©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - XII BOARD PREVIOUS YEAR PAPER ENGLISH

BOARD PAPER SOLUTIONS

Others

1. If the mean and variance of a binomial distribution are respectively 9 and 6 , find the distribution.

- Watch Video Solution

2. There are two bags I and II. Bag I contains 3 white and 3 red balls and

Bag II contains 4 white and 5 red balls. One ball is drawn at random from
one of the bags and is found to be red. Find the probability that it was drawn from bag II.

- Watch Video Solution

3. A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that it is neither a king nor a heart.

- Watch Video Solution

4. Evaluate : $\int\left(e^{x} \frac{2+\sin 2 x}{2 \cos ^{2} x}\right) d x$

- View Text Solution

5. Solve the following differential equation
$\left(1+y^{2}\right)(1+\log x) d x+x \backslash d y=0$
6. Form the differential equation of the family of curves $y=A e^{B x}$ where A and B are constants.

- View Text Solution

7. Two forces act at a point and are such that if the direction of one is reversed, the resultant is turned through a right angle. Show that the two forces must be equal in magnitude.

- Watch Video Solution

8. Find the value of λ, which makes the vectors \vec{a}, \vec{b} and \vec{c} coplanar, where $\vec{a}=\hat{i}+3 \hat{j}+4 \hat{k}, \quad \vec{b}=2 \hat{i}+\lambda \hat{j}+2 \hat{k}$ and $\vec{c}=4 \hat{i}-7 \hat{j}+10 \hat{k}$

- Watch Video Solution

9. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$.
10. If $y=a \cos (\log x)+b \sin (\log x)$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

- Watch Video Solution

11. Find the derivative of $\cos (2 x+1)$ w.r.t. x from first principle.

- Watch Video Solution

12. An open box, with a square base, is to be made out of a given quantity of metal sheet of area C^{2}. Show that the maximum volume of the box is $\frac{\mathrm{C}^{3}}{6 \sqrt{3}}$
13. Find the intervals in which the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-12 x^{2}+36 x+17$ is
(a) increasing, (b) decreasing.

Watch Video Solution

14. Evaluate: $\int \frac{x^{2}+1}{(x+1)^{2}} d x$

- Watch Video Solution

15. Find the coordinates of the point where the line $\frac{\mathrm{x}+1}{2}=\frac{\mathrm{y}+2}{3}=\frac{\mathrm{z}+3}{4}$ meets the plane $\mathrm{x}+\mathrm{y}+4 \mathrm{z}=6$.

- Watch Video Solution

16. Using properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
a-b & 3 b & c-b \\
a-c & b-c & 3 c
\end{array}\right|
$$

$=3(a+b+c)(a b+b c+c a)$

- Watch Video Solution

17. Express the matrix $\left[\begin{array}{ccc}7 & 1 & 5 \\ -4 & 0 & 3 \\ -2 & 6 & 1\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrices.

- Watch Video Solution

18. Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of number of jacks.

- Watch Video Solution

19. A and B toss coin alternately till one of them gets a head and wins the game. If A starts first, find the probability the B will win the game.
20. If $y=\sin (\log x)$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

- Watch Video Solution

21. Verify Rolle's theorem for the function $f(x)=x^{2}-5 x+4$ on $[1,4]$.

- Watch Video Solution

22. If $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$, show the $A^{2}-6 A+17 I=0$. Hence find A^{-1}

- Watch Video Solution

23. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting (a) 2 red balls (b) 2 blue balls (c) one red and one blue ball.
24. Solve the following differential equation : $\frac{d y}{d x}+2 y=6 e^{x}$

- Watch Video Solution

25. Form the differential equation of the family of curves $y=A \cos 2 x+B \sin 2 x$, where A and B are constants.

- Watch Video Solution

26. Prove that the curves $x=y^{2}$ and $x y=k$ intersect at right angles if $8 \mathrm{k}^{2}=1$.

- Watch Video Solution

27. Let T be the set of all triangles in a plane with R as relation in T given by $R=\left\{\left(T_{1},(\backslash T)_{2}\right):(\backslash T)_{1} \cong T_{2}\right\}$. Show that R is an equivalence
relation.

- View Text Solution

28. If $x \sqrt{1+y}+y \sqrt{1+x}=0$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$. To prove $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$

- Watch Video Solution

29. Form the differential equation representing the parabolas having vertex at the origin and axis along positive direction of x-axis.

- View Text Solution

30. A and B throw a pair of die turn by turn. The first to throw 9 is awarded a prize. If A starts the game, show that the probability of A getting the prize is $\frac{9}{17}$
31. Evaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{2}$
C. $\frac{3 \pi^{2}}{2}$
D. $\frac{\pi^{2}}{3}$

Answer: null

D Watch Video Solution

32.

$\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right)=\frac{2 b}{a}$

D Watch Video Solution

33. Solve for $x:-\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1}\left(\frac{8}{31}\right)$
34. Let $A=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$ Express A as sum of two matrices such that one is symmetric and the other is skew symmetric.

- Watch Video Solution

> 35. For what value λ are the vectors
> $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ perpendicular to each other?

- Watch Video Solution

36. Find the equation of tangent to the curve $x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$

- Watch Video Solution

37. For what value of k is the following function continuous at $x=2$?
$f(x)=\{2 x+1 ; x<2 k ; x=23 x-1 ; x>2\}$

Watch Video Solution

38. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of number of successes. Also, find the mean and variance of number of successes.

- Watch Video Solution

39. Using properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \beta+\alpha
\end{array}\right|
$$

$=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$

- Watch Video Solution

40. Evaluate: $\left|\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right|$

D Watch Video Solution

41. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance $3 \sqrt{2}$ from the point $(1,2,3)$.

Watch Video Solution

42. Write the adjoint of the following matrix: $\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right]$

- Watch Video Solution

43. Write the distance of the following plane from the origin: $2 x-y+2 z+1=0$
44. Write a vector of magnitude 9 units in the direction of vector $-2 \hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

45. Three bags contain balls as shown in the table below: Bag Number of White balls Number of Black balls Number of Red balls I 123 II 211 III 43

2 A bag is chosen at random and two balls are drawn from it. They happen to be white and red. What is the probability that they came from the III bag?

- Watch Video Solution

46. If $x=a \sin t$ and $y=a\left(\cos t+\log \tan \left(\frac{t}{2}\right)\right)$, find $\frac{d^{2} y}{d x^{2}}$

- Watch Video Solution

47. Using properties of determinants, prove that $\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ c+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

- Watch Video Solution

48. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.

- Watch Video Solution

49. If $\left|\begin{array}{ll}x+1 & x-1 \\ x-3 & x+2\end{array}\right|=\left|\begin{array}{cc}4 & -1 \\ 1 & 3\end{array}\right|$, then write the value of x .

- Watch Video Solution

50.

Prove the
following:
$\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
51. Find the value of a if $\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$

- Watch Video Solution

52. Find the Cartesian equation of the line which passes through the point $(2,4,5)$ and is parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$.

- Watch Video Solution

53. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find the value of θ.

- Watch Video Solution

54. For what value of x is the matrix $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & 0 & 3 \\ x & 3 & 0\end{array}\right]$ a skewsymmetric matrix?

- Watch Video Solution

55. Write the differential equation representing the family of curves $y=m x$, where m is an arbitrary constant.

- Watch Video Solution

56. Sketch the graph of $y=|x+3|$ and evaluate the area under the curve $y=|x+3|$ above x -axis and between $x=6$ to $x=0$.

- Watch Video Solution

57. Evaluate: $\int \frac{x^{2}+1}{(x-1)^{2}(x+3)} d x$
58. Evaluate: $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$

- Watch Video Solution

59. Using differentials, find the approximate value of $f(2.01)$, where $f(x)=4 x^{3}+5 x^{2}+2$.

- Watch Video Solution

60. Prove the following: $\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\frac{56}{65}\right)$

- Watch Video Solution

61. Find the value of λ so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 \lambda}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
62. Write the vector equation of the following line: $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$

- Watch Video Solution

63. Find the area of circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$

Watch Video Solution

64. If $y=\cos ^{-1}\left(\frac{2^{x}+1}{1+4^{x}}\right)$, find $\frac{d y}{d x}$

- Watch Video Solution

65. From the following matrix equation, find the value of $x:\left[\begin{array}{cc}x+y & 4 \\ -5 & 3 y\end{array}\right]=\left[\begin{array}{cc}3 & 4 \\ -5 & 6\end{array}\right]$

- Watch Video Solution

66.

Prove
the
following:
$\tan \left[\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]+\tan \left[\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right]=\frac{2 b}{a}$

- Watch Video Solution

67. Using properties of determinants, prove the following $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$.

- Watch Video Solution

68. Evaluate: $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$
69. If $x^{y}=e^{x-y}$, show that $\frac{d y}{d x}=\frac{\log x}{\{\log (x e)\}^{2}}$

- Watch Video Solution

70. Write the direction cosines of a line equally inclined to be three coordinate axes.

- Watch Video Solution

71. Let* be a binary operation on N given by a*b $=\operatorname{HCF}(a, b) a, b N$. Write the value of $22^{*} 4$.

- Watch Video Solution

72. Write the value of the following determinant $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$

- Watch Video Solution

73. Find the value of x, from the following: $\left|\begin{array}{cc}x & 4 \\ 2 & 2 x\end{array}\right|=0$

- Watch Video Solution

74. Write the principal value of, $\cos ^{-1}\left(\frac{\cos (7 \pi)}{6}\right)$

- Watch Video Solution

75. From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.

- Watch Video Solution

76. Solve the following differential equation: $\left(x^{3}+y^{3}\right) d y-x^{2} y d x=0$
77. Find the distance of the plane $3 x-4 y+12 z=3$ from the origin.

- Watch Video Solution

78. Using properties of determinants, Find $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
A. 4 abc
B. abc
C. 2abc
D. None of these

Answer: A

79. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?

- Watch Video Solution

80. Show that the relation R in the set of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive, nor symmetric, nor transitive.

- Watch Video Solution

81. In a certain college, 4% of boys and 1% of girls are taller than 1.75 metres. Furthermore, 60% of the students in the college are girls. A student is selected at random from the college and is found to be taller than 1.75 metres. Find the probability that the selected student is a girl.
82. Prove that: $\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{5}{13}\right)+\sin ^{-1}\left(\frac{16}{65}\right)=\frac{\pi}{2}$

- Watch Video Solution

83. If $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$, then write the value of k.

- Watch Video Solution

84. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then for what value of α is A an identity matrix?

Watch Video Solution

85. Find the equation of the plane through the points $(2,1,1)$ and $(1,3,4)$ and perpendicular to the plane $x+2 y+4 z=10$.

- Watch Video Solution

86. Using matrices, solve the following system of equations:
$x-y+z=4 ; 2 x+y-3 z=0 ; x+y+z=2$

- Watch Video Solution

87. Show that the right-circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

- Watch Video Solution

88. Evaluate: $\int_{0}^{2 \pi} \frac{1}{1+e^{s \in x}} d x$

(Watch Video Solution

89. Solve for $x: 2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sec x), x \neq \frac{\pi}{2}$
$\cot ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]=\frac{x}{2}, x\left(0, \frac{\pi}{4}\right)$

- Watch Video Solution

91. Using properties of determinants, prove the following
$\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|=9 y^{2}(x+y)$

- Watch Video Solution

92. For what value of x, the matrix $\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$ is singular?

- Watch Video Solution

93. Write the direction cosines of the vector $-2 \hat{i}+\hat{j}-5 \hat{k}$
94. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rate of change of (a) the perimeter, (b) the area of the rectangle.

(Watch Video Solution

95. Find the coordinates of the point where the line through the points A $(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

- Watch Video Solution

96. Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.
97. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$ are perpendicular, find the value of k and hence find the equation of plane containing these lines.

- Watch Video Solution

98. Write the value of $\tan \left(2 \tan ^{-1}\left(\frac{1}{5}\right)\right)$.

- Watch Video Solution

99. If $y=3 \cos (\log x)+4 \sin (\log x)$, then show that
$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

(Watch Video Solution

100. If $x^{m} y^{n}=(x+y)^{m+n}$, prove that $\frac{d y}{d x}=\frac{y}{x}$.
101. Using principal value, evaluate the following: $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{5}\right)\right)$

- Watch Video Solution

102. Write the value of the determinant $\left|\begin{array}{ccc}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6 x & 9 x & 12 x\end{array}\right|$
A. 0
B. 10
C. 10 x
D. $100 x$

Answer: A

- Watch Video Solution

103. Find $\frac{d y}{d x}$, if $y=\sin ^{-1}\left[x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right]$

- Watch Video Solution

104. Write a square matrix of order 2 , which is both symmetric and skew symmetric.

- Watch Video Solution

105. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then find the value of k if $|2 A|=k|A|$

- Watch Video Solution

106. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and hence find its mean.

- Watch Video Solution

$\tan ^{-1}\left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1$

- Watch Video Solution

108. In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{5}$ be the probability that he knows the answer and $\frac{2}{5}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{3}$, what is the probability that the student knows the answer, given that he answered it correctly?

- Watch Video Solution

109. An urn contains 4 white and 3 red balls. Let X be the number of red balls in a random draw of 3 balls. Find the mean and variance of X.
110. On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just guessing?

- Watch Video Solution

111. Solve the following differential equation: $\cos ^{2} x \frac{d y}{d x}+y=\tan x$

- Watch Video Solution

112. Solve the following differential equation: $x \frac{d y}{d x}=y-x \tan \left(\frac{y}{x}\right)$

- Watch Video Solution

113. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $P(1,3,3)$

- Watch Video Solution

114. Using properties of determinants, prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

- Watch Video Solution

115. Write the direction cosines of a line parallel to z-axis.

Watch Video Solution

116. Evaluate: $\int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x$.

- Watch Video Solution

117. If $x=a(\theta-\sin \theta), y=a(1+\cos \theta), \quad$ find $\frac{d^{2} y}{d x^{2}}$

- Watch Video Solution

118. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its surface area.

- Watch Video Solution

119. Show that the total surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

- Watch Video Solution

120. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$.
121. Show that the function $f(x)=2 x-|x|$ is continuous but not differentiable at $x=0$

Watch Video Solution

122. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\tan ^{-1} x$, when $x \neq 0$.

- Watch Video Solution

123. Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d x}{1+\sqrt{\tan x}}$

- Watch Video Solution

124. Find the vector equation of the line passing through the point $(1,2,3)$ and parallel to the planes $\vec{r} \hat{i}-\hat{j}+2 \hat{k}=5$ and $\vec{r} 3 \hat{i}+\hat{j}+\hat{k}=6$.

- Watch Video Solution

125. Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equation: $x-y+2 z=1 ; 2 y-3 z=1 ; 3 x-2 y+4 z=2$

- Watch Video Solution

126. Consider the binary operation $*$ on the set $\{1,2,3,4,5\}$ defined by $a * b=\min .\{a, b\}$. Write the operation table of the operation $*$.

- Watch Video Solution

127. Using properties of determinants, prove that
$\left|-a^{2} a b a c b a-b^{2} b a c b-c^{2}\right|=4 a^{2} b^{2} c^{2}$
128. about to only mathematics

- Watch Video Solution

129. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

130. Evaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$.
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{2}$
C. $\frac{3 \pi^{2}}{2}$
D. $\frac{\pi^{2}}{3}$

Answer: null

D Watch Video Solution

131. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as: a^{*} $b=\{a+b, a+b-6 \backslash \backslash \backslash \backslash$ if $\backslash a+b<6 \backslash \backslash \backslash$ if $a+b \geq 6$ Show that zero is the identity for this operation and each element a of the set is invertible with 6-a, being the inverse of a.

D Watch Video Solution

132. If $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$, then find the value of x.

D Watch Video Solution

133. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the

- Watch Video Solution

134. An open box with a square base is to be made out of a given quantity of card board of area c^{2} square units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

(Watch Video Solution

135. Prove, using properties of determinants:

$$
\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|=k^{2}(3 y+k)
$$

(Watch Video Solution

136. Find the value of k so that the function f defined by $f(x)=\left\{\frac{k \cos x}{\pi-2 x}, 3, \quad\right.$ if $x \neq \frac{\pi}{2}$ if $x=\frac{\pi}{2} \quad$ is continuous at
$x=\frac{\pi}{2}$

- Watch Video Solution

137. Prove that : $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$.

- Watch Video Solution

138. What is the principal value of $\cos ^{-1} \cos \left(\frac{2 \pi}{3}\right)+\sin ^{-1} \sin \left(\frac{2 \pi}{3}\right)$?

- Watch Video Solution

139. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.

- Watch Video Solution

140. If a matrix has 5 elements, write all possible orders it can have.

- Watch Video Solution

141. Using properties of determinants, prove the following: $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$

- Watch Video Solution

142. Differentiate the following function with respect to x : $(\log x)^{x}+x^{\log x}$

- Watch Video Solution

143. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$
144. Probabilities of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that (i) the problem is solved (ii) exactly one of them solves the problem.

- Watch Video Solution

145. If the binary operation * on the set Z of integers is defined by a * $b=a$ $+\mathrm{b}-5$, then write the identity element for the operation * in Z.

- Watch Video Solution

146. If I is the identity matrix and A is a square matrix such that $A^{2}=A$, then what is the value of $(I+A)^{2}-3 A$?

- Watch Video Solution

147. Prove that the relation R in the set $A=\{5,6,7,8,9\}$ given by $R=\{(a, b):|a-b|$, is divisible by 2$\}$, is an equivalence relation. Find all elements related to the element 6 .

- View Text Solution

148. Prove that $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\pi}{4}-\frac{x}{2}, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- Watch Video Solution

149. If $C=0.003 x^{3}+0.02 x^{2}+6 x+250$ gives the amount of carbon pollution in air in an area on the entry of x number of vehicles, then find the marginal carbon pollution in the air, when 3 vehicles have entered in the area.

- Watch Video Solution

150. Prove that $s \in^{-1}\left(\frac{8}{17}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\cos ^{-1}\left(\frac{36}{85}\right)$

- Watch Video Solution

151. Using differentials, find the approximate value of $\sqrt{49.5}$

- Watch Video Solution

152. If $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$, then find the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$.

- Watch Video Solution

153. If $y=\sin (\log x)$, then prove that $\frac{x^{2} d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

- Watch Video Solution

154. Find the value of k, for which $f(x)=\left\{\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}\right.$ if, $-1 \leq x<0(2 \mathrm{x}+1) /(\mathrm{x}-1 \backslash)$ if $0 \leq x<$ is continuous at $x=0$

- Watch Video Solution

155. Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

156. Find a unit vector in the direction of $\vec{a}=2 \hat{i}-3 \hat{j}+6 \hat{k}$

- Watch Video Solution

157. If $\left[\begin{array}{cc}y+2 x & 5 \\ -x & 3\end{array}\right]=\left[\begin{array}{cc}7 & 5 \\ -2 & 3\end{array}\right]$, find the value of y
158. Find the Cartesian equation of the plane passing through the points $A(0,0,0)$ and $b(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$

- Watch Video Solution

159. On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

- Watch Video Solution

160. Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b) ; a, b \in Z$, and $(a-b)$ is divisible by 5$\}$. Prove that R is an equivalence relation.
161. If $\sin y=x \sin (a+y)$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$

- Watch Video Solution

162. If $A^{T}=[34-1201]$ and $B=[-121123]$, then find $A^{T}-B^{T}$

- Watch Video Solution

163. Find the value of $x+y$ from the following equation:
$2\left[\begin{array}{cc}x & 5 \\ 7 y & -3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & -4\end{array}\right]$

- Watch Video Solution

164. Prove The following: $\cos \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)=\frac{6}{5 \sqrt{13}}$
165. Evaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{2}$
C. $\frac{3 \pi^{2}}{2}$
D. $\frac{\pi^{2}}{3}$

Answer: null

- Watch Video Solution

166. In a game, a man wins rupees five for a six and loses rupee one for any other number, when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.
167. Solve for $x: \tan ^{-1} x+2 \cot ^{-1} x=\frac{2 \pi}{3}$

- Watch Video Solution

168. Find the value of $\cos ^{-1}\left(\frac{x}{2}+\frac{\sqrt{3-3 x^{2}}}{2}\right)$

- Watch Video Solution

169. The elements $a_{i j}$ of a 3×3 matrix are given by $a_{i j}=\frac{1}{2}|-3 i+j|$. Write the value of element a_{32}

- Watch Video Solution

170. Write the value of $\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|$
171. Find the unit vector perpendicular to plane $A B C$ where the position vector of A, B and C are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}+3 \hat{k}$ respectively.

- Watch Video Solution

172. Solve the differential equation $x \frac{d y}{d x}+y=x \cos x+\sin x$, given $y\left(\frac{\pi}{2}\right)=1$

- Watch Video Solution

173. Let $f, g: R-R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$, for all x Then find fog and gof.

- Watch Video Solution

174. Write the equation of the straight line through the point $(\alpha, \beta, \gamma$ and parallel to z -axis.
175. The sides of an equilateral triangle are increasing at the rate of 2 cm / s. Find the rate at which the area increases, when the side is 10 cm .

- Watch Video Solution

176. Find the particular solution of the differential equation $e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$, given that $y=1$ when $x=0$

- Watch Video Solution

177. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and found to be all spades. Find the probability of the lost card being a spade.

- Watch Video Solution

178. If $2[345 x]+[1 y 01]=[70105]$, find $(x-y)$.

- Watch Video Solution

179. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

- Watch Video Solution

180. $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$

- Watch Video Solution

181. Using differentials, find the approximate value of $(3.968)^{\frac{3}{2}}$

- Watch Video Solution

182. Write the derivative of $\sin x$ w.r.t. $\cos x$.

- Watch Video Solution

183. Write the principal value of $\cos ^{-1}\left[\cos \left(680^{\circ}\right)\right]$.

- Watch Video Solution

184. Write a $x 2 x$ matrix which is both symmetric and skew-symmetric.

- Watch Video Solution

185. Evaluate : $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{2}$
C. $\frac{3 \pi^{2}}{2}$
D. $\frac{\pi^{2}}{3}$

Answer: null

- Watch Video Solution

186. Write the value of $\cos ^{-1}\left(-\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$

- Watch Video Solution

187. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$ be a relation. Find the range of R.

- Watch Video Solution

188. Find the intervals in which the function $f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$ is (a) strictly increasing. (b) strictly decreasing.
189. Find the approximate value of $f(3.02)$, upto 2 places of decimal, where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

190. Solve the differential equation $\frac{d y}{d x}+y \cot x=2 \cos x$, given that $y=0$, when $x=\frac{\pi}{2}$.

- Watch Video Solution

191. Using properties of determinants, prove that
$\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|=a^{2}(a+x+y+z)$

- Watch Video Solution

192. $x=a \cos \theta+b \sin \theta$ and $y=a \sin \theta-b \cos \theta$, show that $y^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$

- Watch Video Solution

193. In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{5}$ be the probability that he knows the answer and $\frac{2}{5}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{3}$, what is the probability that the student knows the answer given that he answered it correctly

- Watch Video Solution

194. Using properties of determinants, solve for
$x:\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$
195. In the interval $\frac{\pi}{2}<x<\pi$, find the value of x for which the matrix $\left[\begin{array}{cc}2 \sin x & 3 \\ 1 & 2 \sin x\end{array}\right]$ is singular

- Watch Video Solution

196. Prove that $2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$

- Watch Video Solution

197. If $x=a e^{t}(\sin t+\cos t)$ and $y=a e^{t}(\sin t-\cos t)$, prove that $\frac{d y}{d x}=\frac{x+y}{x-y}$.

- Watch Video Solution

198. Two schools A and B decided to award prizes to their students for three values, team spirit, truthfulness and tolerance at the rate of $R s \dot{x}, R s \dot{y}$ and $R s \dot{z}$ per student respectively. School A, decided to award
a total of Rs. 1,100 for the three values to 3,1 and 2 students respectively while school B decided to award Rs. 1,400 for the three values to 1,2 and 3 students respectively. If one prize for all the three values together amount to Rs. 600 then (i) Represent the above situation by a matrix equation after forming linear equations. (ii) Is it possible to solve the system of equations so obtained using matrices ? (iii) Which value you prefer to be rewarded most and why ?

- Watch Video Solution

199. If a line makes angles α, β, γ with the positive direction of coordinate axes, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

200. Find the area of the region in the first quadrant enclosed by the y axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$, using integration.
201. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$

- Watch Video Solution

202. If $x=a \sec ^{3} \theta, y=a \tan ^{3} \theta$, find $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

203. Solve : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

204. Prove that : $\tan ^{-1}\left(\frac{63}{16}\right)=\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)$
205. A tank with rectangular base and rectangular sides open at the top is to be constructed so that its depth is 3 m and volume is 75 m 3 . If building of tank costs Rs. 100 per square metre for the base and Rs. 50 per square metres for the sides, find the cost of least expensive tank.

- Watch Video Solution

206. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where S is the range of f is invertible. Also find the inverse of f

- Watch Video Solution

207. Write the sum of the order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{3}+x^{4}=0$.
208. Find the sum of the intercepts cut off by the plane $2 x+y-z=5$, on the coordinate axes.

- Watch Video Solution

209.

$\tan ^{-1}\left(\frac{1}{1+1.2}\right)+\tan ^{-1}\left(\frac{1}{1+2.3}\right)+\ldots .+\tan ^{-1}\left(\frac{1}{1+n .(n+1)}\right)$ then find the value of θ.

- Watch Video Solution

210. Three machinesE1, E2 and E3 in a certain factory producing electric bulbs, produce $50 \%, 25 \%$ and 25% respectively, of the total daily output of electric bulbs. It is known that 4% of the bulbs produced by each of machines E1 and E2 are defective and that 5\% of those produced by machine E3are defective. If one bulb is picked up at random from a day's production, calculate the probability that it is defective.
211. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

212. Write the number of all possible matrices of order 2×2 with each entry 1,2 , or 3 .

- Watch Video Solution

213. An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.
214. A manufacturer produces two products A and B . Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs. 7 profit and that of B at a profit of Rs. 4. Find the production level per day for maximum profit graphically.

- Watch Video Solution

215. Matrix $A=[02 b-23133 a 3-1]$ is given to be symmetric, find values of a and b.

- Watch Video Solution

216. If A is a square matrix such that $A^{2}=I$, then find the simplified value of $(A-I)^{3}+(A+I)^{3}-7 A$.

- Watch Video Solution

217. Find the maximum value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$

- Watch Video Solution

218. A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10 . If A starts the game, then find the probability that B wins.

- Watch Video Solution

219. Prove that $\left|\begin{array}{lll}y z-x^{2} & z x-y^{2} & x y-z^{2} \\ z x-y^{2} & x y-z^{2} & y z-x^{2} \\ x y-z^{2} & y z-x^{2} & z x-y^{2}\end{array}\right|$ is divisible by $(x+y+z)$, and hence find the quotient.
220. Three persons A, B and C apply for a job of Manager in a Private Company. Chances of their selection (A, B and C) are in the ratio $1: 2: 4$. The probabilities that A, B and C can introduce changes to improve profits of the company are $0.8,0.5$ and 0.3 respectively. If the change does not take place, find the probability that it is due to the appointment of C.

- Watch Video Solution

221. Find: $\int \frac{(3 \sin \theta-2) \cos \theta}{5-\cos ^{2} \theta-4 \sin \theta} d t h \eta \theta$.

- Watch Video Solution

222. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$,

- Watch Video Solution

223. If a, b and c are all non-zero and $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=0$, then prove that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1=0$

- Watch Video Solution

224. A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs. 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs. 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?

- Watch Video Solution

225. If $A=(3579)$ is written as $\mathrm{A}=\mathrm{P}+\mathrm{Q}$, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
226. Using integration find the area of the region bounded by the curves $y=\sqrt{4-x^{2}}, x^{2}+y^{2}-4 x=0$ and the x-axis.

- Watch Video Solution

227. If $f, g: R \rightarrow R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x$. Find fog and gof. Hence find $f o g(-3), f o g(5)$ and $g \circ f(-2)$.

- Watch Video Solution

228. The sum of the surface areas of a cuboid with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of sphere. Also find the minimum value of the sum of their volumes.
229. Find: $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$

- Watch Video Solution

230. A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
