



# MATHS

# **BOOKS - NCERT MATHS (ENGLISH)**

# INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS

**Multiple Choice Questions** 

1. If 
$$\cos A = \frac{4}{5}$$
, then the value of  $\tan A$  is  
A.  $\frac{3}{5}$   
B.  $\frac{3}{4}$   
C.  $\frac{4}{3}$ 

#### Answer: B

# Watch Video Solution

**2.** if 
$$\sin A = rac{1}{2}$$
 , then the value of  $\cot A$ 

A. 
$$\sqrt{3}$$
  
B.  $\frac{1}{\sqrt{3}}$ 

C. 
$$\frac{\sqrt{3}}{2}$$

D. 1

### Answer: A



3. The value of the expression $\cos ec(75^\circ + heta) - \sec(15^\circ - heta) - \tan(55^\circ + heta) + \cot(35^\circ - heta)$ is

A. -1B. 0 C. 1 D.  $\frac{3}{2}$ 

#### Answer: B



**4.** If 
$$\sin heta = rac{a}{b}$$
, then  $\cos heta$  is equal to

A. 
$$\frac{b}{\sqrt{b^2 - a^a}}$$
  
B.  $\frac{b}{a}$   
C.  $\frac{\sqrt{b^2 - a^2}}{b}$   
D.  $\frac{a}{\sqrt{b^2 - a^2}}$ 

#### Answer: C



5. If  $\cos(lpha+eta)=$  0, then  $\sin(lpha-eta)$  can be reduced to

A.  $\cos\beta$ 

B.  $\cos 2\beta$ 

 $C.\sin \alpha$ 

D.  $\sin 2\alpha$ 

#### Answer: B



7. If  $\cos9lpha\,=\,\sinlpha$  and  $9lpha\,<\,90^{\,\circ}$  , then the value of  $\tan5lpha$  is



#### Answer: C



8. If  $\Delta ABC$  is right angled at C, then the value of  $\cos(A+B)$  is

B. 1

C. 
$$\frac{1}{2}$$
  
D.  $\frac{\sqrt{3}}{2}$ 

#### Answer: A



9. If  $\sin A + \sin^2 A = 1, ext{ then the value of } \cos^2 A + \cos^4 A$  is

B. 
$$\frac{1}{2}$$

C. 2

D. 3

#### Answer: A



10. If 
$$\sinlpha=rac{1}{2}$$
 and  $\coseta=rac{1}{2}$  , then the value of  $(lpha+eta)$  is

A.  $0^{\circ}$ 

B.  $30^{\circ}$ 

C.  $60^{\circ}$ 

D.  $90^{\circ}$ 

#### Answer: D





A. 3

B. 2

C. 1

D. 0

#### Answer: B



12. If 
$$4 an heta=3,\,\, ext{then}\,\left(rac{4\sin heta-\cos heta}{4\sin heta+\cos heta}
ight)$$
 is equal to

A.  $\frac{2}{3}$ 

B. 
$$\frac{1}{3}$$
  
C.  $\frac{1}{2}$   
D.  $\frac{3}{4}$ 

#### Answer: C



13. if  $\sin heta - \cos heta = 0$ , then the value of  $\left( \sin^4 heta + \cos^4 heta 
ight)$ 

B. 
$$\frac{3}{4}$$
  
C.  $\frac{1}{2}$   
D.  $\frac{1}{4}$ 

#### Answer: C



 $\mathsf{C.}\,2\sin\theta$ 

D. 1

Answer: B

Watch Video Solution

**15.** A pole 6 m high casts a shadow  $2\sqrt{3}$  m long on the ground,

then find the angle of elevation of the sun.

A.  $60^{\circ}$ B.  $45^{\circ}$ 

C.  $30^{\circ}$ 

D.  $90\,^\circ$ 

Answer: A

Watch Video Solution

Very Short Answer Type Questions

1. Prove that : 
$$rac{ an 47^\circ}{ an 43^\circ}=1$$



Watch Video Solution

**4.** If  $\cos A + \cos^2 A = 1$  , then  $\sin^2 A + \sin^4 A =$ 



5.  $(\tan heta + 2)(2 \tan heta + 1) = 5 \tan heta + \sec^2 heta$ 

A.  $5 \tan \theta + \sec \theta$ 

 $B.5 an heta+2 \sec^2 heta$ 

 $\mathsf{C.5}\tan^2\theta+\sec^2\theta$ 

D. none of these

**Answer: B** 



**6.** If the length of the shadow of a tower is increasing, then the angle of elevation of the Sun is also increasing. Is it true? Justify your answer.



7. If a man standing on a platform 3 m above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

Watch Video Solution

**8.** The value of  $2\sin\theta$  can be  $a + \frac{1}{a}$ , where a is a positive number and  $a \neq 1$ .

Watch Video Solution

9.  $\cos \theta = \frac{a^2 + b^2}{2ab}$ , where a and b are two distinct numbers such that ab > 0.



**10.** The angle of elevation  $\theta$  of the top of a tower is  $30^{\circ}$ . If the height of the tower is doubled, then new  $\tan \theta$  will be

A. 
$$\frac{\sqrt{3}}{2}$$
  
B.  $\frac{3}{2}$   
C.  $\frac{2}{3}$   
D.  $\frac{2}{\sqrt{3}}$ 

Answer: D



11. If the height of a tower and the distance of the point of observation from its foot, both are increased by 10%, then the angle of elevation of its top remains unchanged.





 $ig(\sqrt{3}+1ig)(3-\cot{30^\circ})= an^3{(60)^\circ}-2{\sin{60^\circ}}$ 

# Watch Video Solution

**6.** Show that  $1 + \cot^2 \alpha / (1 + \cos ec \alpha) = \cos ec \alpha$ 

7. 
$$an heta + an(90^\circ - heta) = \sec heta imes \sec(90^\circ - heta)$$



**8.** Find the angle of elevation of the Sun when the shadow of a pole  $h \ m$  high is  $\sqrt{3}h \ m$  long.

A.  $30^{\,\circ}$ 

B.  $45^{\circ}$ 

 ${\rm C.\,60^{\,\circ}}$ 

D.  $90^{\circ}$ 

#### Answer: A



9. If  $\sqrt{3} an heta=1$  then find value of  $\sin^2 heta-\cos^2 heta$ 

**10.** A ladder 15 m long just reaches the top of a vertical wall. If the ladder makes an angle of  $60^0$  with the wall, then the height of the wall is  $15\sqrt{3}m$  (b)  $\frac{15\sqrt{3}}{2}m$  (c)  $\frac{15}{2}m$  (d) 15m

### Watch Video Solution

11. Simplify:  $(1+ an^2 heta)(1-\sin heta)(1+\sin heta)$ 

Watch Video Solution

**12.** If  $2\sin^2\theta - \cos^2\theta = 2$ , find the value of  $\theta$ .



**14.** An observer, 1.5m tall, is 20.5m away from a tower 22m high. Determine the angle of elevation of the top of the tower from the eye of the observer.

A.  $60^{\circ}$ 

B.  $45^{\circ}$ 

C.  $30^{\circ}$ 

D.  $90^{\circ}$ 

Answer: B



Long Answer Types Questions

1. If  $\cos ec heta + \cot heta = p$ , then prove that the  $\cos heta = rac{p^2-1}{p^2+1}$ 

2. Prove that 
$$\sqrt{\sec^2 heta + \cos ec^2 heta} = an heta + \cot heta.$$

Watch Video Solution

**3.** The angle of elevation of the top of a tower from a certain point is  $30^{\circ}$ . If the observer moves 20 m towards the tower, the angle of elevation of the top of the tower increases by  $15^{\circ}$ . Then height of the tower is



**4.** If  $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$ , then prove that  $\tan \theta = 1$  or  $\frac{1}{2}$ .

### Watch Video Solution

5. If  $\sin \theta + 2 \cos \theta = 1$ , then prove that  $2 \sin \theta - \cos \theta = 2$ .



Watch Video Solution

7. The shadow of a tower standing on a level ground is found

to be 40 m longer when the Suns altitude is  $30^o$  than when it

is  $60^{\circ}$ . Find the height of the tower.

**8.** A vertical tower Stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angles of Elevation of the bottom and the top of the flag staff are  $\alpha$  and  $\beta$  respectively Prove that the height of the tower is  $\frac{h \tan \alpha}{\tan \beta - \tan \alpha}$ 

> Watch Video Solution

9. if  $an heta + \sec heta = l$  then prove that  $\sec heta = rac{l^2+1}{2l}$ 

## Watch Video Solution

10. If  $\sin heta + \cos heta = p$  and  $\sec heta + \cos ec heta = q$ ; show that  $q ig( p^2 - 1 ig) = 2p$ 

### Watch Video Solution

11. If 
$$a\sin\theta + b\cos\theta = C$$
, then prove that  $a\cos\theta - b\sin\theta = \sqrt{a^2 + b^2 - c^2}$ 

Watch Video Solution

12. Prove that 
$$rac{1+\sec heta- an heta}{1+\sec heta+ an heta}=rac{1-\sin heta}{\cos heta}$$

Watch Video Solution

**13.** The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is  $60^{\circ}$  and the angle of elevation of the top of the second tower from the foot of the first tower is  $30^{\circ}$ . Find the distance between the two and also the height of the tower.



**14.** From the top of a tower h m high, angles of depression of two objects, which are in line with the foot of the tower are  $\alpha$  and  $\beta(\beta > \alpha)$ . Find the distance between the two objects.



15. about to only mathematics

**16.** The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 30°. Find the height of the tower.

Watch Video Solution

17. If the angle of elevation of a cloud from a point h metres above a lake is  $\alpha$  and the angle of depression of its reflection in the lake is  $\beta$  , prove that the height of the cloud is  $\frac{h(\tan\beta + \tan\alpha)}{\tan\beta - \tan\alpha}$  **18.** The lower window of a house is at a height of 2m above the ground and its upper window is 4m vertically above the tower window. At certain instant the angles of elevation of a balloon from these windows are observed to be  $60^{\circ}$  and  $30^{\circ}$ , respectively. Find the height of the balloon above the ground.

