

CHEMISTRY

BOOKS - XII BOARD PREVIOUS YEAR PAPER ENGLISH

SAMPLE PAPER 2019

Section A

1. A lead storage battery is the most important type of secondary cell having a lead anode and a grid of lead packed with PbO_2 as cathode. A 38~% solution of sulphuric acid is used as electrolyte. (Density=1.294 g mL^{-1}) battery holds 3.5 L of the acid. During the discharge of the battery, the density of H_2SO_4 falls to 1.139 g mL^{-1} . ($20~\%~H_2SO_4$ by mass)

Write the reaction taking place at the cathode when the battery is in use.

cell having a lead anode and a grid of lead packed with PbO_2 as cathode. A $38\,\%$ solution of sulphuric acid is used as electrolyte. (Density=1.294 g mL^{-1}) battery holds 3.5 L of the acid. During the discharge of the battery, the density of H_2SO_4 falls to 1.139 g

2. A lead storage battery is the most important type of secondary

Lead storage battery is considered a secondary cell. Why?

 mL^{-1} . $(20\,\%\,H_2SO_4$ by mass)

3. A lead storage battery is the most important type of secondary cell having a lead anode and a grid of lead packed with PbO_2 as cathode. A 38~% solution of sulphuric acid is used as electrolyte. (Density=1.294 g mL^{-1}) battery holds 3.5 L of the acid. During the discharge of the battery, the density of H_2SO_4 falls to 1.139 g mL^{-1} . ($20~\%~H_2SO_4$ by mass)

Lead storage battery is considered a secondary cell. Why?

Watch Video Solution

4. A read storage battery is the most impotant type of secondary cell having a lead anode and a grid of lead packed with PbO_2 as cathode. A 38~% solution of sulphuric acid is used as electrolyte. (Density=1.294 g mL^{-1}) battery holds 3.5 L of the acid. During the discharge of the battery, the density of H_2SO_4 falls to 1.139 g mL^{-1} . ($20~\%~H_2SO_4$ by mass)

Write the reaction taking place at the cathode when the battery is in use.

Watch Video Solution

5. Name the substance used as depressant in the separation of two sulphide ores in Froth floatation method.

6. Name the unit formed by the attachment of a base to 1 position of sugar in a nucleoside.

7. Name the Species formed when an aqueous solution of amino acid is dissolved in water?

8. What type of reaction occurs in the formation of Nylon 6,6 polymer?

9. Which of the following compoundswould undergo cannizzaro reaction:

Benzaldehyde, Cyclohexanone, 2- Methylpentanal.

10. When one mole of $CoCl_3.5NH_3$ was treated with excess of silver nitrate solution, 2 mol of AgCl was precipitated. The formula of the compound is:

- (a) $\left[Co(NH_3)_5Cl_2\right]Cl$
- (b) $\left[Co(NH_3)_5Cl\right]Cl_2$
- (c) $\lceil Co(NH_3)_4 Cl_2 \rceil (NH_3) Cl$
- (d) $\left[Co(NH_3)_3Cl_3\right](NH_3)_2$
 - A. $\left[Co(NH_3)_5Cl_2\right]Cl$
 - B. $[Co(NH_3)_5Cl]Cl_2$
 - C. $\left[Co(NH_3)_4Cl_2\right](NH_3)Cl$
 - D. $[Co(NH_3)_3Cl_3](NH_3)_2$

Answer: B

11. The absorption maxima of several octahedral complex ions are

as follows:

S.No Compound
$$\lambda_{\max} nm$$

- 1 $\left[Co(NH_3)_6\right]^{3+}$ 475
- $2 \qquad \left[{Co(CN)}_6 \right]^{3-} \quad 310$
 - $3 \qquad \left[{\operatorname{Co}(H_2O)}_6 \right]^{3+} \quad 490$

The crystal field SQPlitting is maximum for:

A.
$$\left[Co(H_2O)_6
ight]^{3\,+}$$

B.
$$igl[{\it Co(CN)}_6 igr]^{3-}$$

C.
$$igl[{\it Co(NH_3)}_6 igr]^{3+}$$

D. All the complex ions have the same SQPlitting Δ_0 ,

Answer: B

12. Predict the number of ions produced per formula unit in an aqueous solution of $igl[Co(en)_3igr]Cl_3$

A. 4

B. 3

C. 6

D. 2

Answer: A

Watch Video Solution

13. The incorrect statement about LDP is:

A. It is obtained through the free radical addition of ethene.

B. It consists of linear molecules.

- C. It is obtained by the H-atom abstraction.
- D. Peroxide is used as an initiator.

Answer: B

Watch Video Solution

14. Assertion: The two strands in double strand helix structure of

DNA are complementary to each other

Reason: Disulphide bonds are formed between SQPecific pairs of bases

- A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
- B. Both assertion and reason are correct statements, but

reason is not the correct explanation of the assertion

- C. Assertion is correct, but reason is wrong statement.
- D. Assertion is wrong, but reason is correct statement.

Answer: C

Watch Video Solution

15. Assertion: Glucose reacts with hydroxylamine to form an oxime and alsoadds a molecule of hydrogen cyanide to give cyanohydrin.

Reason: The carbonyl group is present in the open chain structure of glucose.

- (a) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
- (b) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion

- (c) Assertion is correct, but reason is wrong statement.
- (d) Assertion is wrong, but reason is correct statement.
 - A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
 - B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
 - C. Assertion is correct, but reason is wrong statement.
 - D. Assertion is wrong, but reason is correct statement.

Answer: A

16. Assertion: The acidic strength of halogen acids varies in the order HF>HCl>HBr>HI

Reason: The bond dissociation enthalpy of halogen acids decreases in the HF>HCl>HBr>HI

A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion

- B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
- C. Assertion is correct, but reason is wrong statement.
- D. Assertion is wrong, but reason is correct statement.

Answer: D

17. Assertion: C_2H_5OH is a weaker base than phenol but is a stronger nucleophile than phenol. (1)

Reason: In phenol the lone pair of electrons on oxygen is withdrawn towards the ring due to resonance.

- A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
- B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
- C. Assertion is correct, but reason is wrong statement.
- D. Assertion is wrong, but reason is correct statement.

Answer: D

18. Assertion: Aryl halides undergo nucleophilic substitution reactions with ease.

Reason:The carbon halogen bond in aryl halides has partial double bonds character.

- A. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion
- B. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion
- C. Assertion is correct, but reason is wrong statement.
- D. Assertion is wrong, but reason is correct statement.

Answer: D

1. Calculate the number of lone pairs on central atom in the following molecule and predict the geometry.

 XeF_4

2. The rate of a reaction depends upon the temperature and is quantitatively expressed as

$$k=Ae^{rac{-Ea}{RT}}$$

i) If a graph is plotted between log k and 1/T, write the expression for the slope of the reaction?

ii) If at under different conditions E_{a1} and E_{a2} are the activation energy of two reactions. If $E_{a1}=40J/{
m mol}~{
m and} E_{a2}=80J/{
m mol}.$ Which of the two has a

Watch Video Solution

larger value of the rate constant?

3. The experimentally determined molar mass for what type of substances is always lower than the true value when water is used as solvent. Explain. Give one example of such a substance and one example of a substance which does not show a large variation from the true value.

Watch Video Solution

4. Write structure of the products formed:

(a)
$$CH_3CH_2COOH \xrightarrow{cl_2, \operatorname{red} P_4} \Delta$$

(b)
$$C_6H_5COCl \xrightarrow{H_2,pd-BaSO_4}$$

5. Draw one of the geometrical isomers of the complex $\left[Pt(en)_2Cl\right]^{2+}$ which is optically inactive. Also write the name of this entity according to the IUPAC nomenclature.

6. Discuss the bonding in the coordination entity $\left[CO(NH_3)_6\right]^{3+}$ on the basis of valence bond theory. Also, comment on the geometry and Spin of the given entity. (Atomic no. of Co= 27)

7. What is meant by Vapour phase refining? Write any one example of the process which illustrates this technique, giving the chemical equations involved.

8. Write and explain the reactions involved in the extraction of gold.

Watch Video Solution

Section C

1. Calculate the freezing point of a solution containing $0.5~\rm g$ KCl (Molar mass = $74.5~\rm g/mol$) dissolved in 100 g water, assuming KCl to be 92% ionized.

 K_f of water = 1.86 K kg/mol.

2. For the reaction A + B \rightarrow products, the following initial rates

S.No.	$[{ m A}]{ m mol}/{ m L}$	$[\mathrm{B}] \; \mathrm{mol/L}$	${\rm Initial\ rate\ M/s}$
1.	0.1	0.1	0.05
2.	0.2	0.1	0.10
3.	0.1	0.2	0.05

were obtained at various given initial concentration

Determine the half-life period.

Watch Video Solution

3. Answer the following questions :

- (i) Which of the following electrolytes is most effective for the coagulation of AgI/Ag^+ sol ?
- a. $MgCl_2,\,K_2SO_4,\,K_4ig[Fe(CN)_6ig]$
- (b) What happens when a freshly precipitated $Fe(OH)_3$ is shaken with a little amount of dilute solution of $FeCl_3$.
- (c) Out of sulphur sol and proteins, which one forms macromolecular colloids?

- **4.** Account for the following:
- a) Moist SO_2 decolourises $KMnO_4$ solution.
- b) In general interhalogen compounds are more reactive than halogens (except fluorine).
- c) Ozone acts as a powerful oxidizing agent

5. Identify the product formed when propan-I ol is treated with Conc. H_2SO_4 at 413 K. Write the mechanism involved for the above reaction.

- **6.** (a) Give chemical tests to distinguish between the following pairs of compounds:
- (i) Ethanal and Propanone.
- (ii) Pentan-2-one and Pentan-3-one.
- (b) Arrange the following compounds in increasing order of their acid strength: Benzoic acid, 4- Nitrobenzoic acid, 3,4- Dinitrobenzoic acid.
- 4- Methoxybenzoic acid.
 - Watch Video Solution

7. Compare the reactivity of benzaldehyde and ethanal towards nucleophilic addition reactions. Write the cross aldol condensation product between benzaldehyde and ethanal.

- 8. Define and write an example for the following:
- (a) Broad SQPectrum antibiotics.
- (b) Analgesics

Watch Video Solution

9. (a) Calculate the degree of dissociation of 0.0024 M acetic acid if conductivity of this solution is $8.0 \times 10^{-5}~{
m S}~cm^{-1}$.

Given

 $\lambda_{H^+}^\circ=349.6\,$ S $\,cm^2\,$ mol $^{-1},\lambda_{CH_3COO^-}^\circ=40.9\,$ S $\,cm^2\,$ mol $^{-1}$ (b) Solutions of two electrolytes 'A' and 'B' are diluted. The limiting molar conductivity of 'B' increases to a smaller extent while that of 'A' increases to a much larger extent comparatively. Which of the two is a strong electrolyte? Justify your answer.

10. An organic compound A' with molecular formula C_7H_7NO reacts with Br_2 /aqKOH to give compound B', which upon reaction with $NaNO_2\&HCl$ at $O^\circ C$ gives C'. Compound C' on heating with CH_3CH_2OH gives a hydrocarbon D'. Compound B' on further reaction with Br_2 water gives white precipitate of compound E'. Identify the compound A, B, C, D&E, also justify your answer by giving relevant chemical equations.

- 11. (a) How will you convert:
- (i) Aniline into Fluorobenzene.
- (ii) Benzamide into Benzylamine.
- (iii) Ethanamine to N,N-Diethylethanamine.
- (b) Write the structures of A and B in the following:

- (i) $CH_3CH_2CN \xrightarrow{OH^-} A \xrightarrow{NaOH+Br}$ Partial hydrolysis $A \xrightarrow{NHO_2} B$ (ii) $CH_3CH_2Br \xrightarrow{(i) KCN} A \xrightarrow{NHO_2} B$
 - Watch Video Solution

- 12. (a) When a chromite ore (A) is fused with an aqueous solution of sodium carbonate in free excess of air, a yellow solution of compound (B) is obtained. This solution is filtered and acidified with sulphuric acid to form compound (C). Compound (C) on treatment with solution of KCl gives orange crystals of compound (D). Write the chemical formulae of compounds A to D.
- (b) Describe the cause of the following variations with respect to lanthanoids and actinoids:
- (i) Greater range of oxidation states of actinoids as compared to lanthanoids.
- (ii) Greater actinoid contraction as compared to lanthanoid

contraction.

(iii) Lower ionisation enthalpy of early actinoids as compared to the early lanthanoids.

Watch Video Solution

13. (a) What happens when

- (i) Manganate ions $\left(MnO_4^{2-}\right)$ undergoes disproportionation reaction in acidic medium ?
- (ii) Lanthanum is heated with Sulphur?

of the First series of transition elements:

- (b) Explain the following trends in the properties of the members
- (i) $E^{\,\circ}\left(M^{2\,+}\,/M
 ight)$ value for copper is positive $(\,+\,0.34V)$ in contrast to the other members of the series.
- (ii) Cr^{2+} is reducing while Mn^{3+} is oxidising, though both have d^4 configuration.

(iii) The oxidising power in the series increases in the order

$$VO_2^{\,+}\, < Cr_2O_7^{2\,-}\, < MnO_{94}ig)^{\,-}.$$

Section D

1. (a) The e.m.f. of the following cell at 298 K is 0.1745 V

$$Fe(s) \, / Fe^{2\, +} \, (0.1M) \, / \, / \, H^{\, +} \, (xM) \, / \, H_2(g) (1 \, {
m bar}) \, / \, Pt(s)$$

Given $:E^0_{Fe^{2+}\,/Fe}=\,-\,0.44V$

Calculate the $H^{\,+}\,$ ions concentration of the solution at the electrode where hydrogen is being produced.

(b) Aqueous solution of copper sulphate and silver nitrate are

electrolysed by 1 ampere current for 10 minutes in separate electrolytic cells. Will the mass of copper and silver deposited on the cathode be same or different? Explain your answer.

