©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

DIRECTION COSINES AND DIRECTION RATIOS

Solved Examples

1. If A, B, C are the points $(0,4,1),(2,3,-1),(4,5,0)$ respectively, then angle between $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$ is
A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 2$
D. $\pi / 4$
2. The foot of the perpendicular from $(1,2,3)$ to the line joining the points $(6,7,7)$ and $(9,9,5)$ is
A. $(5,3,9)$
B. $(3,5,9)$
C. $(3,9,5)$
D. $(3,9,9)$

Answer: B

- Watch Video Solution

3. If the line joining the points $(-1,2,3),(2,-1,4)$ is perpendicular to the line joining the points $(x,-2,4),(1,2,3)$ then $x=$
A. 3
B. 10
C. $-3 / 10$
D. $-10 / 3$

Answer: D

- Watch Video Solution

4. If the d.c.'s (l, m, n) of two lines are connected by the relations $l+m+n=0$ and $2 m n+3 \ln -5 l m=0$ then the angle between the lines is
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 6$
D. $\pi / 2$

Answer: D

5. If $A(4,3,5), B(6,4,3), C(2,-1,4), D(0,1,5)$ then the projection of $\overline{A B}$ on $\overline{C D}$ is
A. 0
B. $3 / 4$
C. $-4 / 3$
D. $-3 / 4$

Answer: C

- Watch Video Solution

6. If α, β, γ are respectively the acute angles made by any line with the coordinate axes then
A. $\alpha+\beta+\gamma=90^{\circ}$
B. $\alpha+\beta+\gamma=360^{\circ}$
C. $0<\alpha+\beta+\gamma<270^{\circ}$
D. $\alpha+\beta+\gamma=180^{\circ}$

Answer: C

- View Text Solution

7. If the feet of the perpendiculars from $(3,4,5)$ to the coordinate axes are $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and the angle between AB and AC is $\cos ^{-1}\left(\frac{9}{a}\right)$ then $\mathrm{a}=$
A. $5 \sqrt{34}$
B. $3 \sqrt{34}$
C. $\sqrt{34}$
D. 25

Answer: A

8. If $(2,5,1)$ and $(9,10,5)$ are the ends of a diagonal of a rectangular parallelopiped whose faces are parallel to the coordinate planes, then the lengths of edges are
A. $7,5,4$
B. $17,4,5$
C. $14,5,7$
D. $4,7,15$

Answer: A

- Watch Video Solution

9. If a, b, C are direction ratios of line which lies 2 and 10 and such that (i) the sum of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is 19 (ii) $\mathrm{a}, \mathrm{b}, 11$ are in arithmetic progression (iii) $\mathrm{a}, \mathrm{c}, 27$ are in geometric progression then the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are
A. $3,6,10$
B. 3, 7, 9
C. $5,6,7$
D. $4,6,9$

Answer: B

- Watch Video Solution

Exercise 1

1. If $\mathrm{OP}=21$ and d.c. 's of $\overrightarrow{O P}$ are $\left(\frac{2}{7}, \frac{6}{7},-\frac{3}{7}\right)$ then $\mathrm{P}=$
A. $(6,-12,4)$
B. $(6,18,-9)$
C. $(3 / 2,-6,2)$
D. $(5,-10,6)$

- Watch Video Solution

2. If $\mathrm{P}=(-2,3,6)$ then the d.c.'s of $\overrightarrow{O P}$ are
A. $\left(\frac{3}{13}, \frac{4}{13},-\frac{12}{13}\right)$
B. $(6,6,-3)$
C. $\left(-\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$
D. $(2,2,-1)$

Answer:

Watch Video Solution

3. The direction cosines of the line passing through $P(2,3,-1)$ and the origin are
A. $\left(\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
B. $\left(\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
C. $\left(\frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
D. $\left(\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}\right)$

Answer:

- Watch Video Solution

4. If a line makes anles $\pi / 3, \pi / 4$ with the positive x-axis and y-axis then the angle made by the line with positive z-axis is
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $5 \pi / 12$

Answer:

5. If a line makes angles $60^{\circ}, 60^{\circ}$ with the positive x-axis and y-axis then the angle made by the line with positive z-axis is
A. 0
B. 45° or 135°
C. 60° or 120°
D. 90°

Answer:

- Watch Video Solution

6. If a line makes an angle of π / 4with the positive directions of each of x axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is
A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 2$

Answer:

- Watch Video Solution

7. if the angles made by a straight line with the coordinate axes are $\alpha, \frac{\pi}{2}-\alpha, \beta$ then $\beta=$
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. π

Answer:

8. If α, β, γ are the angles made by a line with the positive directions of the coordinate axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. 0
B. 1
C. 2
D. $\sqrt{2}$

Answer:

- Watch Video Solution

9. If a line in the space makes angles α, β, and γ with the coordinatess axes, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. -1
B. 0
C. 1
D. 2

Answer:

- Watch Video Solution

10. A line makes the same angle θ, with each of the x and z axis. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta, \quad$ then $\cos ^{2} \theta=$
A. $2 / 3$
B. $2 / 5$
C. $3 / 5$
D. $1 / 5$

Answer:

- Watch Video Solution

11. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive x-axis and the positive y-axis respectively. If $A B$ makes an acute angle θ with the positive z-axis, then θ equals
A. 30°
B. 45°
C. 60°
D. 75°

Answer:

12. A straight line is equally inclined to all the three coorinate axes. Then an angle made by the line with the y-axis is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

13. The number of lines which are equally inclined to the coordinate axes is
A. 2
B. 4
C. 6
D. 8

Answer:

- Watch Video Solution

14. The d.c.'s of a line which is equally inclined to the coordinate axes are
A. $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
B. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$
D. $\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$

Answer:

- Watch Video Solution

15. If the d.r.'s of a line are $(3,-4,12)$ then d.c.'s of the line are
A. $\left(\frac{4}{3}, \frac{2}{3},-\frac{4}{3}\right)$
B. $\left(\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right)$
C. $\left(\frac{2}{6}, \frac{1}{6},-\frac{2}{6}\right)$
D. $\left(\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}\right)$

Answer:

- Watch Video Solution

16. The d.c.'s of the line joining the points $A(4,3,1), B(-2,1,-2)$ are
A. $\left(\frac{2}{7},-\frac{3}{7},-\frac{6}{7}\right)$
B. $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$
C. $\left(-\frac{2}{7},-\frac{3}{7}, \frac{6}{7}\right)$
D. $\left(\frac{2}{7}, \frac{3}{7},-\frac{6}{7}\right)$

Answer:

17. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ are d.c's of two lines then find the value of $\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-n_{1} m_{2}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1}\right.$
A. 0
B. 1
C. 2
D. 4

Answer:

- Watch Video Solution

18. If $(2,1,-1)$ and ($1,-1,-1$) are direction ratios of two lines, then the direction cosines of a line perpendicular to both the lines are
A. $\left(\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right)$
B. $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
C. $\left(-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
D. $\left(\frac{2}{\sqrt{14}},-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Answer:

- Watch Video Solution

19. IF the d.r.'s of $\overleftrightarrow{O A}, \overleftrightarrow{O B}$ are (1, $-2,-1$), (3, -2,3) then the d.c.'s of the normal to the plane $\overleftrightarrow{A O B}$ are
A. $\left(\frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}},-\frac{2}{\sqrt{29}}\right)$
B. $\left(\frac{11}{\sqrt{171}}, \frac{7}{\sqrt{171}}, \frac{1}{\sqrt{17}}\right)$
C. $\left(\frac{3}{29},-\frac{2}{9}, \frac{4}{29}\right)$
D. $\left(\frac{3}{\sqrt{29}},-\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}\right)$

Answer:

20. The direction ratios of two lines $A B, A C$ are $1,-1,-1$ and $2,-1,1$. The direction ratios of the normal to the plane $A B C$ are
A. $2,3,-1$
B. $2,2,1$
C. 3, 2, -1
D. $-1,2,3$

Answer:

Watch Video Solution
21. If $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ are d.r.'s of two perpendicular lines then
A. $a_{1} a_{2}=b_{1} b_{2}=c_{1} c_{2}$
B. $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
C. $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
D. $a_{1} a_{2}+b_{1} b_{2}=c_{1} c_{2}$

- Watch Video Solution

22. If $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ are d.r.'s of two perpendicular lines then
A. $a_{1} a_{2}=b_{1} b_{2}=c_{1} c_{2}$
B. $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
C. $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
D. $a_{1} a_{2}+b_{1} b_{2}=c_{1} c_{2}$

Answer:

- Watch Video Solution

23. If the direction cosines of any two lines are ($-2 / 3,1 / 3,2 / 3$), ($3 / 5,4 / 5,0$) respectively, then the angle between those two lines is
A. $\cos ^{-1}\left(\frac{1}{7}\right)$
B. $\cos ^{-1}\left(\frac{2}{15}\right)$
C. $\cos ^{-1}\left(\frac{5}{7}\right)$
D. $\cos ^{-1}\left(\frac{10}{7}\right)$

Answer:

- Watch Video Solution

24. The angle between the lines whose direction cosines are $(\sqrt{3} / 4,1 / 4, \sqrt{3} / 2)$ and $(\sqrt{3} / 4,1 / 4,-\sqrt{3} / 2)$, is
A. π
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 4$
25. If $\mathrm{P}(2,3,-6), \mathrm{Q}(3,-4,5)$ are two points, then $\angle P O Q$ is
A. $\cos ^{-1}\left(\frac{18 \sqrt{2}}{35}\right)$
B. $\cos ^{-1}\left(\frac{81}{\sqrt{98} \sqrt{73}}\right)$
C. $\cos ^{-1}\left(\frac{5}{7}\right)$
D. $\cos ^{-1}\left(\frac{10}{7}\right)$

Answer:

- Watch Video Solution

26. If $\mathrm{P}=(0,1,2), \mathrm{Q}=(4,-2,1), \mathrm{O}=(0,0,0)$ then $\angle P O Q=$
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer:

- Watch Video Solution

27. The cosine of the angle A of the triangle with vertices $A(1,-1,2), B(6,11$,
2), $C(1,2,6)$ is
A. $\frac{63}{65}$
B. $\frac{36}{65}$
C. $\frac{16}{65}$
D. $\frac{13}{64}$

Answer:

28. The angle between the lines passing through the points $(8,2,0),(4,6$, $-7) ;(-3,1,2),(-9,-2,4)$ is
A. $\cos ^{-1}(2 / 63)$
B. $\cos ^{-1}(20 / 63)$
C. $\pi / 2$
D. $\pi / 5$

Answer:

- Watch Video Solution

29. The angle between the line passing through the points ($3,1,-2$) and (4, $0,-4)$ and the line passing through the points $(4,-3,3)$ and $(6,-2,2)$ is
A. $\cos ^{-1}(2 / 63)$
B. $\cos ^{-1}(20 / 63)$
C. $\pi / 3$
D. $\pi / 5$

Answer:

- Watch Video Solution

30. If $A(3,4,5), B(4,6,3), C(-1,2,4)$ and $D(1,0,5)$ are such that the angle between the lines $\overline{D C}$ and $\overline{A B}$ is θ then $\cos \theta=$
A. $\frac{2}{9}$
B. $\frac{4}{9}$
C. $\frac{5}{9}$
D. $\frac{7}{9}$

Answer:

31. If the d.r.'s of two lines are $(1,-1,0)$ and $(1,-2,1)$ then the angle between them is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

32. If the line joining the points $(k, 1,2),(3,4,6)$ is parallel to the line joining the points $(-4,3,-6),(5,12, I)$ then $(k, I)=$
A. $(-2,7)$
B. $(0,6)$
C. $(0,-6)$
D. $(2,-7)$

Answer:

- Watch Video Solution

33. If the line joining the points $A(4,1,2), B(5, x, 0)$ is parallel to the line joining the points $\mathrm{P}(2,1,1), \mathrm{Q}(3,3,-1)$ then $\mathrm{x}=$
A. $1 / 2$
B. 3
C. 2
D. $-3 / 2$

Answer:

34. If the d.r.'s of two lines are $(x, 3,5)$ and $(2,-1,2)$ and if the angle between those lines is 45°, then the value of x is
A. 4
B. 5
C. 2
D. 1

Answer:

- Watch Video Solution

35. If the line joining the points $(2,3,4),(0,1,2)$ is perpendicular to the line joining the points $(x, 0,4),(7,-4,3)$ then $x=$
A. 2
B. 10
C. $-3 / 10$
D. $-10 / 3$

Answer:

- Watch Video Solution

36. If O is the origin and $\mathrm{P}=(1,-2,1)$ and $O P \perp O Q$, then $\mathrm{Q}=$
A. $(4,3,2)$
B. $(3,2,4)$
C. $(2,3,4)$
D. $(1,-2,3)$

Answer:

37. If the d.c. 's (l, m, n) of two lines are connected by the relations $l+m+n=0,2 l m-m n+2 n l=0$ then the d.c.'s of the two lines are
A. $(1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6}),(1 / \sqrt{6},-2 / \sqrt{6}, 1 / \sqrt{6})$
B. $(1 / 14,2 / 14,3 / 14),(1 / 26,3 / 26,4 / 36)$
C. $(1 / \sqrt{14}, 2 / \sqrt{14}, 3 / \sqrt{14}),(1 / \sqrt{26}, 3 / \sqrt{26}, 4 / \sqrt{26})$
D. none

Answer:

- Watch Video Solution

38. If the d.c.'s (I, m, n) of two lines are connected by the relations $l+5 m+3 n=0,7 l^{2}+5 m^{2}-3 n^{2}=0$ then the d.c.'s of the two lines are
A. $(1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6}),(1 / \sqrt{6},-2 / \sqrt{6}, 1 / \sqrt{6})$
B. $(1 / \sqrt{14},-2 / \sqrt{14}, 3 / \sqrt{14}),(1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6})$
C. $(1 / \sqrt{14}, 2 / \sqrt{14}, 3 / \sqrt{14}),(1 / \sqrt{26}, 3 / \sqrt{26}, 4 / \sqrt{26})$
D. none

Answer:

- Watch Video Solution

39. If the d.c.'s ($\mathrm{l}, \mathrm{m}, \mathrm{n}$) of two lines are connected by the relations $7 l^{2}+5 m^{2}-3 n^{2}=0, l-5 m+3 n=0$ then the d.c.'s of the two lines are
A. $(1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6}),(1 / \sqrt{6},-2 / \sqrt{6}, 1 / \sqrt{6})$
B. $(1 / \sqrt{14},-2 / \sqrt{14}, 3 / \sqrt{14}),(1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6})$
C. $(1 / \sqrt{14}, 2 / \sqrt{14}, 3 / \sqrt{14}),(-1 / \sqrt{6}, 1 / \sqrt{6}, 2 / \sqrt{6})$
D. none

Answer:

40. If the d.c.'s (I, m, n) of two lines are connected by the relations $l+m-n=0,12 l m-m n-61 n=0$ then the angle between the lines is
A. $\cos ^{-1} \frac{19}{\sqrt{364}}$
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

41. If the d.c.'s (I, m, n) of two lines are connected by the relations $3 l+m+5 n=0,6 m n-2 n l+5 l m=0$ then the angle between the lines is

$$
\text { A. } \cos ^{-1}\left(\frac{1}{6}\right) \text { or } \pi-\cos ^{-1}\left(\frac{1}{6}\right)
$$

B. 45°
C. 60° or 120°
D. $\cos ^{-1} \frac{19}{\sqrt{364}}$

Answer:

- Watch Video Solution

42. The direction ratios of two lines are given by $a+b+c=0,2 a b+2 a c-b c=0$. Then the angle between the lines is
A. π
B. $\pi / 3$
C. $\pi / 2$
D. $\pi / 6$

Answer:

43. If the d.c.'s (I, m, n) of two lines are connected by the relations $l+m+n=0$ and $2 m n+3 \ln -5 l m=0$ then the angle between the lines is
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 6$
D. $\pi / 2$

Answer:

Watch Video Solution

44. If the direction ratios of two lines are given by $l+m+n=0, m n-2 n+l m=0$, then the angle between the lines is
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. 0

Answer:

- Watch Video Solution

45. If the direction rations of two lines are given by $31 m-41 n+m n=0$ and \mid
$+2 m+3 n=0$ then the angle between the lines is
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer:

46. The acute angle between the two lines whose direction ratios are given by $l+m-n=0$ and $l^{2}+m^{2}-n^{2}=0$ is
A. 0
B. $\pi / 6$
C. $\pi / 4$
D. $\pi / 3$

Answer:

- Watch Video Solution

47. Find the angle between the lines whose d.c's are related by $l+m+n=0 \& l^{2}+m^{2}-n^{2}=0$
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer:

- Watch Video Solution

48. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer:

49. If the direction cosines of two lines are given by $l+m+n=0$ and $l^{2}-5 m^{2}+n^{2}=0$ then the angle between them is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

50. If the d.c.'s (l, m, n) of two lines are connected by the relations $2 l+m+2 n=0$ and $3 l^{2}+5 m^{2}-11 n^{2}=0$ then the angle between the lines is
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 6$
D. $\pi / 2$

Answer:

- Watch Video Solution

51. P.T the smaller angle θ between any two diagonals of a cube is given by $\cos \theta=1 / 3$
A. $\cos ^{-1}(1 / 3)$
B. $\cos ^{-1} \sqrt{2 / 3}$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(2 / 3)$

Answer:

52. The angle between a diagonal of a cube and the diagonal of a face of the cube is
A. $\cos ^{-1}(1 / 3)$
B. $\cos ^{-1} \sqrt{2 / 3}$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(2 / 3)$

Answer:

- Watch Video Solution

53. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda+\cos ^{2} \delta=\frac{4}{3}$.
A. $1 / 3$
B. $2 / 3$
C. $1 / 5$
D. $4 / 3$

Answer:

- Watch Video Solution

54. If (6,-2,-3),(1,2,2) are d.r's of two lines then the d.c's of line bisecting the angle between them are
A. $\left(\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}}, \frac{5}{\sqrt{714}}\right),\left(\frac{11}{\sqrt{1050}},-\frac{20}{\sqrt{1050}},-\frac{23}{\sqrt{1050}}\right)$
B. $\left(\frac{13}{\sqrt{210}}, \frac{4}{\sqrt{210}}, \frac{5}{\sqrt{210}}\right),\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$
C.

$$
\begin{aligned}
& \quad\left(-\frac{25}{\sqrt{714}}, \frac{8}{\sqrt{714}},-\frac{5}{\sqrt{714}}\right),\left(\frac{11}{\sqrt{1050}},-\frac{20}{\sqrt{1050}},-\frac{23}{\sqrt{1050}}\right) \\
& \text { D. }\left(\frac{23}{\sqrt{210}}, \frac{40}{\sqrt{210}}, \frac{5}{\sqrt{210}}\right),\left(\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)
\end{aligned}
$$

Answer:

55. The projection of the join of the points $(3,4,2),(5,1,8)$ on the line whose d.c.'s are $\left(\frac{2}{7},-\frac{3}{7}, \frac{6}{7}\right)$ is
A. 7
B. $46 / 13$
C. $42 / 13$
D. $38 / 13$

Answer:

- Watch Video Solution

56. The projection of the line segment joining the origin and the point P
$(5,2,4)$ on the line whose d.c.'s are $\left(\frac{2}{7},-\frac{3}{7}, \frac{6}{7}\right)$ is
A. 13
B. 10
C. 6
D. 4

Answer:

- Watch Video Solution

57. The projection of the join of the two points $A(2,3,4), B(3,5,-2)$ on the line whose d.r.'s are $(2,3,-6)$ is
A. $7 / 3$
B. $7 / 6$
C. 21
D. $44 / 7$

Answer:

58. If the projections of the line segment $\overline{P Q}$ on the axes are $3,4,12$ then the length of $\overline{P Q}$ is
A. 12
B. 13
C. $\sqrt{50}$
D. $2 \sqrt{5}$

Answer:

- Watch Video Solution

59. If the projections of a line segment on the axes are $3,-4,12$ then the length of the segment and d.c.'s of the line are
A. $13,\left(\frac{3}{13},-\frac{4}{13}, \frac{12}{13}\right)$
B. $3,\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
C. $13\left(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\right)$
D. none

Answer:

- Watch Video Solution

60. If the porjections of a line segment on the axes are $2,1,2$ then the length of the segment and d.c.'s of the line are
A. $13,\left(\frac{3}{13},-\frac{4}{13}, \frac{12}{13}\right)$
B. $3,\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
C. $13\left(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\right)$
D. none

Answer:

- Watch Video Solution

61. The projections of a vector on the three coordinate axes are $6,-3,2$ respectively. The direction cosines of the vector are
A. $\frac{6}{5},-\frac{3}{5}, \frac{2}{5}$
B. $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
C. $-\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$
D. $6,-3,2$

Answer:

- Watch Video Solution

62. If $A=(-2,3,4), B=(-4,4,6), C=(4,3,5), D=(0,1,2)$ then the projection of $A B$ on $C D$ is
A. 0
B. 5
C. 7
D. 27

Answer:

- Watch Video Solution

63. If $\mathrm{A}(2,-1,4), \mathrm{B}(0,1,5), \mathrm{C}(4,3,5), \mathrm{D}(6,4,3)$ then the projection of $\overline{A B}$ on $\overline{C D}$ is
A. $4 / 3$
B. $3 / 4$
C. $-4 / 3$
D. $-3 / 4$

Answer:

64. If the projection of a line of length d on the coordinate axes are d_{1}, d_{2}, d_{3} respectively then, prove that $d^{2}=\frac{d_{1}^{2}+d_{2}^{2}+d_{3}^{2}}{2}$
A. $2 d^{2}$
B. $3 d^{2}$
C. d^{2}
D. $5 d^{2}$

Answer:

Watch Video Solution

65. If $A(3,-1,11), B(0,2,3), C(4,8,11)$ are three points, then the foot of the perpendicular drawn from the point A to the line joining the points B and C is
A. $(3,5,7)$
B. $(2,5,7)$
C. $(5,9,6)$
D. $(1,2,3)$

Answer:

- Watch Video Solution

Exercise 2 Set 1

1. I : If $\mathrm{OP}=21$ and d.c.'s of $\overrightarrow{O P}$ are $(2 / 7,6 / 7,-3 / 7)$ then $\mathrm{P}=(6,18,-9)$.

II : If $\mathrm{P}=(3,4,-12)$ then d.c.'s of $\overrightarrow{O P}$ are $(3 / 13,4 / 13,-12 / 13)$
A. Only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer:

2. If α, β, γ are the angles made by a line with the positive directions of the coordinate axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. Only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer:

- Watch Video Solution

3. If $\mathrm{P}=(0,1,2), \mathrm{Q}=(4,-2,1), \mathrm{O}=(0,0,0)$ then $\angle P O Q=$
A. Only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer:

- Watch Video Solution

4. The direction ratios of two lines are given by $a+b+c=0,2 a b+2 a c-b c=0$. Then the angle between the lines is
A. Only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer:

1. If the d.c.'s are $(\mathrm{I}, \mathrm{m}, \mathrm{n})$ whose d.r's of a ray are $(3,-4,12)$ then ascending order of $\mathrm{I}, \mathrm{m}, \mathrm{n}$ is
A. I, m, n
B. $\mathrm{m}, \mathrm{n}, \mathrm{l}$
C. m, I, n
D. $\mathrm{n}, \mathrm{I}, \mathrm{m}$

Answer:

- Watch Video Solution

2. The values of cosine of the angles made by the line with d.c.'s (2/7, 3/7, 6/7) with the lines with d.r.'s in descending order of magnitude is
A) $(1,0,0)$
B) $(0,1,0)$
C) $(0,0,1)$
D) $(1,1,1)$
A. D, C, B, A
B. C, D, A, B
C. B, A, D, C
D. A, B, C, D

Answer:

- Watch Video Solution

3. If the projections of $P Q$ on the axes are $2,-2,1$ then the length $P Q=$

- Watch Video Solution

