

India's Number 1 Education App

PHYSICS

BOOKS - NCERT PHYSICS (ENGLISH)

ELECTRICITY

Multiple Choice Questions

1. A cell, a resistor, a key and an ammeter are arranged as known in the circuit diagrams of figure. The current recorded in the ammeter

will be

A. maximum in (i)

B. maximum in (ii)

C. maximum in (iii)

D. the same in all the cases

Answer: D

Watch Video Solution

2. In the following circuits, heat produced in the resistor or combination of resistors connected to a 12 V battery will be

A. same in all the cases

B. maximum in (i)

C. maximum in (ii)

D. maximum in case (iii)

Answer: D

3. Electrical resistivity of a given metallic wire depends upon :

A. its length

B. its thickness

C. its shape

D. nature of the material

Answer: D

Watch Video Solution

4. A current of 1*A* is drawn by a filament of an electric bulb. Number of electrons passing through a cross-section of the filament in 16 seconds would be roughly :

A. 10^{20}

B. 10^{16}

 $C. 10^{18}$

D. 10^{23}

Answer: A

5. Identify the circuit, (Fig. 3.39) in which the electrical components have been properly connected.

A. (i)

B. (ii)

C. (iii)

D. (iv)

6. What is the maximum resistance which can be made using five resistors each of $(1/5)\Omega$?

A. $1/5\Omega$

 $\mathrm{B.}\,10\Omega$

 $\mathsf{C.}\,5\Omega$

D. 1Ω

Answer: D

7. What is the minimum resistance which can be made using five resistors each of $(1/5)\Omega$?

A. $1/5\Omega$

- B. $1/25\Omega$
- $\mathsf{C.}\,1\,/\,10\Omega$

D. 25Ω

Answer: B

8. The proper representation of series combination of cells obtaining maximum potential is

A. (i)

B. (ii)

C. (iii)

D. (iv)

Answer: A

9. Which of the following represents voltage ?

A.
$$\frac{\text{Work done}}{\text{Current} \times \text{Time}}$$
B. Work done × Charge
C.
$$\frac{\text{Work Done} \times \text{Time}}{\text{Current}}$$

D. Work done \times Charge \times Time

Answer: A

Watch Video Solution

10. A cylindrical conductor of length l and uniform area of cross-section A has resistance R. Another conductor of length 2l and resistance R of the same material has area of cross-section :

A. A/2

B. 3A/2

 $\mathsf{C.}\,2A$

D. 3A

Answer: C

Watch Video Solution

11. A student carries out an experiment and plots the V - I graphs of three samples of nichrome wire with resistances R_1, R_2 and R_3 respectively, (Fig. 3.41). Which

of the following is true ?

A. $R_1 = R_2 = R_3$

B. $R_1 > R_2 > R_3$

C. $R_3 > R_2 > R_1$

D. $R_2 > R_3 > R_1$

Answer: C

12. If the current I through a resistor is increased by 100 % (assume that temperature remains unchanged), the increase in power dissipated will be :

A. 100~%

- B. 200~%
- $\mathsf{C}.\,300~\%$

D. 400~%

Answer: C

Watch Video Solution

13. The resistivity does not change if :

A. the material is changed

B. the temperature is changed

C. the shape of the resistor is changed

D. both material and temperature are

changed

Answer: C

Watch Video Solution

14. In an electrical circuit three incandescent

bulbs A, B and C of rating 40W, 60W and 100W respectively are connected in parallel to an electric source.

Which of the following is likely to happen regarding their brightness ?

A. Brightness of all the bulbs will be the

same

- B. Brightness of bulb A will be the maximum
- C. Brightness of bulb B will be more than

that of A

D. Brightness of bulb C will be less than

that of B

Answer: C

15. In an electrical circuit, two resistors of 2Ω and 4Ω respectively are connected in series to a 6V battery. The heat dissipated by the 4Ω resistor in 5s will be :

A. 5 J

B. 10 J

C. 20 J

D. 30 J

Answer: C

Watch Video Solution

16. An electric kettle consumes 1kW of electric power when operated at 220V. A fuse-wire of what rating must be used for it ?

A. 1A

 $\mathsf{B.}\,2A$

C. 4*A*

D. 5A

Answer: D

17. Two resistors of resistances 2Ω and 4Ω

when connected to a battery will have :

A. same current flowing through them

when connected in parallel

B. same current flowing through then
when connected is series
C. same potential difference across them
when connected is series
D. different potential difference across

them when connected in parallel

Answer: B

Watch Video Solution

18. Unit of electric power may also be expressed as :

A. volt ampere

B. kilowatt hour

C. watt second

D. joule second

Answer: A

Watch Video Solution

1. A child has drawn the electric circuit to study Ohm's law as shown in (Fig. 3.42). His teacher told him that the circuit diagram needs correction. Study the circuit diagram and redraw it after making all corrections.

2. Three 2Ω resistors, A, B and C are connected as shown in figure. Each of them dissipates energy and can with stand a maximum power of 18 W without melting. Find the maximum current that can flow through the three resistors ?

3. Should the resistance of an ammeter be low

or high ? Give reason.

Watch Video Solution

4. Draw a circuit diagram of an electric circuit containing a cell, a key, an ammeter, a resistance of 2Ω in series with a combination of two resistors (4Ω each) in parallel and a voltmeter across the parallel combination. Will the potential difference across the 2Ω resistor

6. What is electrical resistivity ? In a series electrical circuit comprising a resistor made

up of a matallic wire, the ammeter reads 5A. The reading of the ammeter decreases to half when the length of the wire is doubled. Why ?

Watch Video Solution

7. What is the commercial unit of electrical energy? Represent it in terms of joules.

Watch Video Solution

8. (a) A current of 1A flows in a series curcuit containing an electric lamp and a conductor of 5Ω when connected to a 10V battery. Calculate the resistance of the electric lamp. (b) Now if a resistance of 10Ω is connected in parallel with this series combination, what change (if any) in current flowing through 5Ω conductor and potential difference across the lamp will take place ? Give reason.

Watch Video Solution

9. Why is parallel arrangement used in

domestic wiring ?

Watch Video Solution

10. B_1 , B_2 and B_3 are three identical bulbs connected as shown in (fig. 3.46). When all the three bulbs glow, a current of 3A is recorded by the ammeter A.

(i) What happens to the glow of the other two bulbs when the bulb B_1 gets fused ? (ii) What happens to the readings of A_1, A_2, A_3 and A when the bulb B_2 gets fused ?

(iii) How much power is dissipated in the circuit when all the three bulbs glow together

?

Watch Video Solution

11. Three incandecent bulbs of 100W each are connected in series in an electric circuit. In another circuit another set of three bulbs of the same wattage are connected in parallel to the same source. (a) Will the bulbs in the two circuits glow with the same brightness ? Justify your answer. (b) Now let one bulb in both the circuits get fused. Will the rest of the bulbs continue to glow in each circuit ? Give reason.

12. State Ohm's law ? How can it be verified experimentally ? Does it hold good under all conditions ? Comment.

13. What is electrical resistivity ? How does it

depend om temperature. Give its SI unit.

14. How will you infer with the help of an experiment that the same current flows through every part of the circuit containing three resistances in series connected to a battery?

Watch Video Solution

15. How will you conclude that the same potential difference (voltage) exists across

three resistors connected in a parallel

arrangement to a battery?

16. What is Joule's heating effect ? How can it

be demonstrated experimentally ? List its four

applications in daily life.

17. Find out the folowing in the electric circuit given in (Fig. 3.48).

(a) Effective resistance of two 8Ω resistors in

the combination

(b) Current flowing through 4Ω resistor

(c) Potential difference across 4Ω resistance

(d) Power dissipated in 4Ω resistor

(e) Difference in ammeter readings, if any.

