whose speed is $24 \mathrm{~km} / \mathrm{hr}$ in still water takes 1 hr more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream.
49. If the quadratic equation $p x^{2}-2 \sqrt{5}+15=0$ has two equal roots, then find value of p.

- Watch Video Solution

50. A tower $A B$ is 20 m high and $B C$ is its shadow on the ground $20 \sqrt{3} \mathrm{~m}$ long. Find the Sun's elevation.

- Watch Video Solution

51. Two different dice are tossed together, Find the probability that the product of the two numbers on the top of the dice is 6 .

- Watch Video Solution

52. two tangents RQ and RP are drawn from an external point R to the circle with centre O . If $\angle P R Q=120^{\circ}$, then prove that $\mathrm{OR}=\mathrm{PR}+\mathrm{RQ}$
53. Solve the quadratic equation $4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$

- Watch Video Solution

54. The points $A(4,7), B(p, 3)$ and $C(7,3)$ are the vertices of a right triangle, right-angled at B, Find the values of P.

- Watch Video Solution

55. Find the relation between x and y if the points $A(x, y), B(-5,7)$ and $C(-4,5)$ are collinear.

- Watch Video Solution

56. The 14th term of an A.P. is twice its 8th term. If its 6 th term is -8 , then find the sum of its first 20 terms.

- Watch Video Solution

57. Solve for $\mathrm{x} \sqrt{3} x^{2}-2 \sqrt{2} x-2 \sqrt{3}=0$

- Watch Video Solution

58. The angle of elevation of an aeroplane from a point P on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of $1500 \sqrt{3} \mathrm{~m}$, find the speed of the aeroplane

- Watch Video Solution

59. If A and B are $(2,2)$ and $(2,4)$, respectively, find the coordinates of P such that $A P=\frac{3}{7} A B$ and P lies on the line segment AB .

- Watch Video Solution

60. The probability of selecting a green marble at random from a jar that contains green,white and yellow marble is $1 / 3$. The probability of selecting a white marble random from the jar is $2 / 9.1 \mathrm{f}$ the jar contains 8 yellow marbles, find the total numbers of marbles in the jar

- Watch Video Solution

61. Due to sudden floods, some welfare associations jointly requested the government to get 100 tents fixed immediately and offered to contribute 50% of the cost, If the lower part of each tent is of the form of a cylinder of diameter 4.2 m and height 4 m with the conical upper part of same diameter but of height 2.8 m , and the canvas to be used costs 100 per sq. m , find the amount the associations will have to pay. What values are shown by these associations [Use $\pi=\frac{22}{7}$]

- Watch Video Solution

62. A hemisphereical bowl of internal diameter 36 cm contains a liquid. This liquid is to be filled in cylindrical bottles of radius 3 cm and height 6 cm . How many bottles are required to empty.

- Watch Video Solution

63. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

- Watch Video Solution

64. Find the 60th term of the AP $8,10,12$,, if it has a total of 60 terms and hence find the sum of its last 10 terms.

- Watch Video Solution

65. A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?

(Watch Video Solution

66. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

67. Prove that tangent drawn at the mid point of the are of a circle is pallelar to the chord joing the ends of point of the are

- Watch Video Solution

68. The angle of elevation of the top of a tower from a point A on the ground is 30°. On moving a distance of 20 metres towards the foot of the tower to a point B the angle of elevation increases to 60°. Find the height of the ttower and the distance of the tower from the point A .

- Watch Video Solution

69. A card is drawn at random from a well-shuffled deck of playing cards.

Find the probability that the card drawn is (a) a spade or an ace (b) a black king (c) neither a jack nor a king (d) either a king or a queen.

- Watch Video Solution

70. Find the values of k so that the area of the triangle with vertices $(1,-1)$, $(-4,2 k)$ and $(-k,-5)$ is 24 sq. units.

- Watch Video Solution

71. In the following figure, PQRS is square lawn with side $\mathrm{PQ}=42$ metres. Two circular flower beds are there on the sides PS and QR with centre at 0 , the intersections of its diagonals. Find the total area of the two flower beds (shaded parts).

- Watch Video Solution

72. If $x+k$ is the GCD of $x^{2}-2 x-15$ and $x^{3}+27$, find the value of k

- Watch Video Solution

73. solve for x and $\mathrm{y}, x+\left(\frac{6}{y}\right)=6,3 x-\left(\frac{8}{y}\right)=5$

- Watch Video Solution

74. Find the sum of first 25 terms of an A.P. whose nth term is $1-4 n$

- Watch Video Solution

75. D and E are points on the sides $C A$ and $C B$ respectively of a triangle ABC right angled at C . Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

- Watch Video Solution

76. Find the mean of the following frequency distribution:

Classes:	$0-20$	$20-40$		$40-60$	$60-$
80	$80-100$	Frequency:	15	18	
21	29	17			

77. Cards marked with numbers $3,4,5, \ldots . . ., 50$ are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that number on the drawn card is dividing by 7 .

- Watch Video Solution

78. A washing machine is available for Rs. 13,500 cash or Rs. 6,500 as cash down payment followed by three monthly instalments of Rs. 2,500 each.

Find the rate of interest charged under instalment plan.

- Watch Video Solution

79. Solve the following system of equations graphically : $2 x+3 y=8 ; x+4 y=9$
80. Simplify: $\frac{x}{x-y}-\frac{y}{x+y}-\frac{2 x y}{x^{2}-y^{2}}$

- Watch Video Solution

81. Which term of the AP: $3,15,27,39, \ldots$ will be 132 more than its $54^{\text {th }}$ term?

- Watch Video Solution

82. In a fig. PA is a tangent to the circle. PBC is a secant \& AD bisects angle

BAC. Show that triangle PAD is an isosceles triangle.Also show that $\angle C A D=\frac{1}{2}(\angle P B A-\angle P A B)$

- Watch Video Solution

83. Draw a triangle $P Q R$ with base $Q R=6 \mathrm{~cm}$, vertical angle $P=60^{\circ}$ and median through P to the base is of length 4.5 cm .
84. A toy is in the form of a cone mounted on a hemisphere of same radius 7 cm . If the total height of the toy is 31 cm , find the total surface area.

- Watch Video Solution

85. The enrolment of a secondary school in different classes is given below : Class VI VII VIII IX X Enrolment 600500400700 200. Draw a pie chart to represent the above data.

- Watch Video Solution

86. A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, determine the number of blue balls in the bag.
87. $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$

- Watch Video Solution

88. Show that the points $(7,10),(-2,5)$, and $(3,-4)$ are the vertices of an isosceles right triangle.

- Watch Video Solution

89. In what ratio does the line $x-y-2=0$ divides the line segment joining ($3,-1$) and (8,9) ?

- Watch Video Solution

90. A man borrows money from a finance company and has to pay it back in two equal half-yearly instalments of Rs. 7,396 each. If the interest is
charged by the finance company at the rate of 15% per annum, compounded semi-annually, find the principal and the total interest paid.

- Watch Video Solution

91. If a line is drawn to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.

- Watch Video Solution

92. Prove that the sum of opposite pair of angles of a cyclic quadrilateral is 180°

- Watch Video Solution

93. The difference of two numbers is 5 and the difference of their reciprocals is $\frac{1}{10}$ Find the numbers.
94. The difference of two numbers is 5 and the difference of their reciprocals is $\frac{1}{10}$ Find the numbers.

- Watch Video Solution

95. A sphere of diameter 12 cm , is dropped in a right circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in water, the water level in the cylindrical vessel rises by $3 \frac{5}{9} \mathrm{~cm}$. Find the diameter of the cylindrical vessel.

- Watch Video Solution

96. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of 20 metre high building, finds the angle of elevation of the same bird to
be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.

- Watch Video Solution

97. The salary of Mrs. Sarita is Rs 32000 per month. 10% of it is deducted by the employer as provident fund. Of the remaining money, she spends 20% on house rent, 46% on food, 14% on the education of children and 10% another expenses. Rest she saves. Find:
how much does she save every month.

- Watch Video Solution

98. Complete the missing entriesin the following factor tree
A. i) 21 ii) 42
B. i) 42 ii) 21
C. i) 7 ii) 21
D. None

Answer: null

- Watch Video Solution

99. If $(x+p)$ is a factor of the polynomial $2 x^{2}+2 p x+5 x+10$. find p .

- Watch Video Solution

100. If $(x+p)$ is a factor of the polynomial $2 x^{2}+2 p x+5 x 10$. find p .

- Watch Video Solution

101. The common difference of the AP $\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{p} \ldots \ldots \ldots$. is

- Watch Video Solution

102. Show that $x=-3$ is solution of $x^{2}+6 x+9=0$

- Watch Video Solution

103. First the term of an A.P is p and its common difference is q. Find its 10th term

- Watch Video Solution

104. If $\tan A=5 / 12$, find the value of $(\sin A+\cos A) \sec A$

- Watch Video Solution

105. The diagonals of a rhombus measure 16 cm and 30 cm . Find its perimeter
106. In Figure 1, $\mathrm{PQ}\left|\mid \mathrm{BC}\right.$ and $\mathrm{AP}: \mathrm{PB}=1$: 2.find the ratio of $\frac{\operatorname{ar} \Delta A P Q}{\operatorname{ar} \Delta A B C}$

- Watch Video Solution

107. The surface area of a sphere is $346.5 \mathrm{~cm}^{2}$, calculate its radius and the volume.

- Watch Video Solution

108. A die is thrown once. Find the probability of getting (i) a prime number; (ii) a number lying between 2 and 6; (iii) an odd number.

- Watch Video Solution

109. Find the class marks of classes 10-25 and 35-55.

- Watch Video Solution

110. Find all the zeros of the polynomial $x^{4}+x^{3}-34 x^{2}-4 x+120$, if two of its zeroes are 2 and -2

- Watch Video Solution

111. $P A$ and $P B$ are two tangents drawn from an external point P to a circle with centre C and radius $=4 \mathrm{~cm}$ If $P A \perp P B$ then length of each tangent is

- Watch Video Solution

112. In Fig. 2, a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it touches the sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively. If $\mathrm{AB}=29 \mathrm{~cm}, \mathrm{AD}-23 \mathrm{~cm}, \angle B=90^{\circ}$ and $\mathrm{DS}=5 \mathrm{~cm}$, then the radius of the circle (in cm)

- Watch Video Solution

113. The angle of depression of a car parked on the road from the top of the 150 m high tower is 30°. Find the distance of the car from the tower

- Watch Video Solution

114.4 A dice is thrown once, then the probability of getting an odd prime number is

- Watch Video Solution

115. Find the probability of getting an even number when a die is thrown

- Watch Video Solution

116. A box contains 90 discs, numbered from 1 to 90 . If one disc is drawn at random from the box,find the probability that it bears a prime number <23.
117. In Fig. 3, the area of triangle ABC (in sq. units) is :

- Watch Video Solution

118. If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where 4A is an acute angle, find the value of A.

- Watch Video Solution

119. Solve the following quadratic equation :
$4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$

- Watch Video Solution

120. Find the sum of all three digit natural numbers, which are divisible by 7.

Watch Video Solution

121. In the given figure, a circle inscribed in a triangle $A B C$, touches the sides $A B, B C$ and $A C$ at points D, E and F respectively. If $A B=12 \mathrm{~cm}, B C=8$ cm and $A C=10 \mathrm{~cm}$, find the lengths of $A D, B E$ and $C F$.

- Watch Video Solution

122. Find the value of K if the point $(K, 3),(6,-2)$ and $(-3,4)$ are collinear.

- Watch Video Solution

123. Prove that the parallelogram circumscribing a circle is a rhombus.
124. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

125. A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that it is neither a ace nor a king.

- Watch Video Solution

126. For what value of k, are the roots of the quadratic equation
$k x(x-2)+6=0$ equal $?$

- Watch Video Solution

127. Find the number of terms of the AP $18, \frac{31}{2}, 13, \ldots .,-\frac{99}{2}$ and find the sum of all its terms.

- Watch Video Solution

128. Use Euclid's division lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m. [Hint: Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$ Now square each of these and sho

- Watch Video Solution

129. The horizontal distance between two poles is 15 m . The angle of depression of the top of first pole as seen from the top of second pole is 30°. If the height of the second pole is 24 m , find the height of the first pole. Use v3 =1.732)
130. Show that the points $(7,10),(-2,5)$, and $(3,-4)$ are the vertices of an isosceles right triangle.

Watch Video Solution

131. Find the ratio in which the y-axis divides the line segment joining the points $(-4,-6)$ and $(10,12)$. Also find the coordinates of the point of division.

- Watch Video Solution

132. In the given figure, $A B$ and $C D$ are two diameters of circles (with centre O) Perpendicular to each other and $O D$ is the diameter of the
smallest circle. If $\mathrm{OA}=7 \mathrm{~cm}$, Find the area of the shaded region.

- Watch Video Solution

133. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm . Find the inner surface area of the vessel.

- Watch Video Solution

134. Represent the following pair of equations graphically and write the coordinates of point where the lines intersect y-axis. $x+3 y=6$ and $2 x-3 y=12$

- Watch Video Solution

135. For what value of n, the $n^{t h}$ terms of the following two A.Ps are the same? $1,7,13,19$, (ii) $69,68,67$,

D Watch Video Solution

136. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder. If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

- Watch Video Solution

137. In a circle of radius 21 cm , an arc subtends an angle of 60° at the centre. Find (i) the length of the arc (ii) area of the sector formed by the arc. $\left(U s e \pi \frac{22}{7}\right)$

- Watch Video Solution

138. Solve for: $\frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$

- Watch Video Solution

139. Sum of the areas of two squares is 400 cm . If the difference of their perimeters is 16 cm , find the sides of the two squares.

- Watch Video Solution

140. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first n terms.
141. Prove that the tangent at any point of circle is perpendicular to the radius through the point of contact.

- Watch Video Solution

142. l and m are two parallel tangents to a circle with centre O , touching the circle at A and B respectively. Another tangent at C intersects the line l at D and m at E . Prove that $\angle D O E=90^{\circ}$.

- Watch Video Solution

143. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 60 m high, find the height of the building.
144. A group consists of 12 persons, of which 3 are extremely patient, other 6 are extremely honest and rest are extremely kind. A person from the group is selected at random. Assuming that each person is equally likely to be selected, find the probability of selecting a person who is (i) extremely patient (ii) extremely kind or honest. Which of the above values you prefer

- Watch Video Solution

145. Three vertices of a parallelogram ABCD are $A(3,-4), B(-1,-3) \operatorname{and} C(-6,2)$. Find the coordinates of vertiex D and find the area of parallelogram $A B C D$.

- Watch Video Solution

146. Prove that : $(1+\cot A+\tan A)(\sin A-\cos A)=\sin A \tan A-\cot A$ $\cos A$.

D Watch Video Solution

147. water is flowing at the rate of $2.52 \mathrm{~km} / \mathrm{h}$ through a cylindrical pipe into a cylindrical tank, the radius of whose base is 40 cm , If the increase in the level of water in the tank, in half an hour is 3.15 m , find the internal diameter of th pipe.

- Watch Video Solution

148. A bucket open at the top, and made up of a metal sheet is in the form of a frustum of a cone. The depth of the bucket is 24 cm and the diameters of its upper and lower circular ends are 30 cm and 10 cm respectively. Find the cost of metal sheet used in it at the rate of Rs 10 per $100 \mathrm{~cm}^{2}$.
149. Prove that $:(1+\cot A+\tan A)(\sin A-\cos A)=\sin A \tan A-\cot A$ $\cos A$.

- Watch Video Solution

150. Without using trigonometric tables, evaluate the following:$2\left(\frac{\cos 58^{\circ}}{\sin 32^{\circ}}\right)-\sqrt{3}\left(\frac{\cos 38^{\circ} \cos e c 52^{\circ}}{\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}}\right)$

- Watch Video Solution

151. If the coordinates of the mid-points of the sides of a triangle are $(3,4),(4,6) \operatorname{and}(5,7)$, find its vertices.

- Watch Video Solution

152. If the coordinates of the mid-points of the sides of a triangle are $(3,4),(4,6) \operatorname{and}(5,7)$, find its vertices.

- Watch Video Solution

153. In Figure $2, A D \perp B C$. Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

- Watch Video Solution

154. In Fig. 12.33, ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with $B C$ as diameter. Find the area of the shaded region.

- Watch Video Solution

155. A peacock is sitting on the top of a pillar, which is 9 m high. From a point 27 m away from the bottom of the pillar, a snake is coming to its
hole at the base of the pillar. Seeing the snake the peacock pounces on it. If their speeds are equal, at what distance from the whole is the snake caught?

- Watch Video Solution

156. A peacock is sitting on the top of a pillar, which is 9 m high. From a point 27 m away from the bottom of the pillar, a snake is coming to its hole at the base of the pillar. Seeing the snake the peacock pounces on it. If their speeds are equal, at what distance from the hole is the snake caught?

- Watch Video Solution

157. The angle of elevation of a jet plane from a point A on the grund is 60°. After and flight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of $3600 \sqrt{3} m$, find the speed of the jet plane.
158. If a line is drawn to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.

- Watch Video Solution

159. An open metal bucket is in the shape of a frustum of a cone, mounted on a hollow cylindrical base made of the same metallic sheet.

The diameters of the two circular ends of the bucket are 45 cm and 25 cm , the total vertical height of the bucket is 40 cm and that of the cylindrical base is 6 cm . Find the area of the metallic sheet used to make the bucket, where we do not take into account the handle of the bucket. Also, find the volume of water the bucket can hold.
160. If the radii of the circular ends of a conical bucket of height 16 cm are 20 cm and 8 cm , find the capacity and total surface area of the bucket. [Use pi= 22/7]

- Watch Video Solution

161. Find mean, median and mode of the following data :

Classes	Frequency
$0-20$	6
$20-40$	8
$40-60$	10
$60-80$	12
$80-100$	6
$100-120$	5
$120-140$	3

- Watch Video Solution

162. Find mean, median and mode of the following data : 10, 12, 14, 16, 14
163. LCM of two numbers x and y is 720 and the LCM of numbers $12 x$ and $5 y$ is also 720. The number y is

Watch Video Solution

164. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$, then find the value of a.

- Watch Video Solution

165. In $\Delta L M N, \angle L=50^{\circ}$ and $N=60^{\circ}$. If $\triangle L M N \sim \triangle P Q R$, then find angle Q .

D Watch Video Solution

166. If $\sec ^{2} \theta(1+\sin \theta)(1-\sin \theta)=k$, then find the value of k.
167. If the diameter of a semicircular protractor is 14 cm , then find its perimeter.

- Watch Video Solution

168. Find the number of solutions of the following pair of linear equations: $x+2 y-8=0$ and $2 x+4 y=16$

- Watch Video Solution

169. Find the discriminant of the quadratic equation $3 \sqrt{3} x^{2}+10 x+\sqrt{3}=0$.
170. If a, b and c are three consecutive coefficients terms in the expansion of $(1+x)^{n}$, then find n .

Watch Video Solution

171. In the given figure, triangle $A B C$ is circumscribing a circle. Find the length of BC , if $\mathrm{AF}=3 \mathrm{~cm}, \mathrm{FB}=4 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$

- Watch Video Solution

172. Two coins are tossed simultaneously. Find the probability of getting exactly one head.

- Watch Video Solution

173. Find all the zeroes of the polynomial $x^{3}+3 x^{2}-2 x-6$, if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
174. Which term of the A.P. $3,15,27,39$, ... will be 120 more than its 21 st term?

- Watch Video Solution

175. $\triangle A B D$ is a right triangle, right-angled at A and $A C \perp B D$. Prove that $A B^{2}=B C \times B D$.

- Watch Video Solution

176. Find the value of $\tan 60^{\circ}$ geometrically

- Watch Video Solution

177. Is the rational number $\frac{441}{2^{2} 5^{7} 7^{2}}$ a terminating or a non-terminating decimal representation?

- Watch Video Solution

178. If the points $A(4,3) \operatorname{and} B(x, 5)$ are on the circle with centre $O(2,3)$, find the value of x.

- Watch Video Solution

179. Prove that $2 \sqrt{3}$ is an irrational number

- Watch Video Solution

180. $\frac{a x}{b}-\frac{b y}{a}=a+b, a x-b y=2 a b$
181. If alpha,beta are the zeroes of a polynomial, such that $\alpha+\beta=6$ and $\alpha . \beta=4$, then write the polynomial.

- Watch Video Solution

182. The sum of first six terms of an arithmetic progression is 42 . The ratio of its 10th term to its 30th term is 1:3. Calculate the first and the thirteenth term of the A.P.

- Watch Video Solution

183. If the sum of first p terms of an AP is $a p^{2}+b p$ find the common difference

- Watch Video Solution

184. Draw a right triangle in which sides (other than hypotenuse) are of lengths 8 cm and 6 cm . Then construct another triangle whose sides are $3 / 4$ times the corresponding sides of the first triangle.

- Watch Video Solution

185. S and T are points on the sides PQ and PR , respectively of $\triangle P Q R$, such that $\mathrm{PT}=2 \mathrm{~cm}, \mathrm{TR}=4 \mathrm{~cm}$ and ST is parallel to QR . Find the ratio of the areas of $\triangle P S T$ and $\triangle P Q R$.

- Watch Video Solution

186. In Figure $3, A D \perp B C$ and $B D=\frac{1}{3} C D$. Prove that $2 C A^{2}=2 A B^{2}+B C^{2}$.

- Watch Video Solution

187. Find the ratio in which the point $(2, y)$ divides the line segment joining the points $A(-2,2)$ and $B(3,7)$. Also find the value of y

Watch Video Solution

188. Find the ratio in which the point $(2, y)$ divides the line segment joining the points $A(-2,2)$ and $B(3,7)$. Also find the value of y

- Watch Video Solution

189. In Fig. 2, $\triangle A H K$ is similar to $\triangle A B C$. If $A K=10 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $H K=7 \mathrm{~cm}$, find AC .-

- Watch Video Solution

190. Find the area of the quadrilateral whose vertices, taken in order, are $(-4,-2),(-3,-5),(3,-2) \operatorname{and}(2,3)$.
191. The area of an equilateral triangle is $49 \sqrt{3} \mathrm{~cm}^{2}$. Taking each angular point as shown in Figure. Find the area of the triangle not included in the circle.

- Watch Video Solution

192. A die is thrown twice. What is the probability that (i) 5 will not come up either time? (ii) 5 will come up at least once? [Hint: Throwing a die twice and throwing two dice simultaneously are treated as the same experiment]

- Watch Video Solution

193. If $P(2, p)$ is the mid-point of the line segment joining the points $A(6,-5)$ and $B(-2,11)$, find the value of p
194. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

195. If $A(1,2), B(4,3)$ and $C(6,6)$ are the three vertices of a parallelogram $A B C D$, find the coordinates of the fourth vertex D.

- Watch Video Solution

196. An aeroplane when flying at a height of 4000 m from the ground passes vertically above another aeroplane at an instant when the angles of the elevation of the two planes from the same point on the ground are $60^{0} \& 45^{0}$ respectively. Find the vertical distance between the aeroplanes at that instant.
197. The slant height of a frustum of a cone is 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm . Find the curved surface area of the frustum.

- Watch Video Solution

198. During the medical check-up of 35 students of a class, their weights were recorded as follows: Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula. weight (in kg)=38-40 40-42 42-44 44-46 46-48 48-50 5052 No. of students=3 2451443

- Watch Video Solution

199. A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen and (2) a face card
200. If two zeroes of the polynomial $x^{3}-4 x^{2}-3 x+12$ are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.

- Watch Video Solution

201. Write the value of k for which the system of equations $x+y-4=0$ and $2 x+k y-3=0$ has no solution

- Watch Video Solution

202. In an A.P., the first term is 2 , the last term is 29 and sum of the terms is 155 . Find the common difference of the A.P.

- Watch Video Solution

203. Prove that the parallelogram circumscribing a circle is a rhombus.

- Watch Video Solution

204. The roots of the quadratic equation $2 x^{2}-x-6=0(a)-2,3 / 2(b)$ $2,-3 / 2(c)-2,-3 / 2(d) 2,3 / 2^{`}$

- Watch Video Solution

205. If the $n^{\text {th }}$ term of an A.P., is $(2 n+1)$, then the sum of its first three terms is (a) $6 \mathrm{n}+3$ (b) 15 (c) 12 (d) 21

- Watch Video Solution

206. Without using trigonometric tables, find the value of the following
expression

$$
\frac{\sec \left(90^{\circ}-\theta\right) \cdot \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \cdot \tan 63^{\circ}}
$$

207. From a point $\mathrm{Q}, 13 \mathrm{~cm}$ away from the centre of a circle, the length of tangent PQ to the circle is 12 cm . The radius of the circle (in cm) is

- Watch Video Solution

208. $A P, A Q$ and $B C$ are tangents to the circle. If $A B=5 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$, then the length of $A P(i n c m)$ is
A. a) 7.5
B. b) 15
C. c) 10
D. d) 9

Answer: null

209. Find the area of a quadrant of a circle whose circumference is 22 cm .

- Watch Video Solution

210. Prove that $2-3 \sqrt{5}$ is an irrational number.

- Watch Video Solution

211. A solid right circular cone is cut into two parts at the middle of its height by a plane parallel to its base. The ratio of the volume of the $\begin{array}{llll}\text { smaller cone to the whole cone is: } 1: 2 & \text { (b) } 1: 4 & \text { (c) } 1: 6 & \text { (d) } 1: 8\end{array}$

- Watch Video Solution

212. A kite is flying at a height of 30 m from the ground. The length of string from the kite to the ground is 60 m . Assuming that three is no slack

- Watch Video Solution

213. The sum of numerator and denominator of a fraction is 3 less than twice the denominator. If each of the numerator and denominator is decreased by 1 , the fraction becomes $\frac{1}{2}$ Find the fraction.

Watch Video Solution

214. The distance of the point $(-3,4)$ from the x-axis is : a) '3(b)-3' (c) 4
(d) 5

- Watch Video Solution

215. In an AP, the sum of first ten terms is -150 and the sum of its next ten terms is -550 Find the AP
216. Point $P(5,-3)$ is one of the two points of trisection of the line segment joining the points $A(7,-2) \operatorname{and} B(1,-5)$ near to A. Find the coordinates of the other point of trisection.

- Watch Video Solution

217. Cards bearing numbers $2,3,4, \ldots, 11$ are kept in a bag. A card is drawn at random from the bag. The probability of getting a card with a prime number is

- Watch Video Solution

218. In Fig. 3, ABC is a right triangle, right angled at C and D is the midpoint of BC . Prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.
219. Find the value of p for which the roots of the equation $p x(x-2)+6=0$, are equal.

- Watch Video Solution

220. How many two-digit numbers are divisible by 3 ?

- Watch Video Solution

221. In figure,a right triangle $A B C$,circumscribes a circle of radius r.If $A B$ and $B C$ are of length 8 cm and 6 cm respectively, find the value of r.

- Watch Video Solution

222. Prove the following identities:
$\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}=1+\tan A+\cot A=1+\sec A \cos e c A$
223. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

(Watch Video Solution

224. From a rectangular sheet of paper $A B C D$ with $A B=40 C M$ and $A D=28 \mathrm{~cm}$, a semi circular portion with $B C$ as diameter is cut off. Find the area of the remaining paper. $\left(U \operatorname{se} \pi=\frac{22}{7}\right)$

(Watch Video Solution

225. A solid sphere of radius 10.5 cm is melted and recast into smaller solid cones, each of radius 3.5 cm and height 3 cm . Find the number of cones so formed. $\left(U \operatorname{se} \pi=\frac{22}{7}\right)$

- Watch Video Solution

226. Construct a triangle $A B C$ in which $B C=8 \mathrm{~cm}$, angle $B=45^{\circ}$ and angle $\mathrm{C}=30^{\circ}$ Construct another triangle similar to Delta ABC such that its sides are $3 / 4$. of the corresponding sides of Delta $A B C$.

- Watch Video Solution

227. Find the value of k, if the point $\mathrm{P}(2,4)$ is equidistant from the points $A(5, k)$ and $B(k, 7)$.

- Watch Video Solution

228. A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen and
(2) a face card

- Watch Video Solution

229. Solve the following quadratic equation for x. $x^{2}-4 a x-b^{2}+4 a^{2}=0$

- Watch Video Solution

230. Find the sum of all multiples of 7 lying between 500 and 900 .

- Watch Video Solution

231. Point P divides the line segment joining the points $A(2,1)$ and $B(5,-8)$ such that $\frac{A P}{A B}=\frac{1}{3}$. If P lies on the line $2 x-y+k=0$, find the value of k.

- Watch Video Solution

232. If $R(x, y)$ is a point on the line segment joining the points $P(a, b) a n d Q(b, a)$, then prove that $x+y=a+b$
233. A circle is inscribed in a triangle $P Q R$ with $P Q=10 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $P R=12 \mathrm{~cm}$. Find the lengths QM, RN and PL .

- Watch Video Solution

234. In Figure, O is the centre of the circle with $A C=24 \mathrm{~cm}, A B=7 \mathrm{~cm}$ and
$\angle B O D=90^{\circ}$. Find the area of the shaded region.[$U s e \pi=3 \cdot 14$]

235. The boundary of the shaded region in the given figure consists of three semicircular areas, the smaller ones being equal. If the diameter of the larger one is 14 cm , calculate
(i) the length of the boundary
(ii) the area of the shaded region

- Watch Video Solution

237. The angles of the depression of the top and bottom of the tower is seen from the top of a $60 \sqrt{3}$ cliff are 45^{α} and 60^{α} respectively. Find the height of the tower.

- Watch Video Solution

238. Find the coordinates of a point P, which lies on the line segment joining the points $A(-2,-3)$ and $B(2 .-4)$ such that $A P=\frac{3}{7} A B$.
239. If the points $A(x, y), B(3,6) \operatorname{and} C(-3,4)$ are collinear, show that $x-3 y+15=0$

- Watch Video Solution

240. Cards bearing numbers $1,3,5, \ldots, \ldots, 35$ are kept in a bag. A card is drawn at random from the bag. Find the probability of getting a card bearing (i) a prime number less than 15 . (ii) a number divisible by 3 and 5 .

- Watch Video Solution

241. Three consecutive positive integers are such that the sum of the square of the first and the product of other two is 46 , find the integers.

- Watch Video Solution

242. All kings, queens are aces are removed from a pack of 52 cards. The remaining cards are well shuffled and then a card is drawn from it. Find the probability that the drawn card is : a black face card
(b) a red card.

- Watch Video Solution

243. Find the common difference of an A.P. whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.

- Watch Video Solution

244. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

245. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

246. A hemispherical tank full of water is emptied by a pipe at the rate of 25 $\frac{25}{7}$ litres per second. How much time will it take to empty half the tank, if it is 3 m in diameter?

- Watch Video Solution

247. From the top of a 7 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is 30°. Find the height of the tower.

- Watch Video Solution

248. A milk container is made of metal sheet in the shape of frustum of a cone whose volume is $104593 \frac{3}{7} \mathrm{~cm}^{3}$. The radii of its lower and upper circular ends are 8 cm and 20 cm respectively. Find the cost of metal sheet used in making the container at the rate of Rs. 1.40 per cm^{2}. (Use $\pi=22 / 7)$

- Watch Video Solution

249. If both roots of the equation $x^{2}-(m+1) x+(m+4)=0$ are negative then m equals

- Watch Video Solution

250. If the common difference of an A.P. is 3 , then $a_{20}-a_{15}$ is

- Watch Video Solution

251. In Figure 2, $A B$ and $A C$ are tangents to the circle with centre O such that angle $B A C=40^{\circ}$. Then angle $B O C$ is equal to
A. a) 40
B. b) 50
C. c) 140
D. d) 150

Answer: null

- Watch Video Solution

252. The perimeter (in cm) of a square circumscribing a circle of radius a cm,
A. a) $8 a$
B. b) $4 a$
C. c) $2 a$
D. d) 16 a

Answer: null

- Watch Video Solution

253. The radius (in cm) of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is
A. a) 4.2
B. b) 2.1
C. c) 8.4
D. d) 1.05

Answer: null

- Watch Video Solution

254. A tower stands vertically on the ground. From a point on the ground, which is $15 m$ away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.

- Watch Video Solution

255. If $P\left(\frac{a}{2}, 4\right)$ is the mid-point of the line-segment joining the points $A(-6,5)$ and $B(-2,3)$, then the value of a is
A. a) -8
B. b) 3
C. c) -4
D. d) 4

Answer: null

256. If A and B are the points $(-6,7)$ and $(-1,-5)$ respectively, then the distance $2 A B$ is equal to

- Watch Video Solution

257. One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will (i) be an ace. (ii) not be an ace.

- Watch Video Solution

258. Find the value of m so that the quadratic equation $m x(x-7)+49=0$ has two equal roots.

- Watch Video Solution

259. Find how many two-digit numbers are divisible by 6.
260. In Figure 3, a circle touches all the four sides of a quadrilateral ABCD whose sides are $A B=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Find the length of side AD.

- Watch Video Solution

261. Draw a line segment $A B$ of length 7 cm . Using ruler and compasses, find a point P on $A B$ such
A. that $\mathrm{AP} / \mathrm{BP}=3 / 5$
B. null
C. null
D. null

Answer: null

262. Find the perimeter of the shaded region if $A B C D$ is a square of side 21 cm APB \& CPD are semicircles. (Use $\pi=\frac{22}{7}$)

- Watch Video Solution

263. Two cubes each of volume $125 \mathrm{~cm}^{3}$ are joined end to end together.

Find the total surface area of the resulting cuboid.

(Watch Video Solution

264. Find the values of y for which the distance between the points $P(2, \backslash 3) \backslash a n d \backslash Q(10, \backslash y)$ is 10 units.

- Watch Video Solution

265. A ticket is drawn at random from a bag containing tickets numbered from 1 to 40 . Find the probability that the selected ticket has a number
which is a multiple of 5 .

- Watch Video Solution

266. . Find the roots of the following quadratic equation : $x^{2}-3 \sqrt{5} x+10=0$

- Watch Video Solution

267. Find an A.P. whose fourth term is 9 and the sum of its sixth term and thirteenth term is 40 .

- Watch Video Solution

268. Draw a pair of tangent to a circle of radius 5 cm which are inclined to each other at an angle of 60°. Give steps of construction.
269. A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle.

- Watch Video Solution

270. An open metal bucket is in the shape of a frustum of a cone of height 21 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the cost of milk which can completely fill the bucket at Rs. 30 per litre.

- Watch Video Solution

271. Point ($x, 4$) lies on the line segment joining the points $A(-5,8)$ and B $(4,-10)$ Find the ratio in which point P divides the line segment $A B$. Also find the value of x ?

- Watch Video Solution

272. Let $A(3,2), B(-4,1), C(-3,1)$ and $D(2,-4)$ be the vertices of a quadrilateral $A B C D C D$ Find area of the quadrilateral formed by the midpoints of the sides of quadrilatdateral

- Watch Video Solution

273. From the top of a vertical tower, the angles of depression of two cars, in the same straight line with the base of the tower, at an instant are found to be 45° and 60°. If the cars are 100 m apart and are on the same side of the tower, find the height of the tower.

- Watch Video Solution

274. Two dice are rolled once. Find the probability of getting such numbers on two dice whose product is perfect square.

- Watch Video Solution

275. Prove that the tangent at any point of circle is perpendicular to the radius through the point of contact.

- Watch Video Solution

276. The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is then sum?

- Watch Video Solution

277. A train travels 180 km at a uniform speed. If the speed had been 9 $\mathrm{km} / \mathrm{hour}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.

- Watch Video Solution

278. Three circles each of radius 3.5 cm are drawn in such a way that each of them touches the other two. Find the area enclosed between these three circles (shaded region).

- Watch Video Solution

279. Water is flowing at the rate of $15 \mathrm{~km} /$ hour through a pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44 m wide. In what time will the level of water in the pond rise by 21 cm ?

- Watch Video Solution

280. The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 30°. Find the height of the tower.

- Watch Video Solution

281. The roots of the quadratic equation $2 x^{2}-x-6=0$ are

(Watch Video Solution

282. If the $n^{\text {th }}$ term of an A.P., is $(2 n+1)$, then the sum of its first three terms is (a) $6 \mathrm{n}+3$ (b) 15 (c) 12 (d) 21

- Watch Video Solution

283. From a point $\mathrm{Q}, 13 \mathrm{~cm}$ away from the centre of a circle, the length of tangent PQ to the circle is 12 cm . The radius of the circle (in cm) is

- Watch Video Solution

284. $A P, A Q$ and $B C$ are tangents to the circle. If $A B=5 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$, then the length of $A P(i n c m)$ is

- Watch Video Solution

285. Find the area of a quadrant of a circle whose circumference is 22 cm .

- Watch Video Solution

286. A solid right circular cone is cut into two parts at the middle of its height by a plane parallel to its base. The ratio of the volume of the smaller cone to the whole cone is: 1:2
(b) $1: 4$
(c) 1:6
(d) 1:8

- Watch Video Solution

287. A kite is flying at a height of 30 m from the ground. The length of string from the kite to the ground is 60 m . Assuming that there is no slack in the string, the angle of elevation of the kite at the ground is: 45^{0} (b) 30^{0} (c) 60^{0} (d) 90^{0}
288. The distance of the point $(-3,4)$ from the x-axis is: 3 (b) -3 (c) 4 (d) 5

- Watch Video Solution

289. Point $P(5,-3)$ is one of the two points of trisection of the line segment joining the points $A(7,-2) \operatorname{and} B(1,-5)$ near to A. Find the coordinates of the other point of trisection.

- Watch Video Solution

290. Cards bearing numbers $2,3,4, \ldots, 11$ are kept in a bag. A card is drawn at random from the bag. The probability of getting a card with a prime number is

- Watch Video Solution

291. Find the value of p for which the roots of the equation $p x(x-2)+6=0$, are equal.

- Watch Video Solution

292. How many two-digit numbers are divisible by 3?

- Watch Video Solution

293. In figure,a right triangle $A B C$,circumscribes a circle of radius r.If $A B$ and $B C$ are of length 8 cm and 6 cm respectively, find the value of r.

- Watch Video Solution

294. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
295. From a rectangular sheet of paper $A B C D$ with $A B=40 C M$ and $A D=28 \mathrm{~cm}$, a semi circular portion with $B C$ as diameter is cut off. Find the area of the remaining paper. $\left(U s e \pi=\frac{22}{7}\right)$

- Watch Video Solution

296. A solid sphere of radius 10.5 cm is melted and recast into smaller solid cones, each of radius 3.5 cm and height 3 cm . Find the number of cones so formed. $\left(U s e \pi=\frac{22}{7}\right)$

- Watch Video Solution

297. Find the value of k, if the point $\mathrm{P}(2,4)$ is equidistant from the points $A(5, k)$ and $B(k, 7)$.

- Watch Video Solution

298. A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that it is neither a ace nor a king.

- Watch Video Solution

299. Solve the following quadratic equation for x.
$x^{2}-4 a x-b^{2}+4 a^{2}=0$

- Watch Video Solution

300. Solve the following quadratic equation for x. $x^{2}-4 a x-b^{2}+4 a^{2}=0$

- Watch Video Solution

301. A storage tank consists of a circular cylinder with a hemisphere adjoined on either end. If the external diameter of the cylinder be 1.4 m
and its length be 8 m , find the cost of painting it on the outside at the rate of Rs. 10 per m^{2}.

- Watch Video Solution

302. A circle is inscribed in a triangle $P Q R$ with $P Q=10 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $P R=12 \mathrm{~cm}$. Find the lengths QM, RN and PL.

- Watch Video Solution

303. In Figure 6, O is the centre of the circle with $A C=24 \mathrm{~cm}, A B=7 \mathrm{~cm}$ and $\angle B O D=90^{\circ}$. Find the area of the shaded region.[Use $\left.\pi=3 \cdot 14\right]$

304. The angles of the depression of the top and bottom of the tower is seen from the top of a $60 \sqrt{3}$ cliff are 45^{α} and 60^{α} respectively. Find the height of the tower.

- Watch Video Solution

306. Find the coordinates of a point P , which lies on the line segment joining the points $A(-2,-3)$ and $B(2 .-4)$ such that $A P=\frac{3}{7} A B$.

- Watch Video Solution

307. If the points $A(x, y), B(3,6) \operatorname{and} C(-3,4)$ are collinear, show that $x-3 y+15=0$

- Watch Video Solution

308. All kings, queens are aces are removed from a pack of 52 cards. The remaining cards are well shuffled and then a card is drawn from it. Find the probability that the drawn card is : a black face card
(b) a red card.

- Watch Video Solution

309. Find the common difference of an A.P. whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.

- Watch Video Solution

310. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

311. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

312. A hemispherical tank,full of water, is emptied by a pipe at the rate of $\frac{25}{7}$ liters per second.how much time will it take to empty half the tank if the diameter of the base of the tank is 3 m .

- Watch Video Solution

313. A military ten of height 8.25 m is in the form of a right circular cylinder of base diameter 30 m and height 5.5 m surmounted by right circular cone of same base radius. Find the length of the canvas use in making the tent. If the breadth of the canvas is 1.5 m .

- Watch Video Solution

314. The angles of elevation and depression of the top bottom of a lighthouse from the top of a 60 m high building are 30° and 60° respectively. Find the difference between the heights of the light house and the building. the distance between the light-house and the building.

- Watch Video Solution

315. A line intersects the y-axis and x-axis at the points P and Q respectively. If $(2,5)$ is the mid-point of $P Q$, then find the coordinates of P and Q .

- Watch Video Solution

316. In an A.P. first term is 5 , last term is 45 and sum $=400$. Find the no. of terms and common difference of A.P.

- Watch Video Solution

317. Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

- Watch Video Solution

318. A solid iron rectangular block of dimensions $4.4 \mathrm{~m}, 2.6 \mathrm{~m}$ and 1 m is cast into a hollow cylindrical pipe of internal radius 30 cm and thickness 5 cm. Find the length of the pipe.

- Watch Video Solution

319. Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (vii) $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

- Watch Video Solution

320. Given $\triangle A B C \sim \triangle P Q R$ if $\frac{A B}{P Q}=\frac{1}{3}$ then find $\frac{\text { ar } \triangle A B C}{\text { ar } \triangle P Q R}$

- Watch Video Solution

321. What is the value of $\left(\cos ^{2} 67^{\circ}-\sin ^{2} 23^{\circ}\right)$?

- Watch Video Solution

322. Find the distance of point $P(x, y)$ from the origin

- Watch Video Solution

323. If $\mathrm{x}=3$ is one root of the quadratic equation $x^{2}-2 k x-6=0$, then find the value of k

- Watch Video Solution

324. What is the HCF of the smallest prime number and the smallest composite number?

- Watch Video Solution

325. The mean of the following distribution is 18 . Find the frequency f of the class $19-21$.

- Watch Video Solution

326. In an A.P., if the common difference (d) $=-4$ and the seventh term $\left(a_{7}\right)$ is 4 then find the first term
327. An integer is chosen at random between 1 and 100. Find the probability that it is (i) divisible by 8 (ii) not divisible by 8

- Watch Video Solution

328. Two different dice are tossed together. Find the probability (i) of getting a doublet (ii)of getting a sum of 10, of the numbers on two dice

(Watch Video Solution

329. Find the ratio in which $(4, m)$ divides the line segment joining $A(2,3)$ and $B(6,-3)$. Hence find m

- Watch Video Solution

330. A bucket open at the top, and made up of a metal sheet is in the form of a frustum of a cone. The depth of the bucket is 24 cm and the diameters of its upper and lower circular ends are 30 cm and 10 cm respectively. Find the cost of metal sheet used in it at the rate of Rs 10 per Crn . | USe TC-3.f metal sh d in itat th f Rs 10 per 100 cm ". [U 3.14

- Watch Video Solution

331. Given that $\sqrt{2}$ is a irrational prove that $(5+3 \sqrt{2})$ is an irrational number

- Watch Video Solution

332. Find the sum of first 8 multiples of 3 .

- Watch Video Solution

333. As observed from the top of a 100 m high lighthouse from the sea level, the angles of depression of two ships are 30° and 45° If one ship is exactly behind the other one on the same side of the lighthouse, find the distance between the two ships.

- Watch Video Solution

334. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

- Watch Video Solution

335. While boarding an aeroplane, a passenger got hurt. The pilot showing promptness and concern, made arrangements to hospitalise the injured and so the plane started late 30 minutes to reach the destination, 1500 km away in time, the pilot increased the speed by $100 \mathrm{~km} / \mathrm{hr}$. Find the original speed/hour of the plane.

(D) Watch Video Solution

336. A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of $6 \mathrm{~km} / \mathrm{hr}$ more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?

Watch Video Solution

337. Prove that the area of equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

- Watch Video Solution

338. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
339. (Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

340. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

341. The sum of four consecutive numbers in A.P. is 32 and the ratio of the product of the first and last term to the product of two middle terms is 7:15. Find the number
342. A wooden article was made by scooping out a hemisphere from each end of a solid cylinder. If the height of the cylinder is 10 cm , and its base is of radius 3.5 cm , find the total surface area of the article.

- Watch Video Solution

343. Find all zeroes of the polynomial $2 x^{4}-9 x^{3}+5 x^{2}+3 x-1$ if two of its zeroes are $2+\sqrt{3}$ and $2-\sqrt{3}$

- Watch Video Solution

344. A heap of rice is in the form of a cone of base diameter 24 m and height 3.5 m . Find the volume of the rice. How much canvas cloth is required to just cover the heap

- Watch Video Solution

345. Find HCF and LCM of 404 and 96 and verify that $H C F \times L C M=$ product of the two given numbers

- Watch Video Solution

346. If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A.

- Watch Video Solution

347. If $4 \tan \theta=3$ evaluate $\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}$

- Watch Video Solution

348. If $A(-2,-1), B(a, 0), C(4, b) \operatorname{and} D(1,2)$ are the vertices $f a$ parallelogram, find the values of a and b

- Watch Video Solution

349. If $A(5,7), B(-4,-5), C(-1,-6)$ and $D(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral ABCD.

- Watch Video Solution

350. Prove that the length of the tangents drawn from an external point to a circle are equal.

- Watch Video Solution

351. In Fig. 1. ABCD is a rectangle. Find the values of x and y

- Watch Video Solution

352. Find the area of the shaded region in Fig. 3, where arcs drawn with centres A, B, C and D intersect in pairs at mid-points P, Q, R and S of the
sides $A B, B C, C D$ and $D A$ respectively of a square $A B C D$ of side 12 cm . [Use $\pi=3.14]$

(Watch Video Solution

353. The table below shows Salary of 280 persons. Calculate the median salary of the data.

D Watch Video Solution

354. Find the value of a so that the point $(3, a)$ lies on the line represented by $2 x-3 y=5$.

- Watch Video Solution

355. The HCF of two numbers a and b is 5 and their LCM is 200 . Find the product $a b$.
356. Cards marked with numbers 5 to 50 Cards marked with numbers 5 to 50 are placed in a box and mixed thoroughly, A card is drawn from the box at random. Find the probability that the number on the card taken out is (i) prime number less than 10 (ii) a number which is a perfect square

- Watch Video Solution

357. Prove that : $\left(\frac{\tan \theta}{1-\tan \theta}\right)-\left(\frac{\cot \theta}{1-\cot \theta}\right)=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$

- Watch Video Solution

358. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, show that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$

- Watch Video Solution

359. For what value of k does the system of linear equations $2 x+3 y=7$ and $(k-1) x+(k+2) y=3 k$ have an infinite number of solutions

- Watch Video Solution

360. Find the value of k for which $x=2$ is a solution of the equation $k x^{2}+2 x-3=0$

- Watch Video Solution

361. Prove that $\sqrt{5}$ is irrational.

- Watch Video Solution

362. The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 7. Find the common difference.
363. Find the value of k for which the quadratic equation $3 x^{2}+k x+3=0$ has real and equal roots.

- Watch Video Solution

364. Find all the zeroes of the polynomial $x^{4}+x^{3}-14 x^{2}-2 x+24$ if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

- Watch Video Solution

365. The midpoint of the line segment joining $A(29,4)$ and $B(-2,3 b)$ is $C(2 a+1,1)$.Find the values of a and b.

- Watch Video Solution

366. If S_{n} the sum of first n terms of an AP is given by $2 n^{2}+n$, then find its nth term.

- Watch Video Solution

367. If in an $\mathrm{AP} \mathrm{a}=15, \mathrm{~d}=-3$ and $a_{n}=0$. Then find the value of n .

- Watch Video Solution

368. Point P divides the line segment joining the points $A(2,1)$ and $B(5,-8)$ such that $\frac{A P}{A B}=\frac{1}{3}$. If P lies on the line $2 x-y+k=0$, find the value of k.

- Watch Video Solution

369. A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A
takes food for 25 days he has to pay 4500 as hostel charges whereas a student who takes B food for 30 days, pays 5200 as hostel charges. Find the fixed charges per month and the cost of food per day.

- Watch Video Solution

370. For what value of P, points (2,1),(P, -1) and ($-1,3$) are collinear

- Watch Video Solution

371. A juice seller was serving his customers using glasses. The inner diameter of the cylindrical glass was 5 cm , but the bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass. If the height of a glass was 10 cm , find the apparent capacity of the glass and its actual capacity.

- Watch Video Solution

372. In a triangle $A B C, B=90^{\circ}$ and D is the mid-oint of $B C$ then prove that $A C^{2}=A D^{2}+3 C D^{2}$

Watch Video Solution

373. If $\sin x+\cos y=1, x=30^{\circ}$ and y is an acute angle. Find the value of y

- Watch Video Solution

374. A cylindrical bucket, 32 cm high and with radius of base 18 cm , is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm , find the radius and slant height of the heap.

- Watch Video Solution

375. Find the value of $\left(\cos 48^{\circ}-\sin 42^{\circ}\right)$

- Watch Video Solution

376. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{hr}$ more, it would have taken 1 hour less for the same journey. Form the quadratic equation to find the speed of the train.

- Watch Video Solution

377. In figure, three sectors of a circle of radius 7 cm , making angles of $60^{\circ}, 80^{\circ}$ and 40° at the center are shaded. Find the area of the shaded region.

- Watch Video Solution

378. The area of two similar traingles are 25 sq cm and 121 sq cm . Find the ratio of their corresponding sides

Watch Video Solution

379. Solve $\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}, a+b \neq 0$

- Watch Video Solution

380. Show that any positive odd integer is of the form $6 q+1$ or $6 q+3$ or
$6 q+5$, where q is some integer

- Watch Video Solution

381. The sum of first p - terms terms of an A.P. is q and the sum of first q terms is p, find the sum of first $(p+q)$
382. Prove that the parallelogram circumscribing a circle is a Rhombus.

- Watch Video Solution

383. Find the HCF of 612 and 1314 using prime factorisation.

- Watch Video Solution

384. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the isosceles triangle.

- Watch Video Solution

385. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of

20 metre high building, finds the angle of elevation of the same bird to be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.

- Watch Video Solution

386. If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a right triangle with the angle opposite the first sides as right angle.

- Watch Video Solution

387. The following table gives the number of participants in a yoga camp:
$\left[\begin{array}{cccccc}\text { Age in years } & 20-30 & 30-40 & 40-50 & 50-60 & 60-70 \\ \text { No. of Participants } & 8 & 40 & 58 & 90 & 83\end{array}\right]$
. Find the modal age of the participants.

- Watch Video Solution

388. An open metallic bucket is in the shape of the frustum of the cone. If the diameters of the two circular ends of the bucket are 45 cm and 25 cm and the vertical height of the bucket is 24 cm , find the area of the metallic sheet used to make the bucket. Also find the volume of water it an hold. (Use $\pi=\frac{22}{7}$)

- Watch Video Solution

389. The angle of elevation of a jet plane from a point A on the grund is 60°. After and flight of 30 seconds, the angle of elevation changes to 30°. If the jet plane is flying at a constant height of $3600 \sqrt{3} m$, find the speed of the jet plane.

- Watch Video Solution

390. Prove that $\frac{(1+\cot \theta+\tan \theta)(\sin \theta-\cos \theta)}{\sec ^{3} \theta-\cos e c^{3} \theta}=\sin ^{2} \theta \cos ^{2} \theta$.
391. Find the value of frequecies in the following frequency distribution

- Watch Video Solution

392. A child has a die whose 6 faces show the letter as given below:
A, B, C, A, A, B. The die is thrown once. What is the probability of getting (i) A
(ii) B

- Watch Video Solution

393. Find the sum of the first 100 natural numbers.

- Watch Video Solution

394. $A O B C$ is a rectangle whose three vertices are $A(0,-3), O(0,0)$ and B $(4,0)$. The length of its diagonal is \qquad

Watch Video Solution

395. For an AP, it is given that first term (a)=5 and Common Difference (d)
$=3$ and nth term $=50$. Find n and sum of first n terms of AP

- Watch Video Solution

396. The value(s) of k for which the quadratic equation $2 x^{2}+k x+2=0$ has equal roots, is (a) 4
(b) ± 4
(c) -4
(d) 0

- Watch Video Solution

397. Evaluate $\frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}$

- Watch Video Solution

398. on dividing a polynomial $\mathrm{p}(\mathrm{x})$ by $x^{2}-4$, quotient and remainder are found to be x and 3 respectively. the polynomial $p(x)$ is
a) $3 x^{2}+x-12$
b) $x^{3}-4 \mathrm{x}+3$
c) $x^{2}+3 x-4$
d) $x^{3}-4 \mathrm{x}-3$

- Watch Video Solution

399. In the formula $\bar{x}=a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h, u_{i}=$
400. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower.

- Watch Video Solution

401. Use Euclid's division lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m. [Hint: Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$ Now square each of these and sho

- Watch Video Solution

402. Show that $5+2 \sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.

- Watch Video Solution

403. All concentric circles are..... to each other.

- Watch Video Solution

404. 2 cubes, each of volume $125 \mathrm{~cm}^{3}$, are joined end to end. Find the surface area of the resulting cuboid.

- Watch Video Solution

405. The radius of a sphere (in cm) whose volume is $12 \pi \mathrm{~cm}^{3}$, is
(A) 3
(B) $3 \sqrt{3}$
(C) $3^{\frac{2}{3}}$
(D) $3^{\frac{1}{3}}$
406. The LCM of two numbers is 182 and their HCF is 13 . If one of the numbers is 26 , find the other.

- Watch Video Solution

407. In the figure-3, from an external point P, two tangents $P Q$ and $P R$ are drawn to a circle of the radius 4 cm with centre 0 . If $\angle \mathrm{QPR}=90^{\circ}$, then length of $P Q$ is

- Watch Video Solution

408. find the ratio in which the y-axis divides the line segment joining the points ($6,-4$) and ($-2,-7$). also find the point of intersection.

- Watch Video Solution

409. Check whether 12^{n} can end with the digit 0 for any natural number n.

- Watch Video Solution

410. Which of the following is not an AP? (a) $-1.2,0.8,2.8, \ldots$.... (b) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots \ldots$ (c) $4 / 3,7 / 3,9 / 3,12 / 3, \ldots .$. (d) $-1 / 5,-2 / 5$, $-3 / 5, . .$.

- Watch Video Solution

411. The present age of a father is three years more than three times the age of the son. Three years hence father's age will be 10 years more than twice the age of the son. Determine their present ages.

- Watch Video Solution

412. in figure, $A B C$ is an isosceles traingle, right angled at C. therefore

a) $A B^{2}=2 A C^{2}$
b) $B C^{2}=2 A B^{2}$
c) $A C^{2}=2 A B^{2}$
d) $A B^{2}=4 A C^{2}$

- Watch Video Solution

413. Can $\left(x^{2}-1\right)$ be a remainder while dividing $x^{4}-3 x^{2}+5 x-9$ by
$x^{2}+3$ justify your amswer with reasons.

(D) Watch Video Solution

414. A fraction become $1 / 3$ when 1 is subtracted from the numerator and it becomes $1 / 4$ when 8 is added in the denominator. Find the fraction.

Watch Video Solution

415. Show that the points $(7,10),(-2,5)$, and $(3,-4)$ are the vertices of an isosceles right triangle.

- Watch Video Solution

416. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedistal
417. the pair of linear equations $\frac{3 x}{2}+\frac{5 y}{3}=7$ and $9 x+10 y=14$ is (a) consistent (b) inconsistent (c) consistent with one solution (d) consistent with many solutions

- Watch Video Solution

418. In Figure-9, a square $O P Q R$ is inscribed in a quadrant $O A Q B$ of a circle. If the radius of circle is $6 \sqrt{2} \mathrm{~cm}$, Find the area of the shaded region.

- Watch Video Solution

419. The probability of an event that is sure to happen, is

- Watch Video Solution

420. From a quadratic polynomial, the sum and product of whose zeros are (-3) and 2 respectivily.

(D) Watch Video Solution

421. Read the following passage and answer the questions given at the end :

DIWALI FAIR

A game in a booth at Diwali Fair involves using a spinner first. Then, If spinner stops on an Even Number, the player is allowed to pick a marble from the bag. The spinner and Marbles are represented in Figure. Prizes are given when a black marble is picked. Shweta played the game once.
(i) what is the probability that she will be allowed to pick a marble from the bag.
(ii) Suppose she is allowed to pick a marble from the bag. what is the probability of getting a prize, when it is given bag contains 20 balls out of which 6 are black

- Watch Video Solution

422. The point on the axis which is equidistant from $(-4,0)$ and $(10,0)$ is ,
a) $(7,0)$
(b) $(5,0)$
c) $(0,0)$
d) $(3,0)$

- Watch Video Solution

423. if A, B and C are interior angles of a $\triangle A B C$, then show that $\cos \left(\frac{B+C}{2}\right)=\sin \left(\frac{A}{2}\right)$

- Watch Video Solution

424. The distance between the points (m, n) and $(-\mathrm{m}, \mathrm{n})$ is
(A) $\sqrt{m^{2}+n^{2}}$
(B) $m+n$
(C) $2 \sqrt{m^{2}+n^{2}}$
(D) $\sqrt{2 m^{2}+2 n^{2}}$
425. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h} \mathrm{m}$ still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

- Watch Video Solution

426. The centre of a circle whose end points of a diameter are $(-6,3)$ and $(6,4)$
a) $(8,-1)$
b) $(4,7)$
c) $\left(0, \frac{7}{2}\right)$
d) $\left(4, \frac{7}{2}\right)$

- Watch Video Solution

427. Sum of the ares of two squares is $544 \mathrm{~m}^{2}$. if the difference of their perimeters is 32 . find the sides of two squares.

- Watch Video Solution

428. Obtain other zeroes of the polynomial $p(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5$ if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.

- Watch Video Solution

429. the distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. find the mean and the median of the number of wickets taken

- Watch Video Solution

430. Simplest form of $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}$ IS
431. Theorem 6.6 : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

- Watch Video Solution

432. What minimum must be added to $2 x^{3}-3 x^{2}+6 x+7$ so that the resulting polynomial will be divisible by $x^{2}-4 x+8$?

- Watch Video Solution

433. In Figure-2 PQ is tangent to the circle with centre at O, at the point
B. If $\angle A O B=100^{\circ}$, then $\angle A B P$ is equal to
(A) 50°
(B) 40°
(C) 60°
(D) 80°

(D) Watch Video Solution

434. The sum of first 14 terms of an AP is 1050 and its first term is 10 , then find the 21st term of the AP.

- Watch Video Solution

435. A solid toy is in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 Cm and the radius of the base is 7 cm . Determine the volume of the toy. Also find the area of the coloured sheet required to cover the toy. (Use $\pi=22 / 7$ and $\sqrt{149}=12.2)$

- Watch Video Solution

436. All squares are \qquad . (congruent/similar)
437. Find the height of a cone of radius 5 cm and slant height 13 cm .

- Watch Video Solution

438. $8 \cot ^{2} A-8 \cos ^{2} e c^{2} A$ is equal to
a) 8
b) $\frac{1}{8}$
c) -8
d) $-\frac{1}{8}$

- Watch Video Solution

439. Prove that
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{(\tan A+\cot A)}$.
440. The difference between tow numbers is 26 and the larger number exceeds thrice of the smaller number by 4 . Find the number

- Watch Video Solution

441. Find the value of x so that $-6, x, 8$ are in ΔA. P.

- Watch Video Solution

442. If a pair of linear equations is consistant, then the lines represented by them are

- Watch Video Solution

443. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$
444. If $(3,-6)$ is the mid point of the line segment joining $(0,0)$ and (x, y), then the point (x, y) is
(A) $(-3,6)$
(B) $(6,-6)$
(C) $(6,-12)$
(D) $(3 / 2,-3)$

- Watch Video Solution

445. Find the $11^{\text {th }}$ term of the A.P. $-27,-22,-17,-12 \ldots \ldots$

- Watch Video Solution

446. In figure, the angle of elevation of the top of a tower AC from a point B on the ground is 60°. If the height of the tower is 20 m , find the distance of the point from the foot of the tower.
447. In the given circle in Figure-1, number of tangents parallel to tangent $P Q$ is
(A) 0
(B) many
(C) 2
(D) 1

- Watch Video Solution

448. the distance between the points $(3,-2)$ and $(-3,2)$ is
a) $\sqrt{52}$ units
b) $4 \sqrt{10}$ units
c) $2 \sqrt{10}$ units
d) $\sqrt{40}$ units
449. Find the roost of the quadratic equation $3 x^{2}-4 \sqrt{3} x+4=0$

- Watch Video Solution

450. Evaluate $\tan 40^{\circ} \times \tan 50^{\circ}$

- Watch Video Solution

451. The total surface area of frustum shaped glass tumbler is $\left(r_{1}>r_{2}\right)$
(a) $\pi r_{1} l+\pi r_{2} l$
(b) $\quad \pi l\left(r_{1}+r_{2}\right)+\pi\left(r_{2}\right)^{2}$
$\frac{1}{3} \pi h\left(\left(r_{1}\right)^{2}+\left(r_{2}\right)^{2}+r_{1} r_{2}\right)$
(d) $\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$

- Watch Video Solution

452. A container open at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 14 cm with radii of its lower and upper circular ends as 8 cm and 20 cm , respectively. find the capacity of the container.
453. The probability of an impossible event is
(A) 1
(B) $1 / 2$
(C) not defined
(D) 0

- Watch Video Solution

454. If $\cos A=\sin 42^{\circ}$, then find the value of A .

- Watch Video Solution

455. In the given figure, $D E \| A C$ and $D F \| A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

456. A coin is tossed twice, the probability of getting head both the times is

- Watch Video Solution

457. Solve for x and y :
$\frac{2}{x}+\frac{3}{y}=13, \frac{5}{x}-\frac{4}{y}=-2(x \neq 0$ and $y \neq 0)$
458. A line which intersects a circle at two distinct point is called a \qquad of the circle.

- Watch Video Solution

459. Prove that $\sqrt{3}$ is an irrational number.

- Watch Video Solution

460. 14 defective bulbs are accidentally mixed with 98 good ones. It is not possible to just look at the bulb and tell whether it is defective or not. One bulb is taken out at random from this lot. Determine the probability that the bulb taken out is a good one.

- Watch Video Solution

461. if the radii of two spheres are in the ratio $2: 3$, then the ratio of their respective volumes is \qquad

Watch Video Solution

462. 120 can be expressed as a product of its prime factors as
(a) $5 \times 8 \times 3$
(b) 15×2^{3}
(c) $10 \times 2^{2} \times 3$
(d) $5 \times 2^{3} \times 3$

- Watch Video Solution

463. If 2 is a zero of the polynomial $a x^{2}-2 x$ then the value of 'a' is

- Watch Video Solution

464. If ar($\triangle P Q R$) is zero, then the points P, Q and R are ----------.

- Watch Video Solution

465. The following distribution shows the transport expenditure of 100 employees:
A. Find the mode of the distribution.
B. null
C. null
D. null

Answer: null

- Watch Video Solution

466. The discriminant of the quadratic equation $4 x^{2}-6 x+3=0$ is (A)

12
(B) 84 (C) $2 \sqrt{3}$
(D) -12

Watch Video Solution

467. In Figure 7. find the perimeter of $\triangle A B C$, if $\mathrm{AP}=12 \mathrm{~cm}$

- Watch Video Solution

468. Two water taps together can fill a tank in $9 \frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

- Watch Video Solution

469. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$

- Watch Video Solution

470. Check whether 6^{n} can end with the digit ' 0 ' (zero) for any natural number n .

- Watch Video Solution

471. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of its altitude 12 m . Find length and breath of the rectangular park.

- Watch Video Solution

472. Find the LCM of 150 and 200.

- Watch Video Solution

473. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points. Prove that the other two sides are divided in the same ratio.

- Watch Video Solution

474. Krishna has an apple orchard which has a $10 m \times 10 m$ sized kitchen garden attached to it. She divides it into a 10×10 grid and puts soil and manure into it. She grows a lemon plants at A , a coriander plant at B , an onion plant at C and a tomato plant at D. Her husband Ram praised her kitchen garden and points out that on joining $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D they may form a parallelogram. Look at the below figure carefully and answer the following questions:

(i) Write the coordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , using the 10×10 grid as coordinate axes.
(ii) Find whether ABCD is a parallelogram or not.

- Watch Video Solution

475.

$$
\text { if } \tan (A+B)=\sqrt{3} \text { and } \tan (A-B)=\frac{1}{\sqrt{3}}: 0^{\circ}<A+B \leq 90^{\circ}, A
$$ find A and B

476. From the top of a 75 m high lighthouse from the sea level the angles of depression of two ships are 30° and 45°. If the two ships are on the opposite sides of the light house then find the distance between the two ships.

- Watch Video Solution

477. In Figure -6 , in an equilateral triangle $A B C, A D$ is perpendicular to $B C$, $B E$ is perpendicular to $A C$ and $C F$ is perpendicular to $A B$. Prove that

$4\left(A D^{2}+B E^{2}+C F^{2}\right)=9 A B^{2}$

- Watch Video Solution

478. In figure - $3, \triangle A B C$ and $\triangle X Y Z$ are shown. if $\mathrm{AB}=3 \mathrm{CM}, \mathrm{BC}=6$ $\mathrm{cm}, \mathrm{AC}=2 \sqrt{3} \mathrm{~cm}, \angle A=80^{\circ}, \angle B=60^{\circ}, \mathrm{XY}=4 \sqrt{3} \mathrm{~cm}, \mathrm{YZ}=12 \mathrm{CM}$ and $\mathrm{XZ}=$ 6 cm , then find the value of $\angle Y$
479. In Figure-5, $A B C D$ is a square with side 7 cm . A circle in drawn [circumscribing the square. Find the area of the shaded region.

- Watch Video Solution

480. Find all the zeros of the polynomial $f(x)=3 x^{4}-4 x^{3}-10 x^{2}+8 x+8$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$

- Watch Video Solution

481. In Fig. 12.27, $A B$ and $C D$ are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle. If $O A=7 \mathrm{~cm}$, find the area of the shaded region

- Watch Video Solution

482. Divide the polynomial $g(x)=x^{3}-3 x^{2}+x+2$ by the polynomial $x^{2}-2 x+1$ and verify the division algorithm.

- Watch Video Solution

