© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

ADDITION OF VECTORS

Solved Example

1. A unit vector parallel to the sum of the vectors $2 i+4 j-5 k, i+2 j+3 k$ are
A. $\frac{ \pm(3 i+6 j-2 k)}{7}$
B. $\frac{ \pm(3 i-6 j-2 k)}{7}$
C. $\frac{ \pm(3 i+6 j+2 k)}{7}$
D. $\frac{ \pm(3 i-6 j-2 k)}{7}$

Answer: A
2. The points $-6 a+3 b+2 c, 3 a-2 b+4 c, 5 a+7 b+3 c,-13 a+17 b-c$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: D

- View Text Solution

3. If the position vectors of A, B are $2 i+3 j+k$ and $3 i-j+4 k$ repectively then the position vector of the point which divides $A B$ in the ratio $3: 2$ is
A. $\frac{9 i+30 j+4 k}{5}$
B. $\frac{8 i+7 j+3 k}{5}$
C. $\frac{13 i+3 j+14 k}{5}$
D. $\frac{12 i+3 j+5 k}{5}$

Answer: C

- Watch Video Solution

4. The vector equation of the plane passing through the point $(1,2,3)$ and parallel to the vectors $(-2,3,1),(2,-3,4)$ is
A. $r=s(2 i+j-k)+t(i+2 j+2 k)$
B. $r=2 i+2 j-3 k+s(3 i+3 j-5 k)+t(i+2 j+k)$
C. $r=(i+2 j+3 k)+s(-2 i+3 j+k)+t(2 i-3 j+4 k)$
D. none

Answer: C

5. If P is a point on the line passing through the point A with position vector $2 \mathrm{i}+\mathrm{j}-3 \mathrm{k}$ and parallel to $\mathrm{i}+2 \mathrm{j}+\mathrm{k}$ such that $A P=2 \sqrt{6}$ then the position vector of P is
A. $4 i+5 j+k$
B. $3 \mathrm{j}+5 \mathrm{k}$
C. $4 i+5 j-k$
D. $3 \mathrm{j}-4 \mathrm{k}$

Answer: C

- Watch Video Solution

6. The points of intersection of the line $r=2 a+t(b-c)$ with the plane $r=$ $a+p(b+c)+q(a+2 b-c)$ is
A. $4 a+3 b-3 c$
B. $4 a-3 b+3 c$
C. $\frac{1}{2}(4 a-3 b+3 c)$
D. $\frac{1}{2}(4 a+3 b-3 c)$

Answer: D

- View Text Solution

7. Match the items of column I to that of column II

Column I
Column
(A) If a and b are noncollinear and $\mathrm{xa}+\mathrm{yb}=(\mathrm{y}+1)$
(p) 6 $a+(2-x) b$ Then $x-y$ equals
(B) If a, b are non-collinear and (2-x) $\mathrm{a}+\mathrm{b}$ and
(q) -1 ya $+(x-3) b$ are equal, then $|x-y|=$
(C) If a, b are non-collinear and ($\mathrm{x}-1) \mathrm{a}+2 \mathrm{~b}$ and $3 \mathrm{a}+\mathrm{xb} \quad(s) \quad 1$ are collinear, then the sum of the values of x is
(D) If a, b are non-collinear and $3 \mathrm{a}+\mathrm{xb}$ and
(t) 2
$(1-x) a-\frac{2}{3} \mathrm{~b}$ are like vectors, then x is
The correct match is :
A. $A \rightarrow s, B \rightarrow p, C \rightarrow t, D \rightarrow q$
B. $A \rightarrow s, B \rightarrow q, C \rightarrow s, D \rightarrow q$
C. $A \rightarrow p, B \rightarrow q, C \rightarrow r, D \rightarrow s$
D. $A \rightarrow q, B \rightarrow p, C \rightarrow s, D \rightarrow r$

Answer: A

- View Text Solution

8. Three vectors of magnitudes $a, 2 a$ and $3 a$ are along the directions of the diagonals of three adjacent faces of a cube that meet in a point. Then the magnitude of their sum is
A. $4 a$
B. 5 a
C. 6a
D. 8 a

Answer: B

- Watch Video Solution

9. $\mathrm{A}(2,1,2), \mathrm{B}(1,0,0)$ and $C(1+\sqrt{3}, \sqrt{3},-\sqrt{6})$ are the vertices of a triangle. If the length of the median drawn to the side $B C$ is equal to $\lambda \sqrt{9-2} \sqrt{3+2} \sqrt{6}$. then λ equal to
A. 4
B. 3
C. 2
D. 1

Answer: D

- View Text Solution

Exercise 1

1. If the position vectors of P, Q are respectively $5 a+4 b$ and $3 a-2 b$ then $\mathrm{QP}=$

$$
\text { A. } 2 \mathrm{a}+6 \mathrm{a}
$$

B. $2 \mathrm{a}-6 \mathrm{~b}$
C. $2 a+5 b$
D. $2 a-5 b$

Answer: A

- Watch Video Solution

2.

$\vec{O} A=i++k, \vec{A} B=3 i-2 j+k, \vec{B} C=i+2 j-2 k, \vec{C} D=2 i+j+$ then the position vector of D is
A. $2 i+3 j+7 k$
B. $7 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$
C. $3 i+2 j+7 k$
D. none
3. If the position vectors of A, B, C, D are $a, b, 2 a+3 b, a-2 b$ respectively, then $\vec{A} C, \vec{D} B, \vec{B} A, \vec{D} A$ are
A. $a+3 b, 3 b-a, a-b, 2 b$
B. $2 \mathrm{~b}, \mathrm{~b}-2 \mathrm{a}, 3 \mathrm{~b}+\mathrm{a}, \mathrm{b}-\mathrm{a}$
C. $a-3 b, 3 b-a, a+b, 2 b$
D. $-2 b, b-2 a, 3 b-a, b-a$

Answer: A

- Watch Video Solution

4. If the position vectors of A, B, C are $i+2 j+3 k, j+2 k,-i+k$ and
$\vec{A} B=\lambda \vec{A} C$ then $\lambda=$
A. 0
B. 1
C. 2
D. $1 / 2$

Answer: D

- Watch Video Solution

5. If the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $(-2,1,1),(-4,2,2),(6,-3,-3)$ and $\vec{A} B=\lambda \vec{A} C$ then $\lambda=$
A. 1
B. -2
C. 4
D. $-1 / 4$

Answer: D

6. If three points A, B and C have position vectors $(1, x, 3),(3,4,7)$ and $(y,-2$,
$-5)$ respectively and if they are collinear, then $(x, y)=$
A. $(2,-3)$
B. $(-2,3)$
C. $(-2,-3)$
D. $(2,3)$

Answer: A

- Watch Video Solution

7. If the points whose position vectors are $2 i+j+k, 6 i-j+2 k$ and $14 i-5 j+$ $p k$ are collinear then the value of p is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

8. If the points with position vectors $60 i+3 j, 40 i-8 j$ and ai-52j are collinear, then $\mathrm{a}=$
A. -40
B. -20
C. 20
D. 40

Answer: A

9. if $a=3 i+2 j+k, b=6 i+m j+n k$ and a, b are collinear, then m, n are
A. $m=2, n=10$
B. $m=10, n=2$
C. $m=4, n=2$
D. $m=2, n=4$

Answer: C

Watch Video Solution

10. The vectors a and b are noncollinear, If $a+(x+1) b$ and $(2 x-3) b-a$ are collinear, then the value of x is
A. $3 / 2$
B. $-3 / 2$
C. $-2 / 3$
D. $2 / 3$

Answer: D

D Watch Video Solution

11. If a, b are noncollinear vectors and $A=(x+4 y) a+(2 x+y+1) b, B=(y-$ $2 x+2) a+(2 x-3 y-1) b$ and $3 A=2 B$, then $(x, y)=$
A. $(2,1)$
B. $(2,-1)$
C. $(-2,-1)$
D. $(-2,1)$

Answer: B

- Watch Video Solution

12. Let a, b and c be three non zero vectors, no two of which are collinear.

If the vector $a+2 b$ is collinear with c, and $b+3 c$ is collinear with a, then a
$+2 b+6 c=$
A. λa
B. λb
C. λc
D. 0

Answer: D

- Watch Video Solution

13. Three non-zero non-collinear vectors a, b, c are such that $a+3 b$ is collinear with c, while $3 b+2 c$ is collinear with a. Then $a+3 b+2 c=$
A. 2a
B. 3b
C. 4 c
D. 0

- Watch Video Solution

14. If a, b and c are non-coplanar vectors and if d is such that $d=\frac{1}{x}(a+b+c)$ and $a=\frac{1}{y}(b+c+d)$ where x and y are non-zero real numbers, then $\frac{1}{x y}(a+b+c+d)=$
A. $-a$
B. 0
C. 2a
D. 3 c

Answer: B

15. If the vectors $2 i+3 j, 5 i+6 j, 8 i+\lambda j$ have their initial point at $(1,1)$ then the value of λ so that the vectors terminated on one line is
A. 5
B. 9
C. 4
D. 0

Answer: B

- Watch Video Solution

16. The length of the line segment joining the points $2 i-2 j+3 k, 5 i+2 j+$ 3 k is
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

17. If the position vectors of A and B are $3 i-2 j+k$ and $2 i+4 j-3 k$ then $|\overrightarrow{A B}|$
A. $\sqrt{14}$
B. $\sqrt{29}$
C. $\sqrt{43}$
D. $\sqrt{53}$

Answer: D

- Watch Video Solution

18. The distance between the points $(5,3,1),(3,2,-1)$ is
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

19. The distance between the points $i+6 j+7 k,-3 i+4 j+3 k$ is
A. 3
B. 4
C. 5
D. 6

- Watch Video Solution

20. If $a=2 i+5 j+6 k, b=-2 i+3 j+2 k$ then the magnitude of $a-b$ is
A. 4
B. 6
C. 9
D. 12

Answer: B

21. If $a=3 i-2 j+k, b=2 i-4 j-3 k, c=-i+2 j+2 k$ then $a+b+c=$
A. $3 i-4 j$
B. $3 i+4 j$
C. $4 \mathrm{i}-4 \mathrm{j}$
D. $4 i+4 j$

Answer: C

- Watch Video Solution

22. If $a=i-j+2 k, b=2 i+3 j+k, c=i-k$, then magnitude of $a+2 b-3 c$ is
A. $\sqrt{87}$
B. $\sqrt{78}$
C. $\sqrt{89}$
D. $\sqrt{101}$

Answer: B

23. If $a=i+j+k, b=2 i+3 j, c=3 i+5 j-3 k$ and $d=k+j$, then the ratio of moduli of $\mathrm{b}-\mathrm{a}$ and $\mathrm{d}-\mathrm{c}$ is
A. 1:3
B. 2: 1
C. 3:1
D. 1:2

Answer: A

- Watch Video Solution

24. If the position vectors of A, B are $2 i-9 j-4 k, 6 i-3 j+8 k$ then the unit vector in the direction of $\vec{A} B$ is
A. $\frac{2 i+j+2 k}{3}$
B. $\frac{-i-2 j+2 k}{3}$
C. $\frac{2 i+3 j+6 k}{7}$
D. $\frac{-i+2 j+6 k}{7}$

Answer: C

- Watch Video Solution

25. If the position vectors of $\mathrm{A}=(2,3,5), \mathrm{B}=(1,1,7)$ then the unit vector in the direction of $\vec{A} B$ is
A. $\frac{2 i+j+2 k}{3}$
B. $\frac{-i-2 j+2 k}{3}$
C. $\frac{2 i+3 j+6 k}{7}$
D. $\frac{-i+2 j+6 k}{7}$

Answer: B

26. If $a=3 i-2 j+k, b=-i+j+k$ then the unit vector parallel to the vector a $+b$ is
A. $\frac{2}{3} i-\frac{1}{3} j+\frac{2}{3} k$
B. $\frac{2}{5} i-\frac{1}{5} j+\frac{2}{5} k$
C. (2)/(sqrt(3))i-(1)/(sqrt(3))j+(2)/(3)k
D. $-\frac{2}{\sqrt{3}} i+\frac{1}{\sqrt{3}} j-\frac{2}{\sqrt{3}} k$

Answer: A

- Watch Video Solution

27. If $a=3 i-2 j+k$ and $b=i+2 j+5 k$, then the unit vector along $a-b$ is
A. $\frac{\sqrt{2} i+4 j+4 k}{\sqrt{34}}$
B. $\frac{i-2 j-2 k}{3}$
C. $\frac{-2 i+4 j+4 k}{6}$
D. $\frac{\sqrt{2} i+4 j-4 k}{\sqrt{340}}$

Answer: B

- Watch Video Solution

28. If $a=i+j-2 k, b=-i+2 j+k, c=i-2 j+2 k$, then a unit vector parallel to a $+b+c=$
A. $\frac{2 i+j+k}{\sqrt{6}}$
B. $(i+j+k) /(s q r t(3))^{\prime}$
C. $\frac{i-2 j+k}{\sqrt{6}}$
D. $\frac{i-j+k}{\sqrt{3}}$

Answer: B

- Watch Video Solution

29. If $a=i+j, b=j+k$ and $c=i+k$ then a unit vector in the direction of $a-$ $2 b+3 c$ is
A. $\frac{1}{\sqrt{2}}(4 i-j+k)$
B. $\frac{1}{3 \sqrt{2}}(4 i-j+k)$
C. $\frac{1}{3 \sqrt{2}}(4 i+j-k)$
D. $\frac{1}{3 \sqrt{3}}(4 i-2 j-k)$

Answer: B

- Watch Video Solution

30. If $\lambda(2 i-4 j+4 k)$ is a unit vector then $\lambda=$
A. $\pm 1 / 6$
B. $1 / 6$
C. 6
D. 16

Answer: A

31. If the vector $a=2 i+3 j+6 k$ and b are collinear and $|b|=21$, then $b=$
A. $\pm(2 i+3 j+6 k)$
B. $\pm 3(2 i+3 j+6 k)$
C. $(i+j+k)$
D. $\pm 21(2 i+3 j+6 k)$

Answer: B

- Watch Video Solution

32. If $2 i+3 j-6 k, 6 i-2 j+3 k, 3 i-6 j-2 k$ represent the sides of a triangle then the perimeter of the triangle is
A. 14
B. 21
C. 7
D. 6

Answer: B

- Watch Video Solution

33. The points whose position vectors are $2 i+3 j+4 k, 3 i+4 j+2 k$ and $4 i+$ $2 j+3 k$ are the vertices of
A. vertices of a right angled triangle
B. vertices of an isosceles triangle
C. vertices of an equilateral triangle
D. collinear

Answer: C

- Watch Video Solution

34. The three points whose position vectors are $i+2 j+3 k, 3 i+4 j+7 k$ and $-3 i-2 j-5 k$
A. form the vertices of an equilateral triangle
B. form the vertices of a right angled triangle
C. are collinear
D. form the vertices of an isosceles triangle

Answer: C

- Watch Video Solution

35. The points whose position vectors are $2 i+3 j+4 k, 3 i+4 j+2 k$ and $4 i+$ $2 j+3 k$ are the vertices of
A. an isosceles triangle
B. right angled triangle
C. equilateral triangle
D. right angled isosceles triangle

Answer: C

- Watch Video Solution

36. If the position vectors of the vertices of a triangle are $2 i-j+k, i-3 j-$
$5 k, 3 i-4 j-4 k$ then it is
A. equilateral triangle
B. isosceles triangle
C. right angled isosceles triangle
D. right angled triangle

Answer: D

- Watch Video Solution

37. The points (1,1,1),(1,2,3),(2-1,1) form
A. an equilateral triangle
B. an isosceles triangle
C. a right angled triangle
D. a right angled isosceles triangle

Answer: B

- Watch Video Solution

38. The points $2 a+3 b+c, a+b, 6 a+11 b+5 c$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: D

D Watch Video Solution

39. The points $2 \mathrm{i}+\mathrm{j}+\mathrm{k}, 6 \mathrm{i}-\mathrm{j}+2 \mathrm{k}, 14 \mathrm{i}-5 \mathrm{j}+4 \mathrm{k}$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: A

40. The points (1, 2, 3), (3, 4, 7), (-3, -2, -5) are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: A

- View Text Solution

41. If the points whose position vectors are $-2 \mathrm{i}+3 \mathrm{j}+5 \mathrm{k}, \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}, \lambda i-\mathrm{k}$ are collinear, then $\lambda=$
A. 1
B. 2
C. 5
D. 7

Answer: D

42. The vectors $5 a+6 b+7 c, 7 a-8 b+9 c, 3 a+20 b+5 c$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: B

- View Text Solution

43. The points $-a+4 b-3 c, 3 a+2 b+5 c,-3 a+8 b-5 c,-3 a+2 b+c$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: C

D Watch Video Solution

44. The points $2 i+j-k, i+j+k, 2 i+2 j+k, 2 j+5 k$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: B

45. The points $i+j+k, i+2 j, 2 i+2 j+k, 2 i+3 j+2 k$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: C

D Watch Video Solution

46. The points $(2,-1,3),(-1,2,-4),(-12,-1,-3),(6,2,-1)$ are
A. collinear
B. coplanar but not collinear
C. noncoplanar
D. none

Answer: B

47. The vectors $3 a-2 b-4 c,-a+2 c,-2 a+b+3 c$ are
A. linearly dependent
B. linearly independent
C. collinear
D. none

Answer: A

D View Text Solution

48. If the vectors $2 a-b+c, a+2 b-3 c, 3 a+m b+5 c$ are linearly dependent, then $m=$
A. 2
B. -2
C. 4
D. -4

- Watch Video Solution

49. If $\mathrm{a}=\mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{b}=4 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}, \mathrm{c}=\mathrm{i}+\alpha j+\beta k$ are linearly dependent and $|c|=\sqrt{3}$ then
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha= \pm 1, \beta=1$

Answer: D

- Watch Video Solution

50. If $a=i+4 j, b=2 i-3 j$ and $c=5 i+9 j$ then $c=$
A. $2 a+b$
B. $a+2 b$
C. $a+3 b$
D. $3 a+b$

Answer: D

(Watch Video Solution

51. If $a=2 i-j+3 k, b=-i+4 j-2 k, c=5 i+j+7 k$ and $x a+y b=c$ then $(x, y)=$
A. $(3,1)$
B. $(3,-1)$
C. $(-3,1)$
D. $(-3,-1)$

Answer: A

52. The linear relation between the vectors $a+3 b+4 c, a-2 b+3 c, a+5 b-$ $2 c, 6 a+14 b+4 c$ is
A. $1(a+3 b+4 c)+2(a-2 b+3 c)+2(a+5 b-2 c)-1(6 a+14 b+4 c)=0$
B. $1(a+3 b+4 c)+2(a-2 b+3 c)+3(a+5 b-2 c)-2(6 a+14+4 c)=0$
C. $1(a+3 b+4 c)+2(a-2 b+3 c)+3(a+5 b-2 c)-1(6 a+14 b+4 c)=0$
D. none

Answer: C

- View Text Solution

53. The values of λ such that $(x, y, z) \neq(0,0,0)$ and $(i+j+3 k) x+(3 i-3 j$
$+\mathrm{k}) \mathrm{y}+(-4 \mathrm{i}+5 \mathrm{j}) z=\lambda(\mathrm{xi}+\mathrm{yj}+\mathrm{zk})$ are
A. 0,1
B. $0,-1$
C. $1,-1$
D. $0,1,-1$

Answer: B

- Watch Video Solution

54. If the position vectors of A, B are $2 a+3 b-c, 4 a-b+5 c$, then the position vector of midpoint of $\overline{A B}$ is
A. $3 a+b+2 c$
B. $3 a-b+2 c$
C. $3 \mathrm{a}+\mathrm{b}-2 \mathrm{c}$
D. $3 \mathrm{a}-\mathrm{b}-2 \mathrm{c}$

Answer: A

55. If the position vectors of A, B are $\mathrm{i}+\mathrm{j}+\mathrm{k}$ and $\mathrm{i}+\mathrm{j}-4 \mathrm{k}$ repectively then the position vector of the point which divides $\overline{A B}$ in the ratio $2: 3$ is
A. $i+j+k$
B. $i+j-k$
C. $i-j+k$
D. $\mathrm{i}-\mathrm{j}-\mathrm{k}$

Answer: B

- Watch Video Solution

56. If $A=i+2 j+3 k$ and $B=2 i-j+4 k$, then the position vectors of the points of trisection are
A. $(4 / 3,1,10 / 3),(5 / 3,0,11 / 3)$
B. $(-4 / 3,-1,-10 / 3),(-5 / 3,0,-11 / 3)$
C. $(4 / 3,-1,-10 / 3),(-5 / 3,0,11 / 3)$
D. none

Answer: A

- Watch Video Solution

57. A point $C=\frac{5 a+4 b-5 c}{3}$ divides the line joining $A=a-2 b+3 c$ and B in the ratio $2: 1$, then the poistion vector of B is
A. $2 a-3 b+4 c$
B. $2 a+3 b-4 c$
C. $2 \mathrm{a}-3 \mathrm{~b}-4 \mathrm{c}$
D. none

Answer: B

- Watch Video Solution

58. The ratio in which $i+2 j+3 k$ divides the join of $-2 i+3 j+5 k$ and $7 i-k$ is
A. $-3: 2$
B. 1:2
C. 2:3
D. $-4: 3$

Answer: B

- Watch Video Solution

59. If $A=i+2 j+3 k, B=2 i+4 j+7 k$ and $C=2 i+3 j+5 k$ are collinear, then the ratio in which B divides $\overline{A C}$ is
A. 2 : 1 externally
B. 2: 1 internally
C. 4 : 1 externally
D. 4:1 internally

D Watch Video Solution

60. The ratio in which the line segment joining the points with position vectors $i+2 j+3 k,-3 i+6 j-8 k$ is divided by $x y$-plane, is
A. $-3: 8$
B. 8: 1
C. 3:8
D. 2:8

Answer: C

- Watch Video Solution

61. If the position vectors of A, B are $i+2 j-3 k, 3 i-2 j+5 k$ respectively then the position vector of C in $A B$ produced such that $2 A C=3 A B$ is
A. $4 i-4 j+9 k$
B. $2 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$
C. $2 \mathrm{i}-2 \mathrm{j}+9 \mathrm{k}$
D. $4 i-4 j+3 k$

Answer: A

- Watch Video Solution

62. If the position vectors of A, B are $2 a-3 b, 3 a+2 b$ respectively then the position of vector of C in $A B$ produced such that $A C=2 A B$ is
A. $3 a+2 b$
B. 3b-2a
C. $4 a+7 b$
D. $5 \mathrm{~b}-2 \mathrm{a}$

Answer: C

63. The position vectors of P and Q are respectively a and b. If R is a point on $\overrightarrow{P Q}$ such that $\vec{P} R=5 \vec{P} Q$, then the position vector of R is
A. $5 \mathrm{~b}-4 \mathrm{a}$
B. $5 \mathrm{~b}+4 \mathrm{a}$
C. $4 \mathrm{~b}-5 \mathrm{a}$
D. $4 b+5 a$

Answer: A

- Watch Video Solution

64. If the vectors $A B=-3 i+4 k$ and $A C=5 i-2 j+4 k$ are the sides of a triangle $A B C$, then the length of the median through A is
A. $\sqrt{14}$
B. $\sqrt{18}$
C. $\sqrt{25}$
D. $\sqrt{29}$

Answer: B

- Watch Video Solution

65. If the position vectors of A, B, C are $2 i-2 j+k, 2 i+j-k,-2 i+j+15 k$ respectively then the length of the median through A is
A. 3
B. 5
C. 7
D. 11

Answer: C

66. The position vector of a point lying on the line joining the points whose position vectors are $\bar{i}+\bar{j}-\bar{k}$ and $\bar{i}-\bar{j}+\bar{k}$ is
A. j
B. i
C. k
D. 0

Answer: B

- Watch Video Solution

67. In $\Delta \mathrm{ABC}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are points on BC, CA and AB respectively, dividing them in the ratio $1: 4,3: 2$ and $3: 7$. The point S divides $A B$ in the ratio 1 :
68. Then $\frac{|A P+B Q+C R|}{|\vec{C} S|}=$
A. $1 / 5$
B. $2 / 5$
C. $5 / 2$
D. $7 / 10$

Answer: B

- Watch Video Solution

68. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ have position vectors $\bar{p}, \bar{q}, \bar{r}, \bar{s}$ respectively such that $(\bar{p}-\bar{q})=2(\bar{s}-\bar{r})$, then QS and PR
A. PQ and RS bisect each other
B. PQ and PR bisect each other
C. PQ and RS trisect each other
D. QS and PR trisect each other

Answer: D

69. The position vector of the centroid of the triangle formed by the points $\mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{i}-\mathrm{j}+\mathrm{k},-\mathrm{i}+\mathrm{j}+\mathrm{k}$ is
A. $\frac{i+j+3 k}{3}$
B. $\frac{i-j+3 k}{3}$
C. $\frac{i+j-3 k}{3}$
D. $\frac{i-j-3 k}{3}$

Answer: A

- Watch Video Solution

70. The position vector of the centroid of the triangle formed by the points $2 a+3 b, 5 a+4 b, 2 a-b$ is
A. $3 a+2 b$
B. $3 \mathrm{~b}-2 \mathrm{a}$
C. $4 a+7 b$
D. $5 \mathrm{~b}-2 \mathrm{a}$

Answer: A

- Watch Video Solution

71. If C is the midpoint of $A B$ and P is any point outside $A B$, then
A. $P A+P B=2 P C$
B. $\mathrm{PA}+\mathrm{PB}=\mathrm{PC}$
C. $\mathrm{PA}+\mathrm{PB}+2 \mathrm{PC}=0$
D. $P A+P B+P C=O$

Answer: A

72. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the vertices of a triangle then $\vec{A} B+\vec{B} C+\vec{C} A=$
A. 0
B. $\vec{A} C$
C. $2 \vec{A} C$
D. $3 \vec{A} C$

Answer: A

- Watch Video Solution

73. If G is the centroid of $\Delta \mathrm{ABC}$ then $\vec{G} A+\vec{G} B+\vec{G} C=$
A. 0
B. $\vec{O} G$
C. $2 \vec{O} G$
D. $3 \vec{O} G$

D Watch Video Solution

74. If G is the centroid of $\Delta A B C, G^{\prime}$ is the centroid of $\Delta A^{\prime} B^{\prime} C^{\prime}$ then $\vec{A} A^{\prime}+\vec{B} B^{\prime}+\vec{C} C^{\prime}=$
A. O
B. $\vec{G} G^{\prime}$
C. $2 \vec{G} G$
D. $3 \vec{G} G$

Answer: D

- Watch Video Solution

75. If D is the midpoint of the side BC of $\Delta \mathrm{ABC}$ then $\vec{A} B+\vec{A} C=$
A. $\vec{A} D$
B. $2 \vec{A} D$
C. $3 \vec{A} D$
D. $4 \vec{A} D$

Answer: B

- Watch Video Solution

76. If D, E, F are the midpoints of $B C, C A, A B$ of $\Delta A B C$, then $\vec{A} D+\vec{B} E+\vec{C} F=$
A. 0
B. $3 \vec{O} D$
C. $3 \vec{O} E$
D. $\vec{O} D+\vec{O} E+\vec{O} F$
77. If D, E are the midpoints of AB, AC of $\Delta \mathrm{ABC}$ and $\vec{D} E=\lambda \vec{B} C$ then $\lambda=$
A. 1
B. 2
C. $1 / 2$
D. 3

Answer: C

- Watch Video Solution

78. If D, E are the midpoints of AB, AC of $\triangle \mathrm{ABC}$, then $\vec{B} E+\vec{D} C=$
A. $\vec{B} C$
B. $\frac{1}{2} \vec{B} C$
C. $2 \vec{B} C$
D. $\frac{3}{2} \vec{B} C$

Answer: D

- Watch Video Solution

79. If S is the circumcentre, G the centroid, O the orthocentre of $\Delta A B C$, then $\vec{S} A+\vec{S} B+\vec{S} C=$
A. $\vec{S} G$
в. $\overrightarrow{O S}$
C. $\overrightarrow{S O}$
D. $\overrightarrow{O G}$

Answer: C

- Watch Video Solution

80. If S is the circumcentre, O is the orthocentre of $\Delta A B C$ then $\vec{O} A+\overrightarrow{O B}+\vec{O} C=$
A. $\overrightarrow{S O}$
B. $2 \vec{S} O$
c. $\overrightarrow{O S}$
D. $2 \overrightarrow{O S}$

Answer: D

- Watch Video Solution

81. If $A=(3,2,5), B=(3,3,5)$ and $C=(3,4,8)$ are the vertices of a triangle $A B C$, then its centroid is
A. $(3,3,5)$
B. $(3,4,7)$
C. $(3,4,6)$

D. $(3,3,6)$

Answer: D

- Watch Video Solution

82. If $4 i+7 j+8 k, 2 i+3 j+4 k, 2 i+5 j+7 k$ are position vectors of A, B, C of
$\Delta \mathrm{ABC}$ then position vector of the point where the bisector of angle A meets $B C$ is
A. $2 i+\frac{11}{3} j+\frac{17}{3} k$
B. $2 i+\frac{7}{2} j+6 k$
C. $6 i+11 j+17 k$
D. $2 i+4 j+\frac{5}{2} k$

Answer: B

D Watch Video Solution

83. P, Q, R are the midpoints of the sides $A B, B C$ and $C A$ of the triangle $A B C$ and O is a point within the triangle, then $O A+O B+O C=$
A. $2(O P+O Q+O R)$
B. $O P+O Q+O R$
C. $4(O P+O Q+O R)$
D. none

Answer: B

- Watch Video Solution

84. If the position vectors of A, B are $i+2 j-3 k, 3 i-2 j+5 k$ respectively then the position vector of C in $A B$ produced such that $2 A C=3 A B$ is
A. $(1 / 3)(-4 i+5 j+17 k)$
B. $(1 / 3)(4 i-5 j+17 k)$
C. $(1 / 3)(4 i+5 j-17 k)$
D. none

Answer: A

- Watch Video Solution

85. If a, b, c are position vectors of three vertices of an equilateral triangle whose orthocentre is at the origin, then
A. $a+b+c=0$
B. $a^{2}+b^{2}=c^{2}$
C. $a+b=c$
D. none

Answer: A

86. a and b are unit vectors along $O A, O B$ and $O C$ bisects the angle AOB.

The unit vector along OC is
A. $\frac{a+b}{2}$
B. $\frac{a-b}{2}$
C. $\frac{a+b}{|a+b|}$
D. $\frac{a-b}{|a-b|}$

Answer: C

- Watch Video Solution

87. Let O be the origin and A, B be two points p, q are vectors represented by $O A$ and $O B$ and their magnitudes are p, q. The unit vector bisecting the angle AOB is
A. $\frac{p / p+q / q}{|p / p|+|q / q|}$
B. $\frac{p / p+q / q}{|p / p+q / q|}$
C. $\frac{p / p+q / q}{|p+q|}$
D. $\frac{p+q}{2}$

Answer: B

- Watch Video Solution

88. The vector ai $+\mathrm{bj}+\mathrm{ck}$ is a bisector of the angle between the vectors i
+j and $\mathrm{j}+\mathrm{k}$ if
A. $a=b$
B. $a=c$
C. $c=a+b$
D. $a=b=c$

Answer: B

89. If $\vec{O} A=i+3 j-2 k, \vec{O} B=3 i+j-2 k$ and C is a point on AB such that OC bisects angle AOB then $\vec{O} C=$
A. $4(i+j-k)$
B. $2(i+j-k)$
C. $i+j-k$
D. none

Answer: B

- Watch Video Solution

90. If $4 i+7 j+8 k, 2 i+3 j+4 k, 2 i+5 j+7 k$ are position vectors of A, B, C of
$\Delta A B C$ then position vector of the point where the bisector of angle A meets $B C$ is
A. $(2,13 / 3,6)$
B. $(-2,13 / 3,6)$
C. $(2,-13 / 3,6)$
D. $(2,13 / 3,-6)$

Answer: A

- Watch Video Solution

91. Let $\mathrm{A}(4,7,8), \mathrm{B}(2,3,4)$ and $\mathrm{C}(2,5,7)$ be the position vectors of the vertices of a triangle $A B C$. The length of the internal bisector of the angle at A is
A. $\frac{3}{2} \sqrt{34}$
B. $\frac{2}{3} \sqrt{34}$
C. $\frac{1}{2} \sqrt{34}$
D. $\frac{1}{3} \sqrt{34}$

Answer: B

92. Let vector of magnitude $3 \sqrt{6}$ along the internal bisector of the angle between the vectors $4 \mathrm{i}-7 \mathrm{j}+4 \mathrm{k}$ and $\mathrm{i}+2 \mathrm{j}-2 \mathrm{k}$ is
A. $\pm(7 i+2 j+2 k)$
B. $\pm(7 i-j+2 k)$
C. $\pm(7 i-j-2 k)$
D. none

Answer: C

- Watch Video Solution

93.

- View Text Solution

- View Text Solution

96.

- View Text Solution

97.

- View Text Solution

98.

View Text Solution
99.

View Text Solution
100.

- View Text Solution

101.

View Text Solution
102.

- View Text Solution

103.
104.

- View Text Solution

105.

- View Text Solution

106.

- View Text Solution

107.

- View Text Solution

108.

View Text Solution

109.

- View Text Solution

110.

- View Text Solution

111.

View Text Solution

View Text Solution
114.

- View Text Solution

115.

View Text Solution
116.

View Text Solution

- View Text Solution

118. The vector equation to the line passing through the points $(-2,3,5)$, $(1,2,3)$ is
A. $r=(1-t)(-2 i+3 j+5 k)+t(i+2 j+3 k)$
B. $r=(1-t)(2 i+j+3 k)+t(-4 i+3 j-k)$
C. $r=(1-t)(2 i-3 j+4 k)+t(4 i+2 j-3 k)$
D. none

Answer: A

Watch Video Solution

119. The vector equation to the line passing through the points $2 i+j+3 k$, $-4 i+3 j-k$ is
A. $r=(1-t)(-2 i+3 j+5 k)+t(i+2 j+3 k)$
B. $r=(1-t)(2 i+j+3 k)+t(-4 i+3 j-k)$
C. $r=(1-t)(2 i-3 j+4 k)+t(4 i+2 j-3 k)$
D. none

Answer: B

- Watch Video Solution

120. The vector equation to the line passing through the points $a+2 b+$ $3 c, 2 a+3 b-4 c$ is
A. $r=(1-t)(a+2 b+3 c)+t(2 a-3 b+4 c)$
B. $r=(1-t)(a+2 b-3 c)+t(2 a+3 b-4 c)$
C. $r=(1-t)(a+2 b+3 c)+t(2 a+3 b-4 c)$
D. $r=(1-t)(a+2 b-3 c)+t(2 a-3 b+4 c)$
121. The cartesian equation of the line passing through the points $2 i+j+3 k,-4 i+3 j-k$ is
A. $\frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{2}$
B. $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{2}$
C. $\frac{x+2}{3}=\frac{y+1}{-1}=\frac{z-3}{2}$
D. $\frac{x+2}{3}=\frac{y+1}{-1}=\frac{z+3}{2}$

Answer: A

- Watch Video Solution

122. The lineas $r=(6-6 s) a+(4 s-4) b+(4-8 s) c$ and $r=(2 t-1) a+(4 t-2)$ b-(2t+3)cintersect at

$$
\text { A. } 4 \mathrm{c}
$$

B. $-4 c$
C. 3c
D. $-2 c$

Answer: B

- Watch Video Solution

123. If the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are $3 \bar{i}+2 \bar{j}+\bar{k}, 4 \bar{i}+5 \bar{j}+5 \bar{k}, 4 \bar{i}+2 \bar{j}-2 \bar{k}, 6 \bar{i}+5 \bar{j}-\bar{k}$ respectively then the position vector of the point of intersection of lines $A B$ and $C D$ is
A. $2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$
B. $2 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$
C. $2 i+j+3 k$
D. $2 \mathrm{i}-\mathrm{j}-3 \mathrm{k}$
124. Find the equation of the line parallel to the vector $2 \bar{i}-\bar{j}+2 \bar{k}$, and which passes through the point A whose position vector is $3 \bar{i}+\bar{j}-\bar{k}$. If P is a point on this line such that $A P=15$, find the position vector of P.
A. $13 i-4 j+9 k$
B. $13 i+4 j+9 k$
C. $13 i+4 j-9 k$
D. $13 \mathrm{i}-4 \mathrm{j}-9 \mathrm{k}$

Answer: A

- Watch Video Solution

125. The vector equation of the plane passing through the point $2 i+2 j-$ 3 k and parallel to the vectors $3 \mathrm{i}+3 \mathrm{j}-5 \mathrm{k}, \mathrm{i}+2 \mathrm{j}+\mathrm{k}$ is
A. $r=s(2 i+j-k)+t(i+2 j+2 k)$
B. $r=2 i+2 j-3 k+s(3 i+3 j-5 k)+t(i+2 j+k)$
C. $r=(i+2 j+3 k)+s(-2 i+3 j+k)+t(2 i-3 j+4 k)$
D. none

Answer: B

- Watch Video Solution

126. The vector equation of the plane passing through the point $(1,-2,-3)$ and parallel to the vectors $(2,-1,3),(2,3,-6)$ is
A. $r=(i-2 j-3 k)+s(2 i-j+3 k)+t(2 i+3 j-6 k)$
B. $r=(1-s-t)(i-2 j-3 k)+s(2 i-j+3 k)+t(2 i+3 j-6 k)$
C. $r=(i-2 j-3 k)+s(4 j-9 k)$
D. $r=(4 j-9 k)+s(i-2 j-3 k)$
127. The vector equation of the plane passing through the points $(1,-2,5)$, $(0,-5,-1),(-3,5,0)$ is

$$
\begin{aligned}
& \text { A. } r=(1-s-t)(i-2 j+5 k)+s(-5 j-k)+t(-3 i+5 j), s, t \text { are scalars } \\
& \text { B. } r=(1-s-t)(i+2 j+3 k)+s(3 i+2 j+k)+t(2 i+j+3 k), s, t \text { are scalars } \\
& \text { C. } r=(1-s-t)(2 i+j+k)+s(i-j-k)+t(-i+j+2 k), s, t \text { are scalars } \\
& \text { D. } r=(1-s-t)(i-2 j+5 k)+s(-5 j-k)+t(-3 i+5 j), s, t \text { are scalars }
\end{aligned}
$$

Answer: A

- Watch Video Solution

128. The vector equation of the plane passing through the points $i+2 j+$ $5 k,-5 j+k,-3 i+5 j$ is

$$
\text { A. } r=(1-s-t)(i-2 j+5 k)+s(-5 j-k)+t(-3 i+5 j), s, t \text { are scalars }
$$

B. $r=(1-s-t)(i+2 j+3 k)+s(3 i+2 j+k)+t(2 i+j+3 k), s, t$ are scalars
C. $r=(1-s-t)(2 i+j+k)+s(i-j-k)+t(-i+j+2 k), s, t$ are scalars
D. $r=(1-s-t)(i-2 j+5 k)+s(-5 j-k)+t(-3 i+5 j), s, t$ are scalars

Answer: A

- Watch Video Solution

129. Subtract $3 a-2 b+4 c$ from the sum of $-2 a+b-5 c$ and $3 a-2 b+c$

- Watch Video Solution

130. If a, b are two points then $r=(1-p) a+p b$ represents
A. line
B. plane
C. plane passing through origin
D. sphere

- Watch Video Solution

131. If a, b, c are three noncollinear points then $r=(1-p-q) a+p b+q c$ represents If a, b are two points then $r=(1-p) a+p b$ represents
A. line
B. plane
C. plane passing through origin
D. sphere

Answer: B

D View Text Solution

132. If $r=\alpha a+\beta b+\gamma c$ represents a plane passing through the points a, b, c then
A. $\alpha=\beta=\gamma$
B. $\alpha+\beta+\gamma=0$
C. $\alpha+\beta+\gamma=1$
D. $\alpha-\beta=\beta-\gamma=\gamma-\alpha$

Answer: C

- View Text Solution

133. If $r=\alpha a+\beta b+\gamma c$ represents a plane passing through the points a, b, c then
A. $\alpha=\beta=\gamma$
B. $\alpha+\beta+\gamma=0$
C. $\alpha+\beta+\gamma=1$
D. $\alpha-\beta=\beta-\gamma=\gamma-\alpha$

Answer: C

134. The point of intersection of the lines $l_{1}: r(t)=(i-6 j+2 k)+t(i+2 j+k), l_{2}: R(u)=(4 j+k)+u(2 i+j+$ is
A. $(4,4,5)$
B. $(6,4,7)$
C. $(8,8,9)$
D. $(10,12,11)$

Answer: C

- Watch Video Solution

135. P, Q, R and S are four points with the position vectors $3 \bar{i}-4 \bar{j}+5 \bar{k}, 4 \bar{k},-4 \bar{i}+5 \bar{j}+\bar{k}$ and $-3 \bar{i}+4 \bar{j}+3 \bar{k} \quad$ respectively. Then the line PQ meets the line RS at the point.
A. $3 i+4 j+3 k$
B. $-3 i+4 j+3 k$
C. $-i+4 j+k$
D. $i+j+k$

Answer: B

- Watch Video Solution

Exercise 2 Set 1

1. I : If three points A, B and C have position vectors $(1, x, 3),(3,4,7)$ and (y,
$-2,-5)$ respectively and if they are collinear, then $(x, y)=(2,-3)$
II: If $a=i+4 j, b=2 i-3 j$ and $c=5 i+9 j$ then $c=3 a+b$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

2.I: If $a=3 i-2 j+k, b=2 i-4 j-3 k, c=-i+2 j+2 k$ then $a+b+c=4 i+4 j$

II: If $a=i-j+2 k, b=2 i+3 j+k, c=i-k$, then magnitude of $a+2 b-3 c$ is
$\sqrt{78}$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

D Watch Video Solution

3. If a, b are noncollinear vectors and $A=(x+4 y) a+(2 x+y+1) b, B=(y-$ $2 x+2) a+(2 x-3 y-1) b$ and $3 A=2 B$, then $(x, y)=$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

4.I: If $a=i+4 j, b=2 i-3 j, c=5 i+9 j$ then $c=3 a+b$

II: If $a=3 i-6 j+2 k$ then the length of the vector is 3 .
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: A

- Watch Video Solution

5.I: If G is the centroid of the $\Delta A B C, \mathrm{G}^{\prime}$ is the centroid of the $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ then $\overline{A A^{\prime}}+\overline{B B^{\prime}}+\overline{C C^{\prime}}=3 \overline{G G^{\prime}}$

II : If S is the circumcentre, ' O ' is the orthocentre of $\Delta \mathrm{ABC}$ then

$$
\overline{S A}+\overline{S B}+\overline{S C}=\overline{S O}
$$

A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

6. I: The three points with position vectors $i-2 j+3 k, 2 i+3 j-4 k$ and $-7 j+$ 10k are collinear.

II : The vectors $a-2 b+3 c, 2 a+3 b-4 c,-7 b+10 c$ are coplanar.
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

7.I: If a, b are two points then $r=(1-s) a+s b$ represents a line.

II : If a, b, c are three noncollinear points then $r=(1-s-t) a+s b+t c$ represents a plane
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- View Text Solution

8. I: If $r \alpha a+\beta b$ represents a line passing through the points a, b then $\alpha+\beta=1$.

II : If $r=\alpha a+\beta b+\gamma c$ represents a plane passing through the points a, b, c then $\alpha+\beta+\gamma=1$.
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

D View Text Solution

9. I : Two non-zero, non-collinear vectors are linearly independent.

II : Any three coplanar vectors are linearly dependent. which one is true?
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

D Watch Video Solution

10. Statement I : The points $4 i+5 j+k,-j-k, 3 i+9 j+4 k$ and $-4 i+4 j+4 k$ are coplanar.

Statement II : The given points from the vertices of a parallelogram.
Which of the following is true?
A. Both statements are true and statement II is correct explanation of staement I
B. Both statements are true and statement II is not a correct explanation of statement I
C. Statement I is true and Statement II is false
D. Statement I is false and Statemetn II is true

Answer: C

- View Text Solution

Exercise 2 Set 2

1. If $a=2 i+3 j-k, b=-i+2 j+k$, then the ascending order of the following:
(A) $|a+b| \quad(B) \quad|a-b|$
(C) $|3 a+b| \quad$ (D) $\quad|a+2 b|$
A. $B<A<D<C$
B. $B<D<C<A$
C. $C<D<A<B$
D. $A<D<C<B$

Answer: A

- Watch Video Solution

2. If $a=2 i+2 j+k, b=i+j, c=3 i+4 k, d=12 i+3 j+4 k$ then the descending order of their magnitudes is
A. $|d|,|c|,|a|,|b|$
B. $|a|,|b|,|c|,|d|$
C. $|d|,|a|,|c|,|b|$
D. $|a|,|b|,|d|,|c|$
3. The ascending order of magnitudes of the vectors
(A) $\frac{i-2 j}{2}$
(B) $\frac{2 i+j+k}{\sqrt{6}}$
(C) $2 i-j+2 k$
(D) $3 i-4 j+6 k$
A. $A<B<C<D$
B. $B<A<C<D$
C. $A<D<C<D$
D. $A<C<B<D$

Answer: B

- Watch Video Solution

4. If m_{1}, m_{2}, m_{3} and m_{4} are respectively the magnitudes of the vectors
$a_{1}=2 i-j+k, a_{2}=3 i-4 j-4 k, a_{3}=i+j-k$ and $a_{4}=-i+3 j+$ then the correct order of $m_{1}, m_{2}, m_{3}, m_{4}$ is :
A. $m_{3}<m_{1}, \quad<m_{4}<m_{2}$
B. $m_{3}<m_{1}<m_{2}<m_{4}$
C. $m_{3}<m_{4}<m_{1}<m_{2}$
D. $m_{3}<m_{4}<m_{2}<m_{1}$

Answer: A

- Watch Video Solution

Exercise 2 Set 3

1. Match the following
I. $\mathrm{A}=(2,3,4), \mathrm{B}=(3,4,2), \mathrm{C}=(4,2,3)$
(a) Δ is isosceles
II. $\mathrm{A}=(2,-1,1,1), \mathrm{B}=(1,-3,-5), \mathrm{C}=(3,-4,-4)$
(b) $\triangle \mathrm{ABC}$ is equ
III. $\mathrm{A}=(1,1,1), \mathrm{B}=(1,2,3), \mathrm{C}=(2,-1,1)$
(c) $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are c
IV. $\mathrm{A}=(1,2,3), \mathrm{B}=(3,4,7), \mathrm{C}=(-3,-2,-5)$
(d) $\triangle \mathrm{ABC}$ is rigl
A. $a, d, c b$
B. $\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{c}$
C. a, b, c, d
D. b, d, a, c

Answer: D

- View Text Solution

2. If S is circumcentre and ' O ' is orthocentre of $\triangle A B C$, then match the following
I. $S A+S B+S C$
(a) $\frac{1}{2} O S$
II. $O A+O B+O C$
(b) $2 O S$
III. $A O+O B+O C$
(c) $2 A S$
IV. $O G$
(d) $\frac{2}{3} O S$
(e) $S O$
A. a, e, c, b
B. e, b, d, c
C. e, b, c, d
D. b, d, c, e

D View Text Solution

3. If D, E, F are the midpoints of sides $B C, C A, A B$ of triangle $A B C$ and G is the centroid then match the following
I $\quad A D+B E+C F$
(a) $C B$
II $G A+G B$
(b) $3 O G$
III. $A B+C A$
(c) O
IV. $O D+O E+O F$
(d) $-\frac{2}{3}(A D+B E)$
(e) 3 OE
A. c, d, a, b
B. d, b, a, c
C. c, d, e, a
D. $\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{a}$

Answer: A

4. D, E and F are the mid points of the sides $B C, C A$ and $A B$ respectively of
$\Delta A B C$. 'O' is any point Match List-I to List-II.
List I
List II
(I) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$ is equal to......
(a) $O D+O E+O F$
(II) $\mathrm{AD}+\mathrm{BE}+\mathrm{CF}$ is equal to
(b) O
(III) $O E+O F+\mathrm{DO}$ is
(c) $O A$
(IV) $A D+\frac{2}{3} B E+\frac{1}{3} \mathrm{CF}$ equal
(d) $\frac{1}{2} C$

The correct match is
A. $I \rightarrow a, I I \rightarrow b, I I I \rightarrow c, I V \rightarrow d$
B. $I \rightarrow a, I I \rightarrow c, I I I \rightarrow d, I V \rightarrow d$
C. $I \rightarrow c, I I \rightarrow d, I I I \rightarrow a, I V \rightarrow b$
D. $I \rightarrow c, I I \rightarrow a, I I I \rightarrow b, I V \rightarrow d$

Answer: A

D View Text Solution

1. A : If the positon vectors of A, B are $(2,3,5),(1,1,7)$ then the unit vector in the direction of $\overrightarrow{A B}$ is $\frac{-i-2 j+2 k}{3}$
R : Unit vector in the direction of $\overrightarrow{A B}$ is $\frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}$
A. A, R are correct, R is correct explanation of A
B. A, R are correct, R is not correct explanation of A
C. A is correct, R is false
D. A is false, R is correct

Answer: A

- Watch Video Solution

2. A : If $a=i+j+k, b=4 i+3 j+4 k, c=i+\alpha j+\beta k$ are linearly dependent and $|c|=\sqrt{3}$ then $\alpha= \pm 1, \beta=1$

R : For coplanar vectors every vector can be expressed as linear combination of other.
A. A, R are correct, R is correct explanation of A
B. A, R are correct, R is not correct explanation of A
C. A is correct, R is false
D. A is false, R is correct

Answer: A

- View Text Solution

3. $\mathrm{A}:(a, b)=\theta \Rightarrow(5 a,-3 b)=\pi-\theta$
$\mathrm{R}: m>0, n<0,(m a, n b)=\pi-(a, b)$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is ture, but R is false
D. A is false, but R is true
4. A : The centroid of the triangle formed by the points $2 a+3 b, 5 a+4 b$, $2 a-b$ is $3 a+2 b$.
R : The centroid of the triangle formed by the points $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is $\frac{a+b+c}{3}$
A. A, R are correct, R is correct explanation of A
B. A, R are correct, R is not correct explanation of A
C. A is correct, R is false
D. A is false, R is correct

Answer: A

- Watch Video Solution

5. A : $A B C D$ is a parallelogram. If G is the point of intersection of its diagonals and ' O ' is any point then $O A+O B+O C+O D=4 O G$ R : In a parallelogram diagonals bisect each other.
A. A, R are correct, R is correct explanation of A
B. A, R are correct, R is not correct explanation of A
C. A is correct, R is false
D. A is false, R is correct

Answer: A

- View Text Solution

6. A: The vector equation of the line passing through the point $2 i+3 j-4 k$ and parallel to the vector $6+3 j-4 k$ is $r=(2 i+3 j-4 k)+t(6 i+3 j-4 k)$. R : The vector equation of the line passing through the point a and parallel to the vector b is $r=a+t b$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is ture, but R is false
D. A is false, but R is true

Answer: A

- Watch Video Solution

7.A : The vector equation of the plane passing through the point $2 i+2 j-$ $3 k$ and parallel to the vectors $3 i+3 j-5 k, i+2 j+k$ is $r=2 i+2 j-3 k+s(3 i+$ $3 j-5 k)+t(i+2 j+k)$
R : The vector equation of the plane passing through the points a, b, c is r $=(1-s-t) a+s b+t c$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is ture, but R is false
D. A is false, but R is true

Answer: B

- Watch Video Solution

8. Observe the following statements :

Assertion (A) : Three vectors are coplanar if one of them is expressible as a linear combination of the other two.

Reason (R) : Any three coplanar vectors are linearly dependent.
Then which of the following is true?
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are ture but R is not the correct explanation of A.
C. A is ture, but R is false
D. A is false, but R is true

Answer: B

- Watch Video Solution

