©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - XII BOARD PREVIOUS YEAR PAPER ENGLISH

SAMPLE PAPER 2019

Section A

1. Unpolarized light is incident on a plane glass
surface having refractive index. The angle of
incidence at which reflected and refracted rays would become perpendicular to each other is :
A. 15°
B. 30°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

2. Photoelectric emission from a given surface of metal can take place when the value of a 'physical quantity' is less than the energy of incident photon. The physical quantity is:
A. Threshold frequency
B. Work function of surface
C. Threshold wave length
D. Stopping Potential

Answer: B::C

3. A photon beam of energy 12.1 eV is incident on a

 hydrogen atom. The orbit to which electron of $\mathrm{H}-$ atom be excited isA. $2^{n d}$
B. $3^{r d}$
C. $4^{\text {th }}$
D. $5^{t h}$

Answer: B::D
4. Horizontal and vertical components of earth's magnetic field at a place are equal. The angle of dip at that place is \qquad .

D Watch Video Solution

5. A free floating magnetic needle at North pole is to the surface of earth

- Watch Video Solution

6. An electron is accelerated through a potential
difference of 100 V , then de-Broglie wavelength

- Watch Video Solution

7. An equilateral prism is made up of material of refractive index $\sqrt{3}$. The angle of minimum deviation of light passing through the prism is \qquad .

- Watch Video Solution

8. Which physical quantity in a nuclear reaction is considered equivalent to the Qvalue of the

reaction?

D Watch Video Solution

9. Zener diode is used in reverse bias. When its reverse bias is increased, how does the thickness of the depletion layer change?

- Watch Video Solution

10. The initial concentration of a radioactive
substance is No and its half life is 12 hours. What

- Watch Video Solution

11. From the information of energy band gaps of diodes, how do you decide which can be light emitting diodes?

- Watch Video Solution

12. Give any one advantage of LEDs over conventional incandescent low power lamps
13. Derive the expression for drift velocity of free
electron in terms of relaxation time and electric
field applied across a conductor.
(D) Watch Video Solution
14. Find total energy stored in capacitors given in the circuit

- Watch Video Solution

3. An α-particle and a proton are accelerated through same potential difference. Find the ratio (v_{a} / v_{p}) of velocities acquired by two particles.
4. What is Brewster's angle? Derive relation between Brewster angle and refractive index of medium which produces Plane Polarized light.

- Watch Video Solution

5. The work function of Cs is 2.14 eV . Find
(a) threshold frequency for Cs
(b) Wavelength of incident light if the photo current is brought to zero by stopping potential of 0.6 V .
6. Derive an expression for the radius of $n^{\text {th }}$ Bohr's orbit in Hydrogen atom.

D Watch Video Solution

7. Energy of electron in first excited state in Hydrogen atom is -3.4 eV . Find KE and PE of electron in the ground state.
8. Draw energy band diagram of p \& n type semiconductors. Also write two differences between p and n type semiconductors.

D Watch Video Solution

9. Energy gap in a $\mathrm{p}-\mathrm{n}$ photodiode is 2.8 eV . Can it detect a wavelength of 6000 nm ? Justify your answer.

- Watch Video Solution

1. State working principle of potentiometer.

Explain how the balance point shifts when value of resistor R increases in the circuit of potentiometer, given below.

D Watch Video Solution
2. Using Biot-Savart's law, derive an expression for magnetic field at any point on axial line of a current carrying circular loop. Hence, find magnitude of magnetic field intensity at the centre of circular coil.

- Watch Video Solution

3. Obtain the resonant frequency and Q - factor of a series LCR circuit with $\mathrm{L}=3 \mathrm{H}, \mathrm{C}=$ $27 \mu F, \quad R=7.4 \Omega$.
4. State the conditions of total internal reflection.

Refractive indices of the given prism material for Red, Blue and Green colors are respectively 1.39,
1.48 and 1.42 respectively. Trace the path of rays through the prism.

D Watch Video Solution

5. Define resolving power of an astronomical refracting telescope and write expression for it in normal adjustment.Assume that light of wave length $6000 \AA$ is coming from a star, what is the limit of resolution of a telescope whose objective has a diameter of 2.54 m ?

- Watch Video Solution

6. Write the basic assumptions used in the derivation of lens - maker's formula and hence derive this expression.
7. Show that ${ }_{92}^{238} U$ can not spontaneously emit a proton. Given:
${ }_{92}^{238} U=238.05079 \mathrm{u},{ }_{91}^{237} P a=237.05121 \mathrm{u}{ }_{1}^{1} H=$ $1.00783 u$

(D) Watch Video Solution

8. Suggest an idea to convert a full wave bridge rectifier to a half wave rectifier by changing the connecting wire/s. Draw the diagram and explain your answer.

- Watch Video Solution

Section D

1. Using Gauss's law, derive expression for intensity of electric field at any point near the infinitely long straight uniformly charged wire.

The electric field components in the following
figure are
$E_{x}=\alpha x, E_{y}=0, E_{z}=0, \quad$ in which $\alpha=400 N / C$
m . Calculate (i) the electric flux through the cube,
and (ii) the charge within the cube assume that $\mathrm{a}=$
0.1 m .

- Watch Video Solution

2. Define electrostatic potential at a point. Write its SI unit

Three charges q_{1}, q_{2} and q_{3} are kept respectively at points A, B and C as shown in figures. Write the expression for electrostatic potential energy of the system.

Depict the equipotential surfaces due to
(i) an electric dipole
(ii) two identical negative charges separated by a small distance

- View Text Solution

3. The arm $P Q$ of the rectangular conductor is moved from $x=0$, outwards in the uniform
magnetic field which extends from $x=0$ to $x=b$
and is zero for $x>b$ as shown. Only the arm $P Q$ possess substantial resistance r. Consider the situation when the arm $P Q$ is pulled outwards from $x=0$ to $x=2 b$, and is then moved back to $x=0$ with constant speed v. Obtain expression for the flux, the induced emf, the force necessary to pull the arm and the power dissipated as Joule heat. Sketch the variation of these quantities with
distance.

- View Text Solution

4. Write working principle of cyclotron and with a
suitable diagram explain its working. Give any two applications of cyclotron
5. Derive mirror equation for a convex mirror.

Using it, show that a convex mirror always produces a virtual image, independent of the location of object.

- View Text Solution

6. (a) Draw a ray diagram for final image formed at
distance of distinct vision (D) by a compound microscope and write expression for its magnifying power.
(b)An angular magnification (magnifying power) of
$30 x$ is desired for a compound microscope using as objective of focal length 1.25 cm and eye piece of focal length 5 cm . How will you set up the compound microscope?
