

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

EAMCET - 2016 TS

Questions

1. The length of the segment of the straight line passing through (3,3) and (7,6) and off by the coordinate axes is

A. 4/5

B.5/4

C.7/4

Answer: B

Watch Video Solution

- **2.** Find the value of k , if the straight lines y-3kx+4=0 and (2k-1)x+(8k-1)y-6=0 are perpendicular.
 - A. 1/6
 - $\mathsf{B.}-1/6$
 - C. 1
 - D. 0

Answer: A

3. The combined equation of the straight lines of the form y = kx + 1 (where k is an integer such that the point of intersection of each with the line 3x + 4y = 9 has an integer as its x-coordinate is

A.
$$(y+x+1) (y+2x-1) = 0$$

B.
$$(y+x-1)(y+2x+1) = 0$$

C.
$$(y+x+1) (y+2x+1) = 0$$

D.
$$(y+x-1)(y+2x-1) = 0$$

Answer: D

4. If the axes are rotated anticlockwise through an angle 90° then the equation $x^2=4ay$ is changed to the equation

A.
$$y^2 = 4ax$$

$$\mathsf{B.}\,x^2=\,-\,4ay$$

$$\mathsf{C.}\,y^2=\,-\,4ax$$

D.
$$x^2=4ay$$

Answer: A

Watch Video Solution

5. If A(5, -4) and B(7, 6) are points in a plane, then the set of all points P(x, y) in the plane such that AP : PB = 2 : is

A. a circle

- B. a hyperbola
- C. an ellipse
- D. a parabola

Answer: A

View Text Solution

- **6.** If on an average, out of 10 ships, one is drowned, then what is the probability that out of 5 ships at least 4 reach safely?
 - A. $14(0.9)^5$
 - B. $1.4(0.9)^5$
 - $C. 0.14(0.9)^4$
 - D. $1.4(0.9)^4$

Answer: D

Watch Video Solution

7. In a family with 4 children, the probability that there are at least two girls is

A.
$$1/2$$

$$\mathsf{C.}\,3/4$$

D.
$$11/16$$

Answer: D

8. When a pair of six faced fair dice are thrown, the probability that the sum of the numbers on the two dice is greater than 7, is

- A. 1/3
- $\mathsf{B.}\,5\,/\,12$
- $\mathsf{C.}\,1/2$
- D. 1/4

Answer: B

9. A five digit number is formed by the digits 1,2,3,4,5 with no digit being repeated. The probability that the number is divisible by 4, is

A.
$$1/5$$

B.
$$2/5$$

D.
$$4/5$$

Answer: A

Watch Video Solution

10. Two events A and B are such that $P(A) = \frac{1}{2}, P(A \mid B) = \frac{1}{4}$ and $P(B \mid A) = \frac{1}{2}$ Consider the

following statements :

(I)
$$P(\overline{A} \mid \overline{B}) = \frac{3}{4}$$

(II) A and B are mutually exclusive

(III)
$$P(A \mid B) + P(A \mid B) = 1$$
. Then

- A. Only (I) is correct
- B. Only (I) and (II) are correct
- C. Only (I) and (III) are correct
- D. Only (II) and (III) are correct

Answer: A

- 11. The standard deviation of a, a+d, a + 2d,....a + 2nd is
 - A. nd
 - B. n^2d
 - C. $\frac{\sqrt{n(n+1)}}{3}$
 - D. $\frac{\sqrt{n(n+3)}}{3}$

Answer: C

Watch Video Solution

12. If the average of the first n numbers in the sequence 148,

146, 144,...., is 125, then n =

A. 18

B. 24

C. 30

D. 36

Answer: B

13. a is perpendicular to both b and c. The angle between b and

c is
$$rac{2\pi}{3}.$$
 If $|a|=2,$ $|b|=3,$ $|c|=4$, then $a(b imes c)$ =

A.
$$18\sqrt{3}$$

B.
$$12\sqrt{3}$$

$$\mathsf{C.}\,8\sqrt{3}$$

D.
$$6\sqrt{3}$$

Answer: B

Watch Video Solution

If a,b,c are unit vectors satisfying the relation $a+b+\sqrt{3}c=0$, then the angle between a and b is

A.
$$\pi/6$$

B.
$$\pi/4$$

$$C. \pi/3$$

D.
$$\pi/2$$

Answer: C

Watch Video Solution

15. a, b, c are three vectors such that |a|=1, |b|=2, |c|=3 and b, c are perpendicular. If projection of b on a is the same as the projection of c on a, then |a-b+c|=

A.
$$\sqrt{2}$$

B.
$$\sqrt{7}$$

C.
$$\sqrt{14}$$

D.
$$\sqrt{21}$$

Answer: C

Watch Video Solution

16. The vectors 2i-3j+k, I-2j+3k, 3i+j-2k

A. are linearly dependent

B. are linearly independent

C. form sides of a triangle

D. are coplanar

Answer: B

17. ABCD is a parallelogram and P is themid point of the side AD.

The line BP meets the diagonal AC in Q. Then the ratio AQ:QC

=

A. 1: 2

B.2:1

C. 1:3

D. 3:1

Answer: A

Watch Video Solution

18. If ABCDEF is a regular hexagon with centre O, then P.T

$$\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$$

A.
$$2\overrightarrow{A}O$$

B.
$$3\overset{
ightarrow}{A}O$$

$$\mathsf{c}. \overset{\displaystyle \rightarrow}{A} O$$

D.
$$6\overrightarrow{A}O$$

Answer: D

19. In
$$\Delta ABC$$
, if $2R+r=r_2$ then $\angle B=$

A.
$$\pi/3$$

B.
$$\pi/4$$

C.
$$\pi/6$$

D.
$$\pi/2$$

Answer: D

Watch Video Solution

20. In ΔABC , if $8R^2=a^2+b^2+c^2$, then the triangle is a

A. right angled triangle

B. equilateral triangle

C. scalene triangle

D. obtuse angled triangle

Answer: A

21. If
$$\Delta ABC$$

21. If
$$\triangle ABC$$
 is such that $\angle A=90^\circ, \angle B\neq \angle C$, then $\frac{b^2+c^2}{b^2-c^2}{\rm sin}(B-C)=$

A.
$$1/3$$

D.
$$3/2$$

Answer: C

View Text Solution

22. For
$$heta\in \left(0,rac{\pi}{2}
ight)$$
 . $\sec h^{-1}(\cos heta)$ =

A.
$$\log \left| an \left(rac{\pi}{6} + rac{ heta}{2}
ight)
ight|$$

 $|\operatorname{\mathsf{C}}.\log \left| \tan \left(rac{\pi}{4} + rac{ heta}{2}
ight) \right|$ D. $\log \left| an \left(rac{\pi}{4} - rac{ heta}{2}
ight)
ight|$

B. $\log \left| \tan \left(\frac{\pi}{3} + \frac{\theta}{2} \right) \right|$

Answer: C

23.

A. -1/2

B. 1/2

C. -1

D. 1

 $\sin(\cot^{-1}x) = \cos(\tan^{-1} + (1+x))$ is

which

satisfies

Answer: A

Watch Video Solution

24. If $f(x)=\cos^2 x+\cos^2 2x+\cos^2 3x$, then the number of values of $x\in[0,2\pi]$ for which f(x)=1 is

- A. 4
- B. 6
- C. 8
- D. 10

Answer: D

View Text Solution

25. If $\cos x + \cos y + \cos \alpha = 0$ and $\sin x + \sin y + \sin \alpha = 0$, then $\cot\left(\frac{x+y}{2}\right)$ =

A. $\sin \alpha$

B. $\cos \alpha$

C. $\tan \alpha$

D. $\cot \alpha$

Answer: D

Watch Video Solution

26. $\frac{\cos 13^{\circ} - \sin 13^{\circ}}{\cos 13^{\circ} + \sin 13^{\circ}} + \frac{1}{\cot 148^{\circ}} =$

A. 1

B. - 1

D. 1/2

Answer: C

View Text Solution

f(x-1) = f(x+1) is

27. If $f(x) = x^2 - 2x + 4$ then the set of values of x satisfying

A. $\{-1\}$

B. $\{-1, 1\}$

D. $\{1, 2\}$

C. $\{1\}$

Answer: C

28. The number of real linear functions f(x) satisfying f(f(x)) = x + f(x) is

B. 4

C. 5

D. 2

Answer: D

29. The remainder when $7^n-6n-50(n\in N)$ is divided by 36,

is

A. 22

B. 23

C. 1

D. 21

Answer: B

View Text Solution

30. Consider the system of equations

ax + by + cz = 2

bx + cy + az = 2

cx + ay + bz = 2

where a,b,c are real numbers such that a + b + c = 0. Then the system

- A. has two solutions
- B. in inconsistent
- C. has unique solution
- D. has infinitely many solutions

Answer: B

Watch Video Solution

31. Suppose A and B are two square matrices of same order. If A,

B are symmetric matrices, then AB - BA is

A. a symmetric matrix

- B. a skew symmetric matrix
- C. a scalar matrix
- D. a triangular matrix

Answer: B

$$\mathbf{32.}\,A(x) = egin{array}{ccccc} x+1 & 2x+1 & 3x+1 \ 2x+1 & 3x+1 & x+1 \ 3x+1 & x+1 & 2x+1 \ \end{array} \ ext{then} \ \ \int_0^1 A(x) dx =$$

- A. 15
- $\mathsf{B.}-15\,/\,2$
- $\mathsf{C.} 30$
- D.-5

Answer: B

Watch Video Solution

33. If
$$z = x + iy \ iscomp \le x\nu mbersuch z^{(1-//3)} = a+ib$$

$$, then the value of 1/(a^2+b^2)(x/a+y/b)=`$$

$$A. -1$$

$$\mathsf{B.}-2$$

C. 0

D. 2

Answer: B

34. The locus of z satisfying |z| + |z-1| = 3 is

A. a circle

B. a pair of straight lines

C. an ellipse

D. a parabola

Answer: C

35. If the point $z=(1+i)(1+2i)(1+3i)\dots(1+10i)$ lies on a circle with centre at origin and radius r, then r^2 =

A. 10!

B. $2 imes 3 imes 4 imes \ldots imes 10$

 $\mathsf{C.}\ 2 \times 5 \times 10 \times \ldots \times 101$

D. 11!

Answer: C

Watch Video Solution

36. The minimum value of |z-1|+|z-5| is

A. 5

B. 4

C. 3

D. 2

Answer: B

37. The number of real roots of $\left|x^2\right|-5|x|+6=0$ is

A. 2

B. 3

C. 4

D. 1

Answer: C

Watch Video Solution

38. If lpha, eta are the roots of $x^2-x+1=0$ then the quadratic equation whose roots are $lpha^{2015}, eta^{2015}$ is

A. $x^2 - x + 1 = 0$

B.
$$x^2 + x + 1 = 0$$

C. $x^2 + x - 1 = 0$

D. $x^2 - x - 1 = 0$

Answer: A

Watch Video Solution

39. If $lpha,eta,\gamma$ are roots of $x^3-5x+4=0$ then

$\left(\alpha^3 + \beta^3 + \gamma^3\right)^2 =$

A. 12

B. 13

C. 169

D. 144

Answer: D

Watch Video Solution

40. Suppose $lpha,eta,\gamma$ are roots of $x^3+x^2+2x+3=0$. If f(x) =

O is a cubic polynomial equation whose roots are

$$lpha+eta,eta+\gamma,\gamma+lpha$$
 then f(x) =

A.
$$x^3 + 2x^2 - 3x - 1$$

B.
$$x^3 + 2x^2 - 3x + 1$$

C.
$$x^3 + 2x^2 + 3x - 1$$

D.
$$x^3 + 2x^2 + 3x + 1$$

Answer: C

View Text Solution

41. The number of 4 letter words that can be formed with the letters in the word EQUATION with at least one letter repeated is

- A. 2400
- B. 2408
- C. 2416
- D. 2432

Answer: C

Watch Video Solution

42. The number of divisors of 7! is

A. 24

Answer: D

$$1+rac{2}{3}igg(rac{1}{8}igg)+rac{2 imes5 imes8}{3 imes6 imes9}igg(rac{1}{8}igg)^3+\ldots$$
 is

A.
$$\frac{4}{3\sqrt{49}}$$

$$\mathsf{B.} \; \frac{3\sqrt{49}}{4}$$

$$\mathsf{C.} \; \frac{4}{3\sqrt{81}}$$

D.
$$\frac{3\sqrt{61}}{4}$$

Watch Video Solution

44. If C_r denotes the binomial coefficient $\binom{n}{r} C_r$ then $(-1)C_0^2 + 2C_1^2 + 5C_2^2 + \ldots + (3n-1)C_n^2$ =

A.
$$(3n-2)$$
. 2n C_n

B.
$$\left(rac{3n-2}{2}
ight)$$
. 2n C_n

C.
$$(5+3n)$$
. $^{2n}C_n$

D.
$$\left(rac{3n-5}{2}
ight)$$
. 2n C_{n+1}

Answer: B

View Text Solution

45.

$$rac{x+1}{x^4(x+2)} = rac{A}{x} + rac{B}{x^2} + rac{C}{x^3} + rac{D}{x^4} + rac{E}{x+2} \Rightarrow B+D+E =$$

46. If $\cos^3\theta + \cos^3\left(\frac{2\pi}{3} + \theta\right) + \cos^3\left(\frac{4\pi}{3} + \theta\right) = a\cos3\theta$,

A. A+C

__

Answer: A

Watch Video Solution

A.
$$1/4$$

then a =

B.3/4

C.5/4

D. 7/4

Answer: B

Watch Video Solution

47. The solution of the differential equation $y' = \frac{1}{e^{-y} - x}$, is

A.
$$x=e^{-y}(y+c)$$

$$B. y + e^{-y} = x + c$$

$$\mathsf{C.}\, x = e^y(y+c)$$

D.
$$x + y = e^{-y} + c$$

Answer: A

$$3xy'-3y+\left(x^2-y^2
ight)^{1/2}=0$$
, satisfying the condition y(1) =

A.
$$3\cos^{-1}\left(\frac{y}{x}\right) = \ln|x|$$

B.
$$3\cos\Bigl(rac{y}{x}\Bigr)=\ln\lvert x
vert$$

C.
$$3\cos^{-1}\Bigl(rac{y}{x}\Bigr)=2\ln\lvert x
vert$$

D.
$$3\sin^{-1}\Bigl(rac{y}{x}\Bigr) = \ln \lvert x
vert$$

Answer: A

1 is

49. Let $p\in IR$, then the differential equation of the family of curves $y=(\alpha+\beta x)e^{px}$, where α,β are arbitrary constants, is

A.
$$y$$
'' $=4py'+p^2y=0$

$$\mathtt{B.}\,y\textrm{''}-2py\textrm{'}+p^2y=0$$

C.
$$y$$
'' $+2py$ ' $-p^2y=0$

D.
$$y'' + 2py' + p^2y = 0$$

Answer: B

Watch Video Solution

50. If the area bounded by the curves $y=ax^2$ and $x=ay^2(a>0)$ is 3 sq. units, then the value of 'a' is

A.
$$2/3$$

B.1/3

C. 1

D. 4

Answer: B

Watch Video Solution

51.
$$\int_0^{\pi/4} \left[\sqrt{\tan x} + \sqrt{\cot x}
ight] = dx$$

A.
$$\frac{\pi}{\sqrt{2}}$$

B. $\frac{\pi}{2}$

C. $\frac{3\pi}{\sqrt{2}}$

D. π

Answer: A

52.
$$\int_0^{\pi/4} \frac{\sin x + \cos x}{7 + 9\sin 2x} dx =$$

A.
$$\frac{\log 3}{4}$$

$$\mathsf{B.}\;\frac{\log 3}{36}$$

$$\mathsf{C.}\ \frac{\log 7}{12}$$

D.
$$\frac{\log 7}{24}$$

Answer: D

53.
$$\int \frac{2x+2}{\sqrt{x^2-4x-5}} dx =$$

A.
$$\sqrt{x^2 - 4x - 5} + \log \left| x + \sqrt{x^2 - 4x - 5} \right| + c$$

$$\mathsf{B.}\log\Bigl|\sqrt{x^2-4x-5}\Bigr|+\sqrt{x^2-4x-5}+c$$

C.
$$\sqrt{x^2 - 4x - 5} + 6\log \left| (x - 2) + \sqrt{x^2 - 4x - 5} \right| + c$$

D.
$$2\sqrt{x^2-4x-5}+6\log \left|(x-2)+\sqrt{x^2-4x-5}
ight|+c$$

Answer: D

54.
$$\int \frac{dx}{\cos(x+4)\cos(x+2)} =$$

A.
$$\frac{1}{\sin 2} \log |\cos(x+4)^2| + c$$

$$\mathsf{B.} \, \frac{1}{2} \mathsf{log} \bigg| \frac{\mathsf{sec}(x+2)}{\mathsf{sec}(x+4)} \bigg| + c$$

C.
$$\frac{1}{\sin 2} \log \left| \frac{\sec(x+4)}{\sec(x+2)} \right| + c$$

D.
$$\log \left| \frac{\sec(x+4)}{\sec(x+2)} \right| + c$$

Watch Video Solution

55.
$$\int \frac{x^3}{\sqrt{1+x^2}} dx =$$

A.
$$\sqrt{1-x^2}-rac{x}{3}ig(1+x^2ig)^{3/2}+c$$

B.
$$x\sqrt{1+x^2}+rac{2}{3}ig(1+x^2ig)^{3/2}+c$$

C.
$$\frac{x^2}{3} - \frac{2}{3} (1 + x^2)^{3/2} + c$$

D.
$$x^2\sqrt{1+x^2}-rac{1}{3}ig(1+x^2ig)^{1/2}+c$$

Answer: C

56.
$$\int \frac{(x^2+1)}{x^4+7x^2+1} dx =$$

A.
$$\frac{1}{3} an^{-1}\left(\frac{x^2-1}{3x}\right)+c$$

B.
$$\tan^{-1}\!\left(\frac{x^2-1}{x}\right)+c$$

$$\mathsf{C.}\,\frac{1}{3}\mathrm{tan}^{-1}\bigg(\frac{x^2-1}{x}\bigg)+c$$

D.
$$\frac{1}{\sqrt{3}} an^{-1}\left(\frac{x^2-1}{\sqrt{3}x}\right)+c$$

Answer: A

- **57.** The smallest value of of the constant m>0 for which $f(x)=9mx-1+rac{1}{x}\geq 0$ for all x>0, is
 - A. 1/9

B.
$$1/16$$

D.
$$1/81$$

Watch Video Solution

58. Define $f(x) = rac{1}{2}[|\sin x| + \sin x], \, 0 < x \leq 2\pi.$ Then f is

A. increasing in
$$\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

B. decreasing in
$$\left(0,\frac{\pi}{2}\right)$$
 and increasing in $\left(\frac{\pi}{2},\pi\right)$

C. increasing in
$$\left(0, \frac{\pi}{2}\right)$$
 and decreasing in $\left(\frac{\pi}{2}, (\pi)\right)$

D. increasing in
$$\left(0, \frac{\pi}{4}\right)$$
 and decreasing in $\left(\frac{\pi}{4}, \pi\right)$

Answer: C

59. The area of the triangle formed by the positive x-axis, the tangent and normal to the curve $x^2+y^2=16a^2$ at the point $\left(2\sqrt{2}a,2\sqrt{2}a\right)$ is

A. a^2

B. $16a^2$

 $\mathsf{C.}\,4a^2$

D. $8a^2$

Answer: D

60. The length of the segment of the tangent line curve $x=a\cos^3t, y=a\sin^3t,$ at any point on the curve cut off by the coordinate axes is

- A. 4a
- B. a
- $C. a^2$
- D. 2a

Answer: B

View Text Solution

- **61.** If $y=a\cos(\sin x)+b\sin(\sin x)$ then $y_2+(\tan x)y_1=$
 - A. 0

B.
$$4(\cos^2 2x)y$$

$$\mathsf{C.} - 4 \big(\cos^2 2x \big) y$$

D.
$$-(\cos^2 2x)y$$

Watch Video Solution

62.
$$\frac{d}{dx}\tan^{-1}\left[\frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\right]=$$

A. 1

B. - 1/2

C.1/2

D. -1

Answer: b

Watch Video Solution

63. If
$$y= an^{-1}igg[rac{5\cos-12\sin x}{12\cos x+5\sin x}igg]$$
 , then $rac{dy}{dx}=$

A. 1

B. - 1

 $\mathsf{C}.-2$

D.1/2

Answer: B

64. continuous at x = 0

Let
$$f(x) = egin{cases} (1+|\sin x|)^{rac{a}{|\sin x|}} & -rac{\pi}{6} < x < 0 \ b & x = 0 \ e^{ an 2x/ an 3x} & 0 < x < rac{\pi}{6} \end{cases}$$

Determine a and b such that f(x) continuous at x = 0.

A.
$$p=rac{1}{3}, q=e^{2/3}$$

B.
$$p = 0, q = e^{2/3}$$

C.
$$p=rac{2}{3}, q=e^{-2/3}$$

D.
$$p=\ -rac{2}{3}, q=e^{2/3}$$

Answer: D

65.
$$\lim_{x \to \infty} \left[\frac{x^2 + x + 3}{x^2 - x + 2} \right]^x =$$

- A. ∞
- B. e
- C. e^4
- ${\rm D.}\,e^2$

Answer: D

- **66.** The image of the point (5, 2, 6) with respect to the plane x+y+z=9 is
 - A. (3, -5, 2)
 - $\mathsf{B.}\left(\frac{7}{2},\ -1,5\right)$
 - C. $\left(\frac{7}{3}, -\frac{2}{3}, \frac{10}{3}\right)$

D.
$$\left(\frac{7}{3}, \frac{2}{3}, -\frac{5}{3}\right)$$

Watch Video Solution

67. If the angle betweenthe lines whose direction cosines are

$$\left(-\frac{2}{\sqrt{21}},\frac{C}{\sqrt{21}},\frac{1}{\sqrt{21}}\right)$$
 and $\left(\frac{3}{\sqrt{54}},\frac{3}{\sqrt{54}},-\frac{6}{\sqrt{54}}\right)$ is $\frac{\pi}{2}$,

then the value of C is

A. 6

B. 4

 $\mathsf{C.}-4$

D. 2

Answer: B

68. Points A(3, 2, 4),
$$B\left(\frac{33}{5}, \frac{28}{5}, \frac{38}{5}\right)$$
, and C(9, 8, 10) are given.

The ratio in which B divides \overline{AC} is

A. 5:3

B. 2:1

C. 1:3

D. 3:2

Answer: D

69.

Let

Α

 $(2\sec\theta, 3\tan\theta)$ and $B(2\sec\phi, 3\tan\phi)where\theta+\phi=\frac{\pi}{2}$ be two point on the hyperbola $\frac{x^2}{4}-\frac{y^2}{9}=1$. If (α,β) is the point of intersection of normals to the hyperbola at A and B ,then β =

A.
$$\frac{-13}{3}$$

B.
$$\frac{13}{3}$$

C.
$$\frac{3}{13}$$

D.
$$\frac{-3}{13}$$

Answer: A

70. If S and S" are the foci of the ellipse $\dfrac{x^2}{25}+\dfrac{y^2}{16}=1$ and if

PSP' is a focal chord with SP = 8 then SS" =

$$A. 4 + S'P$$

Answer: A

Watch Video Solution

71. For the ellipse given by $\frac{(x-3)^2}{25}+\frac{(y-2)^2}{16}=1$, match the equations of the lines given in List - I with those in the List -

- i) The equation of the major axis
- ii) The equation of a directrix
- iii) The equation of a latus rectum
- List II
- a) 3x = 34
- b) y = 2c) x + y = 9
- d)x = 6
- c) x = 3
- f) 3y = 34

The correct matching is

- A. 1-e, ii-a, iii-d,
- B. i-b, ii-f, iii-e
- C. i-b, ii-a, iii-e
- D. i-b,ii-a, iii-d

Answer: A

72. The points of intersection of the parabolas $y^2=5x$ and $x^2=5y$ lie on the line

73. From a point (C, 0) three normals are drawn to the parabola

A.
$$x + y = 10$$

$$\mathtt{B.}\,x-2y=0$$

C.
$$x - y = 0$$

D.
$$2x - y = 0$$

Answer: C

Watch Video Solution

 $y^2=x$. Then

A.
$$C<rac{1}{2}$$

B.
$$C=rac{1}{2}$$

D.
$$rac{1}{2}>C>rac{1}{4}$$

74.

Watch Video Solution

radical centre of

circles

and

the

$$x^2+y^2=1, x^2+y^2-2x-3=0$$
 $x^2+y^2-2y-3=0$ is

The

D. (-1, -1)

Answer: D

Watch Video Solution

- If the circles $x^2+y^2-2\lambda x-2y-7=0$ and
 - $3ig(x^2+y^2ig)-8x+29y=0$ are orthogonal then $\lambda=$
 - A. 4
 - B. 3
 - C. 2
 - D. 1

Answer: D

76. For all real values of k, the polar of the point (2k, k-4) with respect to $x^2+y^2-4x-6y+1=0$ passes through the point

Answer: D

Watch Video Solution

77. The normal to the circle given by $x^2+y^2-6x+8y-144=0$ at (8, 8) meets the circle again

at the point

A. (2, -16)

B. (2, 16)

C. (-2, 16)

D. (-2, -16)

Answer: D

Watch Video Solution

 $x^2 + y^2 - 6x + 4y - 12 = 0$ is

78. The piont where the line 4x - 3y + 7 = 0 touches the circle

A. (1, 1)

B. (1, -1)

C. (-1, 1)

D. (-1, -1)

Answer: C

Watch Video Solution

79. The combined equation of three sides of a triangle is $\left(x^2-y^2\right)(2x+3y-6)=0$. If (-2, a) is an interior point of the triangle, then

A.
$$-2 < lpha < 0$$

$$\mathrm{B.}-2<\alpha<2$$

C.
$$0$$

D.
$$lpha \geq 2$$

Watch Video Solution

80. The equation on the pair of straight lines through the point

(1, 1) and perpendicular to the pair of straight lines

$$3x^2 - 8xy + 5y^2 = 0$$
 is

A.
$$5x^2 + 8xy + 3y^2 - 14x - 18y + 16 = 0$$

B.
$$5x^2 + 8xy + 3y^2 - 18x - 14y + 16 = 0$$

$$\mathsf{C.}\, 5x^2 - 8xy + 3y^2 - 18x - 14y + 32 = 0$$

D.
$$5x^2 - 8xy + 3y^2 - 14x - 18y + 32 = 0$$

Answer: B

