India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

Hyperbola

Examples

1. The equation of the hyperbola whose focus is origin, eccentricity $\sqrt{2}$ and directrix x+y+1=0 is

A.
$$15x^2 - 24xy + 8y^2 + 12x + 2y - 19 = 0$$

B.
$$2xy + 2x + 2y + 1 = 0$$

C.
$$11x^2 + 24xy + 4y^2 - 74x - 48y + 99 = 0$$

$$\mathsf{D.}\, 7x^2 + 12xy - 2y^2 - 2x + 14y - 22 = 0$$

2. The eccentricity of the hyperbola whose latus rectum is equal to 1/3 of its transverse axis is

A.
$$2/\sqrt{3}$$

B.
$$\sqrt{5/2}$$

C.
$$\sqrt{2/2}$$

D.
$$\sqrt{3}/2$$

Answer: 1

Watch Video Solution

3. The angle between the asymptotes of the hyperbola $x^2-3y^2=1$ is

A.
$$\pi/3$$

B.
$$\pi/6$$

$$\mathsf{C}.\,\pi/2$$

D.
$$\pi/4$$

Answer: 1

Watch Video Solution

4. The product of the distance from any point on the hyperbola $x^2/4-y^2/1=1$ to its two asymptotes is

A.
$$4/5$$

$$\mathsf{B.}\,5/4$$

D. none

Answer: 1

5. The curve represented by $x = \sec \theta + \tan \theta, y = \sec \theta - \tan \theta$ is

A. a parabola

B. an elipse

C. a circle

D. a rectangular hyperbola

Answer: 4

6. The conditon for the line px+qy+r=0 to be a normal to the rectangular hyperbola $xy=c^2$ is

A. p < q < 0

 $\mathrm{B.}\, p>0, q>0$

 $\mathsf{C.}\, p<0, q<0$

 $\mathrm{D.}\, p<0, q<0$

Answer: 3

View Text Solution

7. If the tangent and normal to a rectangular hyperbola $x^2-y^2=a^2$ cut off intercepts a_1 and a_2 on one axis and b_1 and b_2 on the other then

A.
$$a_1a_2=b_1b_2$$

$$\mathsf{B.}\,a1b_2=a_2b_1$$

C.
$$a_1b_2 + a_2b_1 = 0$$

D.
$$a_1a_2 + b_1b_2 = 0$$

Answer: 4

View Text Solution

8. The locus of the centre of a circle which touches two given circles externally is

- A. a circle
- B. a parabola
- C. an elipse
- D. a hyperbola

Answer: 4

Watch Video Solution

- **9.** The coordinates of a point are $(4\tan\phi, 3\sec\phi)$ where ϕ is a parameter
- , then the point lies on a conic section whose eccentricity is
 - A. $\frac{5}{3}$

 - $\mathsf{C.}\ \frac{3}{4}$

Answer: 1

10. The centre of rectangular hyperbola lies on the line y=2x. If one asymptotes is x+y+c=0 then the other asymptote is

A.
$$3x - 3y - c = 0$$

B.
$$2x - y + c = 0$$

$$\mathsf{C.}\,x-y-c=0$$

D.
$$x - y + 2c = 0$$

Answer: 1

Watch Video Solution

11. The locus of the mid points of the chords of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}= \text{1which pass through a foot of the directrix in the first quadrant is}$

View Text Solution

A. $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x}{ea} = -0$

B. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{x}{ae} = 0$

C. $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{x}{ae} = 0$

D. $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{x}{ae} = 0$

Exercise 1 A

1. The equation of the conic with focus at
$$(1,\,-1)$$
 directrix along $x-y+1$ =0 and with ecuuentricity $\sqrt{2}$ is

A.
$$x^2 - y^2 = 1$$

B.
$$xy=1$$

D.
$$2xy + 4x - 4y - 1 = 0$$

C. 2xy - 4x + 4y + 1 = 0

Answer: C

Watch Video Solution

2. One of the foci of the hyperbola is origin and the corresponding directrix is 3x+4y+1=0 .The eccentricity of the hyperbola is $\sqrt{5}$.The equation of the hyperbola is

A.
$$4x^2 + 11y^2 + 24xy + 6x + 8y + 1 = 0$$

$$\mathrm{B.}\, 8x^2 + 9y^2 + 24xy + 6x + 6y + 1 = 0$$

C.
$$8x^2 + 9y^2 + 24xy + 6x + 8y + 1 = 0$$

D.
$$8x^2 + 9y^2 - 24xt + 6x + 8y + 1 = 0$$

Answer: A

3. The equation of the hyperbola whose foci are $(\,\pm\,5,0)$ and eccentricity

5/3 is

A.
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

B.
$$\dfrac{x^2}{4}-\dfrac{y^2}{16}=1$$

C.
$$rac{x^2}{9}+rac{y^2}{6}=1$$

D.
$$\displaystyle rac{x^2}{4} + rac{y^2}{16} = 1$$

Answer: A

4. The equation of the hyperbola whose centre is (5, 2) vertex is (9,2) and the length of conjugate axis is 6 is

A.
$$\frac{(x-5)^2}{16} + \frac{(y-2)^2}{9} = 1$$

B.
$$\frac{(x-5)^2}{16} - \frac{(y-2)^2}{19} = 1$$

c.
$$\frac{(x-5)^2}{16} - \frac{(y-2)^2}{9} = 1$$

D.
$$\frac{(x+5)^2}{29} = 1$$

Answer: C

Watch Video Solution

5. The equation of the hyperbola with is axes coordinates axes , whose tranverse axis 8 and eccentricity 3/2 is

A.
$$\displaystyle \frac{x^2}{9} - \frac{y^2}{4} = 1$$

$$\text{B.}\,\frac{x^2}{16}-\frac{y^2}{20}=1$$

$$\mathsf{C.}\,\frac{x^2}{25}-\frac{y^2}{11}=1$$

D.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Answer: B

6. The equation of the hyperbola with is transverse axis parallel to x-axis and its centre is (3, -2) the length of axes, are 8,6 is

A.
$$\frac{(x-3)^2}{16} - \frac{(y+2)^2}{9} = 1$$

B. $\frac{(x+2)^2}{25} - \frac{(y-1)^2}{11} = 1$

C. $\frac{(x-3)^2}{6} - \frac{(y-2)^2}{9} = 1$

D. $\frac{(x-2)^2}{16} - \frac{(y-3)^2}{19} = 1$

Answer: A

Watch Video Solution

7. The equation of the heyperbola with its transverse axis parallel to x-axis and its centre is (-2,1) the length of transverse axis is 10 and eccentricity 6/5 is

A.
$$rac{(x-3)^2}{16} - rac{(y+2)^2}{9} = 1$$
B. $rac{(x+2)^2}{25} - rac{(y-1)^2}{11} = 1$

C.
$$rac{{{{(x - 3)}^2}}}{6} - rac{{{{(y - 2)}^2}}}{9} = 1$$
D. $rac{{{{(x - 2)}^2}}}{16} - rac{{{{(y - 3)}^2}}}{19} = 1$

Answer: B

Watch Video Solution

8. The equation of the hyperbola with is transverse axis is parallel to yaxis and its centre is $(2,\,-3)$ the length of transverse axis is 12 and eccentricity 7/6 is

A.
$$\frac{(y+3)^2}{6} - \frac{(x+2)^2}{3} = 1$$

B.
$$\frac{(y-3)^2}{36}+\frac{(x-2)^2}{13}=1$$
C. $\frac{(y+3)^2}{9}-\frac{(x-4)^2}{4}=1$

D.
$$rac{{{{\left({y + 3}
ight)}^2}}}{{36}} - rac{{{{\left({x - 2}
ight)}^2}}}{{13}} = 1$$

Answer: D

9. The equation of the hyperbola whose centre is (1,2). One focus is (6,2) and trans verse axis 6 is.

A.
$$16(x-1)^2 - 9(y-2)^2 = 144$$

B.
$$9(x-1)^2 - 16(y-2)^2 = 144$$

C.
$$16(x-1)^2 - 25(y-2)^2 = 200$$

D.
$$25(x-1)^2 - 16(y-2)^2 = 200$$

Answer: A

Watch Video Solution

10. The equation to hyperbola whose centre is (0,0) distance between the foci is 18 and distance between the directrices is 8 is

A.
$$x^2/45-y^2/36=1$$

B.
$$x^2/36 - y^2/45 = 1$$

C.
$$x^2/36 - y^2/25 = 1$$

D.
$$x^2/25 - y^2/36 = 1$$

Answer: B

Watch Video Solution

11. The equation to the hyperbola referred to its axes as coordinate axes,

whose latus rectum is 4 and eccentricity is 3 is

A.
$$16x^2 - 2y^2 = 1$$

B.
$$2x^2 - 16y^2 = 1$$

C.
$$8x^2 = 2y^2 = 1$$

D.
$$3x^2 - 8y^2 = 1$$

Answer: A

12. The equation of the hyperbola whose transverse axis is 14 and whose vertex bisects the distance between centre and the focus is

A.
$$x^2/14 - y^2/49 = 1$$

B.
$$x^2/147 - y^2/14 = 1$$

C.
$$x^2/49 - y^2/147 = 1$$

D.
$$x^2/147 - y^2/49 = 1$$

Answer: C

Watch Video Solution

13. The vertices of a hyperbola are (2,0), (-2,0) and the foci are (3,0), (-3,0). The equation of the hyperbola is

A.
$$x^2/5 - y^2/4 = 1$$

B.
$$x^2/4 - y^2/5 = 1$$

C.
$$x^2/5 - y^2/2 = 1$$

D.
$$x^2/2 - y^2/5 = 1$$

Answer: B

Watch Video Solution

14. The equation of the transverse and cojugate axes of a hyperbola are respectively x+2y-3=0, 2x-y+4=0 and their respectively length are $\sqrt{2}$ and $2/\sqrt{3}$. The equation of the hyperbola is

A.
$$\frac{2}{5}(x+2y-3)^2 - \frac{3}{5}(2x-y+4)^2 = 1$$

B.
$$\frac{2}{5}(2x-y+3)^2\frac{3}{5}(x+2y-3)^2=1$$

C.
$$2(2x - y + 4)^2 - 3(x + 2y - 3)^2 = 1$$

D.
$$2(x+2y-3)^2-3(2x-y+4)^2=1$$

Answer: A

15. the centre of the hyperbola $9x^2-16y^2+72x-32y-16=0$ is

A. (1, 1)

B. (1, -1)

 $\mathsf{C.}\,(\,-1,1)$

D. (-4, -1)

Answer: D

16. The vertices of the hyperbola $\dfrac{\left(x-2
ight)^2}{9}-\dfrac{\left(y-3
ight)^2}{4}=1$ are

A. (5,3), (-1,3)

B. (5, -3), (I, 3)

 $\mathsf{C.}\ (\ -5,3), (\ -1,\ -3)$

D. (5,3), (1,3)

Answer: A

Watch Video Solution

17. The vertices of the hyperbola $x^2-3y^2+2x+12y+1=0$ are

A. (
$$\pm$$
 3, 0)

B.
$$(1\pm2,2)$$

C.
$$(-1,2\pm2)$$

D.
$$(1, -2 \pm 3)$$

Answer: C

Watch Video Solution

18. The foci of the hyperbola $2x^2-y^2-4x+4y-10=0$ are

A.
$$\left(\pm\sqrt{13},0\right)$$

B.
$$\left(1+\ -2\sqrt{3},2\right)$$

C.
$$\left(2\pm3\sqrt{3},3\right)$$

D.
$$\left(3\pm3\sqrt{3},2\right)$$

Answer: B

Watch Video Solution

19. The foci of the hyperbola $9x^2-16y^2+18x+32y-151=0$ are

A.
$$(2,1)(-6,1)$$

B.
$$(-2,5), (-2,-3)$$

$$\mathsf{C}.\,(4,1),\,(\,-6,1)$$

D.
$$(-2,4), (-2,2)$$

Answer: C

20. The distance between the foci of the hyperbola $x^2-3y^2-4x-6y-11=0$ is

21. The length of the transverse axis of the hyperbola

A. 4

B. 6

C. 8

D. 10

Answer: C

- $9x^2 16y^2 18x 32y 151 = 0$ is
 - A. 8
 - B. 4
 - C. 6

Answer: A

Watch Video Solution

22. The length of the transverse axis of the hyperbola

$$4x^2 - 9y^2 + 8x + 40 = 0$$
 is

- A. 4
- B. 6
- $C. 2\sqrt{3}$
- D. $4\sqrt{2}$

Answer: A

23. The length of the conjugate axis of the hyperbola
$$9x^2-16y^2-18x-64y+89=0$$
 is

24. The length of the latus rectum of the hyperbola $x^2-4y^2=4$ is

- A. 8
- В. 6
- C. 4
- D. 5

Answer: A

- A. 2
- B. 1
- C. 4
- D. 3

Answer: B

Watch Video Solution

25. The length of the latus rectum of the hyperbola $9x^2-16y^2+72x-32y-16=0$ is

- A. 9/2
- B. 32/3
- c. $\frac{11}{5}$
- D. 21/5

Answer: A

Watch Video Solution

26. The eccentricity of the hyperbola $9x^2-16y^2=144$ is

27. The eccentricity of the hyperbola $9x^2-16y^2+72x-32y-16=0$ is

Answer: B

A. 4/3

B.5/4

C.4/5

D.3/5

Watch Video Solution

- A. 5/4

B.4/5

- C.9/16
- D. 16/9
- **Answer: A**

28. The eccentricity of the hyperbola $4x^2-9y^2=36$ is

A.
$$a/b$$

B. \sqrt{b}/a

c. $\sqrt{\frac{13}{3}}$

D. $\sqrt{13}/3$

Answer: D

29. The eccentricity of the rectangular hyperbola is

A. e

B. $\in fity$

 $\mathrm{C.}~\sqrt{2}$

Answer: C

Watch Video Solution

30. The eccentricity of the hyperbola whose latus rectum is equal to half of its transverse axis is

A.
$$\sqrt{3/2}$$

A.
$$\sqrt{3/2}$$
B. $\sqrt{5/2}$

C.
$$\sqrt{2/2}$$

D.
$$\sqrt{3}/2$$

Answer: A

31. The eccentricity of the hyperbola whose latus rectum is equal to half of its conjugate axis is

A.
$$\sqrt{3/2}$$

B.
$$\sqrt{5}/2$$

C.
$$\sqrt{(2/2)}$$

D.
$$\sqrt{3}/2$$

Answer: B

Watch Video Solution

32. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugates axis is equal to half of the distance between its foci is

A.
$$\frac{4}{3}$$

B.
$$\frac{4}{\sqrt{3}}$$

$$\mathsf{C.}\,\frac{2}{\sqrt{3}}$$

D.
$$\sqrt{3}$$

Answer: C

Watch Video Solution

- **33.** If e and e' are the ecentricity of the hyperbola $x^2/a^2-y^2/b^2$ =1 and its conjugate HYPERBOLA then $\left[\frac{1}{e^2} + \frac{1}{e^{'2}}\right]$
 - A. 3

 - B. 2
 - C. 1
 - D. 0

Answer: C

34. If e1 and e2 are the eccentricities of a hyperbola and its conjugates then ,

A.
$$e_1^2 + e_2^2 = 3$$

B.
$$e_1 + e_2 = 4$$

C.
$$e_1^2+e_2^2=e_1^2e_2^2$$

D.
$$e_1=e_2$$

Answer: C

Watch Video Solution

35. If the eccentricities of a hyperbola is $\sqrt{3}$,then the eccentricity of its conjugates hyperbola is

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

c.
$$\sqrt{3/2}$$

D.
$$2\sqrt{3}$$

Answer: C

Watch Video Solution

- **36.** If e and e_1 are the eccentricities of the hyperbola $xy=c^2, x^2-y^2=c^2 {
 m then} e^2+e_1^2$ is equal to
 - A. 1
 - B. 4
 - C. 6
 - D. 8

Answer: B

37. If (5,12), (24,7) are the foci of the hyperbola passing through origin, then its eccentricity is

A. $\sqrt{386}/38 \,\, {
m or} \,\, \sqrt{386}/12$

B. $\sqrt{386}/12 \,\, {
m or} \,\, \sqrt{386/7}$

C. $\sqrt{386}/36$ or $\sqrt{386}/19$

D. none

Answer: A

Watch Video Solution

38. The distance between the foci is $4\sqrt{13}$ and the length of conjugate axis is 8 then the eccentricity of the hyperbola is

A. $\sqrt{13}/3$

B. $\sqrt{13}/5$

C. $\sqrt{13}/7$

D. none

Answer: A

Watch Video Solution

- 39. The locus of the point of intersection of the lines $\sqrt{3}x-y-4\sqrt{3}k=0$ and $kx\sqrt{3}+ky-4\sqrt{3}=0$ is a hyperbola of eccentricity
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: B

40. If the latusrectum subtends a right angle at the centre of the hyperbola then its eccentricity

$$A. e = \frac{\sqrt{13}}{2}$$

$$\mathrm{B.}\,3 = \frac{\sqrt{5}-1}{2}$$

$$\mathsf{C.}\,e = \frac{\sqrt{5}+1}{2}$$

D.
$$e=\left(\sqrt{3}+1
ight)rac{
ight)}{2}$$

Answer: C

Watch Video Solution

41. If the latus rectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then its accentricity e=

A.
$$\frac{\sqrt{5}+1}{2}$$

$$\mathsf{B.}\,\frac{\sqrt{11}+1}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{13}+1}{2\sqrt{3}}$$

D.
$$\frac{\sqrt{13}-1}{2\sqrt{3}}$$

Answer: C

Watch Video Solution

- **42.** If the latus rectum of a hyperbola through one focus subtends 60° at the other focus then its eccentricity e=
 - A. $\sqrt{2}$
 - B. $\sqrt{3}$
 - C. $\sqrt{5}$
 - D. $\sqrt{6}$

Answer: B

43. If the latus rectum through one focus subtends a right angle at the farther vertex of the hyperbola then its eccntricity is

- A. 4
- B. $\sqrt{3}$
- C. 2
- D. $\sqrt{2}$

Answer: C

- **44.** The latus rectum of a hyperbola $\frac{x^2}{16}-\frac{y^2}{p}=1is4\frac{1}{2}$.Its eccentricity e=
 - A. 4/5
 - B.5/4
 - C.3/4

Answer: B

Watch Video Solution

- **45.** Let LL' be the latus rectum through the focus S of a hyperbola and A ' be the farther vertex of the conic .If $\Delta A'$ LL' is equilateral then its eccentricity e=
 - A. $\sqrt{3}$
 - B. $\sqrt{3} + 1$
 - C. $\left(\sqrt{3}+1\right)/\sqrt{2}$
 - D. $\left(\sqrt{3}+1\right)/\sqrt{3}$

Answer: D

is A.
$$\sqrt{3}$$

46. The eccentricity of the hyperbola $x=rac{a}{2}(t+1/t),$ $y=rac{a}{2}(t-1/t)$

47. The locus of the point $\left(\frac{e^t+e^{-t}}{2}, \frac{e^t-e^{-t}}{2}\right)$ is a hyperbola of

B.
$$\sqrt{2}$$

 $C. 2\sqrt{3}$

D.
$$3\sqrt{2}$$

Answer: B

Watch Video Solution

A. $\sqrt{3}$

eccentricity

- B. 3
- $C.\sqrt{2}$

Answer: C

Watch Video Solution

48. The equation of directrices of the hyperbola

$$5x^2-4y^2-30x-8y-39=0$$
 are

A.
$$x=\pm 9/5$$

B.
$$x=3\pm 8/3$$

C.
$$x=2\pm 8/5$$

D.
$$x=3\pm16/5$$

Answer: B

$$9x^2-16y^2-18x-32y-151=0$$
 are

49. The equations of the latus recta of the hyperbola

50. The equation of the conjugate axis of the hyperbola

A.
$$x = 6, x + 4 = 0$$

B.
$$x = -6, x - 14 = 0$$

C.
$$x = 3, x + 4 = 0$$

D.
$$x = 2, x - 11 = 0$$

Answer: A

$$rac{{{{\left({x - 5}
ight)}^2}}}{{16}} - rac{{{{\left({y - 4}
ight)}^2}}}{9} = 1$$
 is

$$\mathsf{A.}\,y-4=0$$

B.
$$y - 6 = 0$$

$$\mathsf{C.}\,y+8=0$$

D.
$$y - 2 = 0$$

Answer: A

Watch Video Solution

51. The equation of transverse axis of the hyperbola $5x^2 - 4y^2 - 30x - 8y - 39 = 0$ is

$$\mathsf{A.}\,x=0$$

B.
$$x - 3 = 0$$

C.
$$x - 2 = 0$$

D.
$$x + 3 = 0$$

Answer: B

$$9x^2-16y^2+72x-32y-16=0$$
 are

the

the

of

axes

hyperbola

equation of

A.
$$y + 1 = 0, x + 4 = 0$$

B.
$$u + 2 = 0$$
, $x + 3 = 0$

C.
$$y - 1 = 0$$
, $x - 4 = 0$

D.
$$y + 3 = 0, x - 4 = 0$$

Answer: A

52.

The

53. The equation of the hyperbola whose eccentricity 2 and foci are the foci of the ellips $x^2/25+y^2/9=1$ is

A.
$$rac{x^2}{4} - rac{y^2}{12} = 1$$

B.
$$\frac{x^2}{14} + \frac{y^2}{12} = 1$$

C.
$$\frac{x^2}{15} + \frac{y^2}{8} = 1$$

D.
$$\frac{x^2}{6} - \frac{y^2}{8} = 1$$

Answer: A

Watch Video Solution

- **54.** PN is the ordinate of any point P on the hyperbola $x^2/a^2-y^2/b^2=1.$ If Q divides AP in the retio $a^2,\,b^2$ then NQ is
 - A. perpendicular to A'P
 - B. Parallel to A'P
 - C. perpendicular to OP
 - D. none

Answer: A

View Text Solution

55. If the foci of the ellips
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 and the hyperbola $x^2 + y^2 = 1$ so incide then t^2

$$rac{x^2}{4} - rac{y^2}{b^2} = 1$$
 coincide ,then $b^2 =$

B. 5

- C. 8
- D. 9

Answer: B

- **56.** The foci of the ellips $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\dfrac{x^2}{144}-\dfrac{y^2}{81}=\dfrac{1}{25}$ coincide ,then the value of b^2 is
 - A. 1
 - B. 5

D. 9

Answer: C

Watch Video Solution

57. For the hyperbola $\frac{x^2}{\cos^2\alpha} - \frac{y^2}{\sin^2\alpha} = 1$,which of the following remains constant when α varies?

A. Eccentricity

B. Directrix

C. Abscissae of vertices

D. Abscissae of foci

Answer: D

58. A hyperbola passes through a focus of the ellips $\frac{x^2}{169} + \frac{y^2}{25} = 1$. Its transverse and conjugates axes coincide respectively with the major and minor axes of the ellips The product of eccetricities is 1. Then the equation of the hyperbola is

A.
$$\frac{x^2}{160} = 1$$

$$B. \frac{x^2}{144} - \frac{y^2}{25} = 1$$

C.
$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

D.
$$\frac{x^2}{144} - \frac{y^2}{9} = 1$$

Answer: B

Watch Video Solution

59. The equation of the tangent to the hyperbola $3x^2-2y^2=10at(2,1)$ is

A.
$$3x - y - 5 = 0$$

B. 3x + y + 15 = 0

C. 3x - 3y - 15 = 0

D. 3x - 2y - 3 = 0

Answer: A

is

Watch Video Solution

A.
$$4x + 3y - 15 = 0$$

60. The equation of the normal to the hyperbola $x^2-4y^2=5at(3,\;-1)$

B. 4x - 3y - 15 = 0

C. 4x - 3y + 5 = 0

D. 4x + 4y + 15 = 0

Answer: B

61. The sum and product of the slopes of the tangents to the hyperbola

 $2x^2-3y^2=6$ drawn form the point (-1,1) are

- A. 1, -3
- B. 1, -3/2
- C. 2, -3/2
- D. 3, -2/2

Answer: B

Watch Video Solution

62. The condition that the line y=mx+c may be a tangent to the hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$c^2=a^2m^2-b^2$$

B.
$$c^2 = b^2 - a^2 m^2$$

C.
$$c^2 = a^2 - b^2 m^2$$

D.
$$c^2 = a^2 + b^2 m^2$$

Answer: A

Watch Video Solution

63. The condition that the line $x\cos\alpha + y\sin\alpha = p$ to be a tangent to the hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$a^2\cos^2lpha+b^2\sin^2lpha=p^2$$

B.
$$a^2 \cos \alpha - b^2 \sin^2 \alpha = p^2$$

C.
$$a^2 \sin^2 lpha + b^2 \cos^2 lpha = p^2$$

D.
$$a^2 \sin^2 \alpha + b^2 \cos^2 \alpha = p^2$$

Answer: B

64. The condition that the line $\frac{x}{p} + \frac{y}{q}$ =1 to be a tangent to the

hyperbola
$$rac{x^2}{a^2}-rac{y^2}{b^2}=1 i s$$

A.
$$\displaystyle rac{a^2}{p^2} + rac{b^2}{q^2} = 1$$

B.
$$\displaystyle rac{a^2}{p^2} - rac{b^2}{q^2} = 1$$

C.
$$\frac{b^2}{p^2} - \frac{a^2}{q^2} = 1$$

D.
$$\displaystyle rac{a^2}{q^2} - rac{b^2}{p^2} = 1$$

Answer: B

Watch Video Solution

65. In the line 3x-y=k is a tangent to the hyperbola $3x^2-y^2=3$

A.
$$\pm\sqrt{7}$$

B.
$$\pm\sqrt{3}$$

$$\mathrm{C.}\pm\sqrt{5}$$

D.
$$\pm\sqrt{6}$$

Answer: D

Watch Video Solution

66. The values of m for which the line y =mx +2 become a tangent to the hyperbola $4x^2-9y^2=36$ is

A.
$$\pm \frac{2}{3}$$

$$\mathrm{B.}\pm\frac{2\sqrt{2}}{3}$$

$$c. \pm \frac{8}{9}$$

$${\rm D.}\pm\frac{4\sqrt{2}}{3}$$

Answer: B

67. The equation of the tangents to the hyperbola $3x^2-4y^2=12$ which are parallel to the line 2x+y+7=0 are

A.
$$2x+y\pm\sqrt{13}=0$$

B.
$$3x-y\pm\sqrt{6}=0$$

$$\mathsf{C.}\,3x-y\pm2=0$$

D.
$$3x-y\pm\sqrt{2}=0$$

Answer: A

Watch Video Solution

68. The equations of the tangents to the hyperbola $2x^2-3y^2=6$ which are perpendicular to the line x-2y+5 =0 are

A.
$$x-2y\pm\sqrt{11}=0$$

B.
$$2x+y\pm\sqrt{10}=0$$

C.
$$x+5y\pm\sqrt{21}=0$$

D.
$$x + 6y \pm \sqrt{31} = 0$$

Answer: B

Watch Video Solution

69. The equations of the tangents to the hyperbola $9x^2-16y^2=144$ at the ends of latus rectum are

A.
$$5x\pm 2y=26$$

B.
$$5x + -3y = 26$$

$$\mathsf{C.}\,5x\pm4y=16$$

D.
$$5x \pm 5y = 16$$

Answer: C

which make equal intercepts on the axes is

A.
$$x+y=\pm 1$$

$$\mathsf{B.}\,x-y=\ \pm\ 1$$

$$\mathsf{C.}\,2x+y=\ \pm\ 1$$

D. none

Answer: A

71. The equations of the tangents to the hyperbola $4x^2-5y^2=20$ which make an angle 60° with the transverse axis are

70. The equations of the tangents to the hyperbola $3x^2-4y^2=12$

A.
$$y=\sqrt{5}x\pm\sqrt{21}$$

B.
$$y=\sqrt{5}x\pm\sqrt{11}$$

C.
$$y=\sqrt{7}x\pm\sqrt{21}$$

D.
$$y=\sqrt{3}x\pm\sqrt{11}$$

Answer: D

Watch Video Solution

72. Equation of one of the tangents passing through (2, 8) to the hyperbola $5x^2 - y^2 = 5$ is

A.
$$3x + y - 14 = 0$$

$$\mathsf{B.}\,3x-y+2=0$$

$$C. x + y + 3 = 0$$

D.
$$x - y + 6 = 0$$

Answer: B

73. The point of contact of 5x+6y+1=0 to the hyperbola $2x^2-3y^2=2$ is

A. (5, 4)

B. (-5, 4)

C. (-5, -4)

D. (5, -4)

Answer: B

74. The number of tangents $\mathsf{to} x^2 \, / \, 9 - y^2 \, / \, 4 = 1$ through (6,2) is

A. 0

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

75. If m_1, m_2 are slopes of the tangents to the hyperbola $x^2/25 - y^2/16 = 1$ which pass through the point (6,2) then

A.
$$m_1 + m_2 = 24/11$$

B.
$$m_1 + m_2 = 48/11$$

C.
$$m_1 + m_2 = 28/11$$

D.
$$mim_2=11/20$$

Answer: A

Watch Video Solution

76. The equations of the directtor circle of $x^2/12-y^2/8=1$ is

A.
$$x^2+y^2=16$$

$$\mathsf{B.}\,x^2+y^2=4$$

C.
$$x^2 + y^2 = -9$$

D.
$$x^2 - y^2 = 4$$

Answer: B

Watch Video Solution

77. The equations of the auxiliary circle of $x^2 \, / \, 16 - y^2 \, / \, 25 = 1$ is

A.
$$x^2+y^2=16$$

B.
$$x^2 + y^2 = 9$$

C. $x^2 + y^2 = 5$

$$\mathsf{D}.\,x^2+y^2=15$$

Answer: A

78. The radius of the auxiliary circle of the hyperbola $x^2/25-y^2/9=1$ is

A. 3

B. 4

C. 5

D. none

Answer: C

Watch Video Solution

79. The tangents at a point P on $x^2/a^2-y^2/b^2=1$ cuts one of its directrices in Q. Then PQ subtends at the corresponding focus an angle of

A. $\pi/3$

B. $\pi/6$

$$C. \pi/4$$

D.
$$\pi/2$$

Answer: D

View Text Solution

80. The locus of the point of interection of two tangents of the hyperbola

 $x^2 \, / \, a^2 - y^2 \, / \, b^2 = 1$ which make an angle 30° with one another is

A.
$$\left(x^2+y^2/b^2+a^2\right)^2=12\left(a^2y^2-b^2x^2+a^2b^2\right)$$

B.
$$\left(x^2+y^2-a^2+b^2\right)^2=4\left(a^2y^2-b^2x^2+a^2b^2\right)$$

C.
$$\left(x^2+y^2-a^2+b^2
ight)^2=4\left(a^2y^2-b^2x^2+a^2b^2
ight)$$

D.
$$x^2+y^2=a^\circ-b^2$$

Answer: A

View Text Solution

81. The locus of the point of interection of two tangents of the hyperbola

 $x^2/a^2-y^2/b^2=1$ which make an angle $45^{\,\circ}$ with one another is

A.
$$\left(x^2+y^2/b^2+a^2\right)^2=12\left(a^2y^2-b^2x^2+a^2b^2\right)$$

B.
$$\left(x^2+y^2-a^2+b^2\right)^2=4\left(a^2y^2-b^2x^2+a^2b^2\right)$$

C.
$$\left(x^2+y^2-a^2+b^2
ight)^2=4ig(a^2y^2-b^2x^2+a^2b^2ig)$$

D.
$$x^2+y^2=a^\circ-b^2$$

Answer: B

View Text Solution

82. The locus of the point of intersection of two tangents to the hyperbola $x^2/a^2-y^2/b^2=1$ which make an angle 90° with one another is

A.
$$x^2 + y^2 = a^2 + b^2$$

B.
$$x^2 + y^2 = a^2 - b^2$$

C.
$$x^2 - y^2 = a^2 - b^2$$

D.
$$x^2 - y^2 = a^2 + b^2$$

Answer: B

Watch Video Solution

83. Tangents to the hyperbola $x^2/a^2-y^2/b^2=1$ make angle θ_1,θ_2 with the transverse axis .if θ_1,θ_2 are complementary then the locus of the point of intersection of the tangents is

A.
$$x^2 - y^2 = a^2 + b^2$$

B.
$$x^2 + y^2 = a^2 - b^2$$

C.
$$x^2 - y^2 = a^2 - b^2$$

D. NONE

Answer: A

84. Tangents to the hyperbola $x^2/a^2-y^2/b^2=1$ make angle θ_1 , θ_2 with the transverse axis. The equations o the locus of their intersection when $\tan(\theta_1+\theta_2)=k$ is

A.
$$k\left(x^3-y^3-a^3-b^2\right)=2xy$$

$$\mathsf{B.}\, k\big(x^2-y^2-a^2+b^2\big)=4xy$$

C.
$$kig(x^2-y^2-a^2-b^2ig)=2xy$$

D.
$$k(x^2 + y^2 + a^2 - b^2) = 2xy$$

Answer: C

Watch Video Solution

85. Tangents to $x^2/a^2-y^2/b^2=1$ make angles θ_1,θ_2 with transverse axis . The equation of the locus of their intersection when $\cot\theta_1+\cot\theta_2=k$ is

$$A. k(x^2 - a^2) = 2xy$$

 $\mathtt{B.}\,k\big(y^2+b^2\big)=2xy$

 $\mathsf{C.}\, k(x^2+a^2=2xy$

D. $k(y^2 - b^2) = 2xy$

Answer: B

Watch Video Solution

86. Tangents drawn from (lpha,eta) to the hyperbola $x^2/a^2-y^2/b^2=1$ make angles $heta_1 \,\, ext{and} \,\, heta_2$ with the axis .If $an heta_1 an heta_2 = 1 then lpha^2 - eta^2 =$

A. a^2

 B, b^2

 $C. a^2 + b^2$

D. $a^2 - b^2$

Answer: C

87. The locus of the point of intersection of tangents to the hyperbola $x^2-y^2=a^2$ which include an angle 45° is

A.
$$\left(x^2+y^2\right)^2=4a^2\left(x^2+y^2+a^2\right)$$

B.
$$\left(x^2+y^2\right)^2=4a^2\left(x^2-y^2+a^2\right)$$

C.
$$\left(x^2+y^2\right)^2=4a^2\left(y^2-x^2+a^2\right)$$

D.
$$\left(x^2+y^2\right)^2=4a^2\Big) \left(x^2+y^2-a^2\right)$$

Answer: C

88. A line through the origin meets the circle $x^2+y^2=a^2$ at P and the hyperbola $x^2-y^2=a^2$ at. Q the locus of the point of intersection of the tangents at P to the circle and with the tangents at Q to the hyperbola is

A.
$$\left(x^4+y^4\right)=a^6$$

B. $(a^4 + 4y^4)x^2 = a^6$

C. $\left(a^4+4x^4\right)y^2=a^6$

D. none

Answer: B

View Text Solution

hyperbola $x^2/a^2-y^2/b^2=1$ is

89. The product of the perpendicular from the foci on any tangent to the

A. b^2

 $B. a^2$

 $\mathsf{C}_{\cdot} - b^2$

D. $2b^{2}$

Answer: A

90. From any point on the hyperbola $x^2-y^2=a^2-b^2$ two tangents are drawn to the ellipse $x^2/a^2+y^2/b^2=1$ Then they make angles α and β such that

A.
$$an lpha - an eta + 1$$

B.
$$\tan \alpha + \tan \beta = 1$$

C.
$$\tan \alpha \tan \beta = 1$$

D.
$$\tan \alpha \tan \beta = -1$$

Answer: C

View Text Solution

91. The equations to the common tangents to the two hyperbolas $x^2/a^2-y^2/b^2$ =1 and $y^2/a^2-x^2/b^2=1$ are

A.
$$y=x\pm\sqrt{b^2-a^2}$$

$$\mathsf{B.}\,y=\ \pm\,x\pm\sqrt{a^2-b^2}$$

C.
$$y=\pm x\pm \left(a^2-b^2\right)$$

$$\mathrm{D.}\,y=\ \pm\,x\pm\sqrt{a^2+b^2}$$

Answer: B

Watch Video Solution

$y^2 = 8x$ and xy = -1 is

A.
$$y=2x+1$$

92. The equation of the common tangents drawn to the curves

B.2y = x + 6

C. y = x + 2

D. 3y = 8x + 2

Answer: C

93. The length of the straight line x-3y=1 intercept by the hyperbola

$$x^2-4y^2=1$$
is

- A. $6\sqrt{2/3}$
- B. $6\sqrt{2/5}$
- $\mathsf{C.}\,3\sqrt{2/5}$
- D. $2\sqrt{2/5}$

Answer: B

Watch Video Solution

94. The product of the perpendicular from the foci on any tangent to the

hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$\left(x^2+y^2\right)^2=a^2x^2+b^2y^2$$

B.
$$\left(x^2+y^2\right)^2=a^2x^2-b^2y^2$$

C.
$$\left(x^2-y^2\right)^2=a^2x^2+b^2y^2$$

D.
$$\left(x^2 - y^2\right)^2 = a^2 x^2 - b^2 y^2$$

Answer: B

Watch Video Solution

95. The equation to the pair of asymptotes of the hyperbola

$$2x^2 - y^2 = 1 \text{ is}$$

A.
$$2x^2+J^2=0$$

$$B. 2x^2 - y^2 = 0$$

$$\mathsf{C.}\,x^2+2y^2=0$$

D.
$$x^2 - 2y^2 = 0$$

Answer: B

96. The equations of the asymptotes of the hyperbola $4x^2-9y^2=36$

are

A.
$$2x\pm 3y=0$$

B.
$$2x\pm 5y=0$$

C.
$$2x\pm 6y=0$$

D.
$$2x \pm 8y = 0$$

Answer: A

Watch Video Solution

97. The angle between the asymptotes of the hyperbola $x^2-3y^2=3$ is

A.
$$\pi/3$$

B.
$$\pi/5$$

C.
$$\pi/2$$

D.
$$\pi/7$$

Answer: A

Watch Video Solution

98. The angles between the asymptotes of the hyperbola $x^2/a^2-y^2/b^2=1$ is

- A. $2\sin^{-1}(e)$
- B. $2\cos^{-1}(e)$
- $\mathsf{C}.\tan^{-1}(e)$
- D. $2 \sec^{-1}(e)$

Answer: D

Watch Video Solution

99. The angles between asymptotes of the hyperbola $xy=c^2$ is

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: D

Watch Video Solution

100. The asymptotes of a rectangular hyperbola intersect at an angle

A. $\pi/6$

B. $\pi/3$

C. $\pi/4$

D. $\pi/2$

Answer: D

101. The combined equation of the asymptotes of the hyperbola xy+x+y+5=0 is

A.
$$xy = 0$$

B.
$$(x-1)(y-1) = 0$$

C.
$$(x-1)(y+1)=0$$

D.
$$(x+1)(y+1) = 0$$

Answer: D

102. The asymptotes of the hyperbola

$$6x^2+13xy+6y^2-7x-8y-26=0$$
 are

A.
$$2x - 3y - 1 = 0$$
, $3x - 2y - 2 = 0$

$$\mathsf{B.}\,2x+3y-1=0,3x+2y-2=0$$

 $\mathsf{C.}\,2x+2y-2=0,3x+3y-3=0$

 $\mathsf{D.}\,2x-3y-3=0,3x+3y-3=0$

Answer: B

Watch Video Solution

103. The equation to the hyperbola with vertex (4,0) and having asymptotes $4x \pm 3y = 0$ is

A.
$$16x^2 - 9y^2 = 256$$

$$\mathrm{B.}\, 16x^2 + 9y^2 = 256$$

$$\mathsf{C.}\, 16x^2 - 9y^2 = 156$$

$${\rm D.}\, 16x^2-9y^2=56$$

Answer: A

104. The equation of the hyperbola whose asymptotes are 3x+4y-2=0, 2x+y+1=0 and which passes through the point (1,1)is

A.
$$6x^2 + 41xy + 44y^2 - 30x + 2y - 22 = 0$$

$$\mathsf{B.}\, 6x^2 + 11xy + 4y^2 - x + 2y - 22 = 0$$

$$\mathsf{C.}\, 6x^2 - 15xy + 14y^2 - 6x + 12y - 12 = 0$$

$$\mathsf{D.}\, 6x^2 + 13xy + 6y^2 - 38x - 37y - 98 = 0$$

Answer: B

Watch Video Solution

105. The equation of the hyperbola which passes through the point (2,3) and has the asymptotes $4x+3y-7=00 \ {
m and} \ x-2y-1=0$ is

A.
$$4x^2 + 5xy - 6y^2 - 11x + 11y + 50 = 0$$

$$\mathsf{B.}\,4x^2 + 5xy - 6y^2 - 11x + 11y - 43 = 0$$

 $\mathsf{C.}\,4x^2-5xy-6y^2-11x+11y+57=0$

 $D. x^2 - 5xy - y^2 - 11x + 11y - 43 = 0$

Answer: C

Watch Video Solution

106. If a hyperbola has one focus at the origin and its eccentricity is $\sqrt{2}$.

One of the directrices is $x+y+1=0,\,$ Then equation its asymptotes

are

A. x - 1 = 0, y - 1 = 0

 ${\rm B.}\,x+1=0,y+1=0$

C. x + 3, y + 3 = 0

D. x + 2 = 0, y + 2 = 0

Answer: B

107. If a hyperbola has one focus at the origin and its eccentricity is $\sqrt{2}$.One of the directrices is x+y+1=0. Then the centre of the hyperbola is

- A. (-1, -1)
- B. (1, -1)
- C. (-2, -1)
- D.(2,2)

Answer: A

Watch Video Solution

108. The assymptotes of the hyperbola are parallel to 3x+2y=0, 2x+3y=0 whose centre is at (1,2) and it passes through the point (5,3) its equation is

A.
$$6x^2 + 13xy + 6y^2 - 38x - 37y + 56 = 0$$

B. $6x^2 + 13xy_6y^2 - 38x - 37y - 56 = 0$

 $\mathsf{C.}\, 6x^2 + 13xy + 6y^2 - 38x - 37y + 98 = 0$

 ${\rm D.}\, 6x^2+13xy+6y^2-38x-37y-56=0$

Answer: D

109.

The

Watch Video Solution

equation of one asymptote of the hyperbola $14x^2 + 38y + 20y^2 + x - 7y - 91 = 0$ is 7x + 5y - 3 = 0. Then the other asymptote is

A.
$$2x+4y=1$$

$$\mathsf{B.}\,2x-4y=1$$

C.
$$2x + 4y + 1 = 0$$

D.
$$2x - 4y + 1 = 0$$

Answer: C

 $x^2/a^2-y^2/b^2=1$ to its asymptotes is

110. The product of the perpendicular from any point on the hyperbola

A.
$$\displaystyle rac{a^2+b^2}{a^2b^2}$$

B.
$$\dfrac{a^2-b^2}{a^2b^2}$$

C.
$$\frac{a^2b^2}{a^2+b^2}$$

D.
$$\frac{a^2b^2}{a^2-b^2}$$

Answer: C

Watch Video Solution

111. The product of the perpendicular from the foci on any tangent to the hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$(ae, be)$$

B. (a/e, b/e)

C. (e/a. e/b)

D. none

Answer: B

Watch Video Solution

112. Find the product of lengths of the perpendiculars from any point on the hyperbola $rac{x^2}{16}-rac{y^2}{9}=1$ to its asymptotes.

- A. 144/25
- B. 25/144
- C.140/25
- D. none

Answer: A

113. The product of lengths of the perpendiculars from the point of the hyperbola $x^2-y^2=8$ to its asymptotes is

- A. 2
- $\mathsf{B.}\,3$
- **C**. 4
- D. 8

Answer: C

Watch Video Solution

114. The product of lenghts of perpendicular from any point on the hyperbola $x^2-y^2=16$ to its asymptotes, is

- A. 2
- B. 4

C. 8

D. 16

Answer: C

Watch Video Solution

115. From any point on the hyperbola $x^2/a^2-y^2/b^2=1$ tangents are drawn to the hyperbola $x^2/a^2-y^2/b^2=2$.The area cut-off by the chord of contact on the asymptotes is

A. ab/2

B. ab

 $\mathsf{C.}\ 2ab$

D. 4ab

Answer: D

116. P is a point on $x^2/a^2-y^2/b^2=1$ and A_2A ' are the vertices of the conic .If PA ,PA' meet an asymptotes at K and L then $(KL)^2$

- A. $2a^2$
- ${\rm B.}\ 2b^2$
- $\mathsf{C.}\,a^2-b^2$
- D. a^2+b^2

Answer: D

View Text Solution

117. The circle on the line joining the foci of the hyperbola $b^2x^2-a^2y^2=a^2b^2,$ as dia meter cuts the asymtotes at

- A. (a, a)
- B.(b,a)

C.
$$(\pm b, \pm a)$$

D.
$$(\pm a, \pm b)$$

Answer: D

View Text Solution

118. The point of intersection of the asymptotes with the directrices lie on

- A. Director circle
- B. Auxilary circle
- C. Circle on SS as diameter
- D. none

Answer: B

119. The area of the triangle formed by any tangent to the hyperbola $x^2/a^2-y^2/b^2=1$ with its asymptotes is

A.
$$4a^2b^2$$

B.
$$a^2b^2$$

$$\mathsf{C.}\,4ab$$

D.
$$ab$$

Answer: D

Watch Video Solution

120. The area (in square units) of the equilateral triangle formed by the tangent at $\left(\sqrt{3},0\right)$ to the hyperbola $x^2-3y^2=3$ with the pair of asymptotes of the heyperbola is

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

c. $1/\sqrt{3}$

D. $2\sqrt{3}$

Answer: B

Watch Video Solution

121. The equation of the tangents to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ at the point $\theta=\frac{\pi}{3}$ is

$$A. 4x + 3\sqrt{3}y = 6$$

$$\mathsf{B.}\,4x - 3\sqrt{3}y = 6$$

$$\mathsf{C.}\,4x - 2\sqrt{3}y = 6$$

$$\mathsf{D.}\,4x - 5\sqrt{3}y = 4$$

Answer: B

122. The equation of the normal to the hyperbola $\frac{x^2}{25}-\frac{y^2}{9}=1$ at the point $\theta=\frac{\pi}{4}$ is

A.
$$5x+3\sqrt{2}y=34\sqrt{2}$$

B.
$$5x+\sqrt{2}y=4\sqrt{2}$$

C.
$$5x-2\sqrt{2}y=34\sqrt{2}$$

D.
$$4x-5\sqrt{3}y=4$$

Answer: A

123. The foot of the normal 3x+4y=7 to the hyperbola $4x^2-3y^2=1$ is

A.
$$(1, 1)$$

B.
$$(1, -1)$$

$$C.(-1,1)$$

D.
$$(-1, -1)$$

Answer: A

Watch Video Solution

- **124.** The maximum number of normals to hyperbola $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ from an external point is
 - A. 2
 - B. 4
 - C. 6
 - D. 5

Answer: B

125. The equation of the normal at the positive end of the latus rectum of the hyperbola $x^2-3y^2=144$ is

A.
$$\sqrt{3}x+2y=32$$

B.
$$\sqrt{3}x - 3y = 48$$

$$\mathsf{C.}\,3x+\sqrt{3}y=48$$

D.
$$3x - \sqrt{3}y = 48$$

Answer: A

Watch Video Solution

126. Let A $(2\sec\theta, 3\tan\theta)$ and $B(2\sec\phi, 3\tan\phi)where\theta + \phi = \frac{\pi}{2}$ be two point on the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$. If (α, β) is the point of intersection of normals to the hyperbola at A and B ,then β =

A.
$$\frac{-13}{3}$$

B.
$$\frac{13}{3}$$

c.
$$\frac{3}{13}$$

$$\mathsf{D.}\,\frac{-3}{13}$$

Answer: A

Watch Video Solution

127. P(heta) and $Q(\phi)$ are two point on $x^2/a^2-y^2/b^2=1$ such that

$$heta-\phi=2lpha.$$
 PQ touches the conic

A.
$$rac{x^2\cos^2lpha}{a^2}-rac{y^2}{b^2}=1$$

$$\text{B.}\, \frac{x^2}{a^2} - \frac{x^2\cos^2 a}{b^2} = 1$$

$$\operatorname{C.}\frac{x^2}{a^2} = \frac{y^2}{b^2} = \cos^2\alpha$$

D. none

Answer: A

View Text Solution

128. A normal to the hyperbola $x^2/a^2-y^2/b^2=1$ cuts the axes at K and L. The perpendicular at K and L to axes meet in P. The locus of P is

A.
$$a^2x^2+b^2y^2=\left(a^2+b^2
ight)^2$$

B.
$$a^2x^2 - b^2y^2 = \left(a^2 + b^2\right)^2$$

C.
$$a^2x^2 + b^2y^2 = \left(a^2 - b^2\right)^2$$

D.
$$a^2x^2-b^2y^2=\left(a^2-b^2
ight)^2$$

Answer: B

Watch Video Solution

129. If the normal at heta on the hyperbola $x^2/a^2-y^2/b^2=1$ meets the transverse axis at G , then AG . A'G =

A.
$$a^2(e^4\sec^2\theta-1)$$

$$\mathtt{B.}\,a^2\big(e^4\sec^2\theta+1\big)$$

C.
$$b^2 \left(e^4 \sec^2 \theta - 1\right)$$

Answer: A

Watch Video Solution

130. If α and β are two points on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ and the chord joining these two points passes through the focus (ae, 0) then $e\cos\frac{\alpha-\beta}{2}=$

A.
$$\cos \frac{\alpha + \beta}{2}$$

B.
$$\cos \frac{\alpha - \beta}{2}$$

$$\mathsf{C.}\cos\frac{2\alpha-2\beta}{4}$$

$$\mathrm{D.}\sin\frac{\alpha+\beta}{2}$$

Answer: A

131. If the axes are rotated through an angle of 45° in the anticlockwise direction then the equation of rectangular hyperbola $x^2-y^2=a^2$ changes to

A.
$$xy = a^2$$

$$\mathtt{B.}\,xy=2a^2$$

$$\mathsf{C.}\,2xy=a^2$$

D. none

Answer: D

View Text Solution

132. If the circle $x^2+y^2=a^2$ intersects the hyperbola ${\sf xy}=c^2$ in four point (x_i,y_i) for $i=1,2,3,\ \ {\sf and}\ \ 4$ then $y_1+y_2+y_3+y_4=$

A. 0

B. c

C. a		
D. c^4		
Answer: A		
Watch Video Solution		
133. If PN is the perpendicular from a point on a rectangular hyperbola to		
its asymptotes, the locus of the midpoints of PN is		
A. Circle		
B. Parabola		
C. Ellipse		
D. Hyperbola		
Answer: D		
View Text Solution		

134. The conic represented by $x^2 - 4x + 3y - 1 = 0$ is

- A. parabola
- B. ellipse
- C. hyperbola
- D. none

Answer: A

- **135.** The conic represented by $2x^2 12xy + 23y^2 4x 28y 48 = 0$ is
 - A. parabola
 - B. ellipse
 - C. hyperbola
 - D. none

Answer: B

Watch Video Solution

136. $x^2 - y^2 + 5x + 8y - 4 = 0$ represents

A. parabola

B. ellipse

C. hyperbola

D. none

Answer: C

Watch Video Solution

137. The equation $16x^2 + y^2 + 8xy - 74x - 78y + 212 = 0$ represents

A. a circle

В.	а	parabola
υ.	ч	parabole

C. an elipse

D. a hyperbola

Answer: B

Watch Video Solution

138. The equation $\dfrac{x^2}{12-k}+\dfrac{y^2}{8-k}=1$ represents

A. a hyperbola if k < 8

B. an elipse if k>8

C. a hyperbola if 8 < k

D. none

Answer: C

139. A point moves in a plane so that its distances PA and PB from the two fixed points A and b in the plane satisfy the relation $PA-PB=k(k\neq 0,)$ then the locus of P is

- A. a parabola
- B. an elipse
- C. a hyperbola
- D. a branch of a hyperbola

Answer: C

View Text Solution

- **140.** The curve represented by x=3 $(\cos t + \sin t), y = 4(\cos t \sin t)$ is
 - A. parabola
 - B. ellipse
 - C. hyperbola

Answer: B

Watch Video Solution

- **141.** The curve represented by x=2 $(\cos t + \sin t)$, $y = 5(\cos t \sin t)$ is
 - A. a circle
 - B. a parabola
 - C. an elipse
 - D. a hyperbola

Answer: C

- A. a hyperbola
- B. an elipse
- C. a parabola
- D. a circle

Answer: A

- **143.** The graph represented by the equations $x=\sin^2 t, y=2\cos t$ is
 - A. a portion of hyperbola
 - B. a parabola
 - C. a part og sine graph
 - D. a part of a hyperbola

Answer: B

Watch Video Solution

144. If m is a variable the locus of the point of intersection of the lines

$$x/3-y/2=m$$
 and $x/3+y/2=rac{1}{m}$ is

- A. a parabola
- B. an elipse
- C. a hyperboa
- D. none

Answer: C

represents

Watch Video Solution

145. The curve describe parametrically by $x=t^2+t+1, y=t^2-t+1$

A. a pair of straight lines B. an elipse C. a parabola D. a hyperbola **Answer: C Watch Video Solution** 146. Chords of an elipse are drawn through the positive end of minor axis . Then their midpoint lies on A. a circle B. a parabola C. an elipse D. a hyperbola **Answer: C**

147. The locus of the point represented by
$$x=1+4\cos heta,\,y=2+3\sin heta$$
 is

B. a parabola

C. a hyperbola

D. a circle

Answer: A

Watch Video Solution

Exercise 1 B

1. The equation of the chord of contact of the point $(3,\,-2)$ w.r.t. the hyperbola $2x^2-3y^2=12$ is

A.
$$x + y - 2 = 0$$

B.
$$x + y + 2 = 0$$

$$\mathsf{C.}\,x-y-2=0$$

$$\mathsf{D}.\,x+y-3=0$$

Answer: A

Watch Video Solution

2. If x= 9 is a chord of contact of the hyperbola $x^2-y^2=9$, then the equation of the tangents at one of the points of contact is

A.
$$x+\sqrt{3}y+2=0$$

$$\mathsf{B.}\,3x-2\sqrt{2}y-3=0$$

$$\mathsf{C.}\,3x-\sqrt{2}y+6=0$$

$$\mathsf{D}.\,x+y-3=0$$

Answer: B

3. The polar of $(\,-2,3)$ w.r.t. the hyperbola $4x^2-3y^2=12$ is

A.
$$8x + 3y - 4 = 0$$

B.
$$8x + 9y + 12 = 0$$

C.
$$9x + 8y - 6 = 0$$

D.
$$8x + 9y + 7 = 0$$

Answer: B

- **4.** The pole of the line 2x + 5y 5 = 0 w.r.t. The hyperbola
- $3x^2 5y^2 = 15\mathsf{is}$
 - A. (2, -3)
 - B. (-2, 1)

C.
$$(2, -1)$$

Answer: A

Watch Video Solution

5. If (-3,4),(k,-2) are conjugate points with respect to

$$2x^2-3y^2=6$$
 then k =

B. 3

C. 4

D. 2

Answer: B

6. If 2x - ky + 3 = 0, 3x - y + 1 = 0 are conjugate lines with respect

to $5x^2-6y^2=15$ then k=

- A. 2
- B. 3
- C. 4
- D. 6

Answer: D

Watch Video Solution

7. The locus of poles of tangents to the circle $x^2+y^2=a^2$ w.r.t the circle

$$x^2 + y^2 + 2ax - a^2 = 0$$
 is

A.
$$x^2 + 4y^2 = 4a^2$$

B.
$$x^2 - 4y^2 = 4a^2$$

$$\mathsf{C.}\,4x^2+y^2=4a^2$$

D.
$$4x^2 - y^2 = 4a^2$$

Answer: C

Watch Video Solution

8. The locus of poles w.r.t. the parabola $y^2=4ax$ of tangents to the hyperbola $4x^2-3y^2=a^2$ is

A.
$$12x^2 - y^2 = 3a^2$$

B.
$$12x^2 - 3y^2 = a^2$$

C.
$$12x^2 + y^2 = 3a^2$$

D.
$$12x^2 + 3y^2 = a^2$$

Answer: C

9. The locus of poles with respect to the hyperbola $x^2/a^2-y^2/b^2=1$ of tangents to its auxiliary circle is

A.
$$rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{a^2}$$
B. $rac{x^2}{a^4} - rac{y^2}{b^4} = rac{1}{a^2}$

C.
$$rac{x^2}{a^2} + rac{y^2}{b^2} = rac{1}{a^2}$$

D.
$$\dfrac{x}{a^4}+\dfrac{y}{b^4}=\dfrac{1}{a^2}$$

Answer: A

10. The locus of poles of tangents to the circle $x^2+y^2=a^2-b^2$ w.r.t. the hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2 - b^2}$$

B.
$$rac{x^2}{a^4} - rac{y^2}{b^4} = rac{1}{a^2 - b^2}$$

C.
$$rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{a^2 + b^2}$$

D.
$$rac{x^2}{a^4} - rac{y^2}{b^4} = rac{1}{a^2 + b^2}$$

Answer: A

View Text Solution

11. The locus of poles of the lines with respect to the hyperbola $x^2/a^2-y^2/b^2=1$ which touch the parabola $y^2=4ax$ is

A.
$$a^3y^3+b^4x=0$$

$$\mathtt{B.}\,a^2y^2+b^2x=0$$

$$\mathsf{C.}\,a^3y^3+b^4x=0$$

D.
$$a^3y^2-b^4x=0$$

Answer: C

12. The locus of poles of the lines with respect to the hyperbola

$$x^2/a^2-y^2/b^2=1$$
 which touch the elipse $rac{x^2}{a^2}+rac{y^2}{eta^2}=1$ is

A.
$$rac{lpha^2 x^2}{a^4} + rac{eta^2 y^2}{b^4} = 1$$

B.
$$rac{lpha^2x^2}{a^4}-rac{eta^2y^2}{b^4}=1$$
C. $rac{lpha^2x^2}{a^4}+rac{lpha^2y^2}{b^4}=1$

D.
$$\frac{lpha^2x^2}{lpha^2}+rac{eta^2y^2}{b^2}=1$$

Answer: A

13. The locus of the poles of chords of the parabola $y^2=4px$ which touch the hyperbola $x^2/a^2-y^2/b^2=1$ is

A.
$$4p^2x^2 + b^2u^2 = 4p^2a^2$$

B.
$$4p^2x^2 - b^2y^2 = 4p^2a^2$$

C.
$$4p^2x^2+b^2y^2=4p^2b^2$$

D.
$$4q^2x^2 - b^2y^2 = 4q^2a$$

Answer: A

View Text Solution

14. Find the locus of the mid-point of the chord of the hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$
 which subtends a right angle at the origin.

A.
$$x^2/a^4+y^2/b^4=1/a^2+1/b^2$$

$${\tt B.}\,x^2/a^4+y^2/b^4=1/a^2-1/b^2$$

C.
$$x^2/a^4 - y^2/b^4 = 1/a^2 + 1/b^2$$

D.
$$x^2/a^4-y^2/b^4=1/a^2-1/b^2$$

Answer: A

15. A straight line touches the circle described on the line joining the foci of the hyperbola $x^2/a^2-y^2/b^2=1$ as diameter . The locus of poles `w.r.t. the hyperbola is

A.
$$rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{a^2 + b^2}$$

$$\mathsf{B.} \ \frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2 - b^2}$$

C.
$$rac{x^2}{a^4} - rac{y^2}{b^4} = rac{1}{a^2 + b^2}$$

D.
$$rac{x^2}{a^4} - rac{y^2}{b^4} = rac{1}{a^2 - b^2}$$

Answer: A

16. Chords of he hyperbola $x^2/a^2-y^2/b^2=1$ are at a constant distance k from the centre . The equation to the locus of their poles is

A.
$$\displaystyle rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{k^2}$$

B.
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = k^2$$

C.
$$rac{x^2}{a^4}+rac{y^2}{b^4}=rac{1}{l^4}$$
D. $rac{x^2}{a^4}+rac{y^2}{b^4}=k^4$

Answer: A

17. If a variable line of slope 4 intersects the hyperbola xy=1 at two points. Then the locus of the point which divides the line segment between these points in the ratio 1: 2 is

A.
$$16x^2 + 10xy + y^2 - 2 = 0$$

$$B. 16x^2 - 10xy + 2y^2 - 2 = 0$$

$$\mathsf{C.}\, 16x^2 + 20xy + 10y^2 - 2 = 0$$

D.
$$16x^2 + 15xy + 10y^2 - 2 = 0$$

Answer: A

18. The chords of contact of P { w.r.t. $x^2-y^2=a^2 \,\, {
m and} \,\, x^2+y^2=a^2$ are at right angles.The locus of P is

A.
$$x^2-y^2=a^2$$

B.
$$x^2 - y^2 = 2a^2$$

C.
$$x^2 - y^2 = 0$$

D.
$$x^2 - y^2 = 1$$

Answer: C

View Text Solution

19. The equation of the chord of the hyperbola $4x^2-9y^2=36$ having (-2,1) as its mid-point is

A.
$$8x + 9y + 7 = 0$$

B.
$$8x - 7y + 7 = 0$$

C.
$$8x - 9y - 7 = 0$$

D.
$$6x + 9y + 7 = 0$$

Answer: A

Watch Video Solution

20. The mid point of the chord 4x-3y=5 of the hyperbola $2x^2-3y^2=12$

is

A.
$$\left(0, -\frac{5}{3}\right)$$

B. (2, 1)

$$\operatorname{C.}\left(\frac{5}{4},0\right)$$

D. $\left(\frac{11}{4}, 2\right)$

Answer: B

21. The mid-point of the chord x+2y+4=0 on the hyperbola

$$3x^2 - 4y^2 = 12$$
 is

A.
$$(1, 2)$$

C.
$$(2, -3)$$

D.
$$(2, -1)$$

Answer: C

View Text Solution

22. The locus of the midpoints of the chords $x^2-y^2=a^2$ which touch the parabola $y^2=4axis$

A.
$$y^2(X+a)=x^3$$

B.
$$y^2(x-a)=x^3$$

$$\mathsf{C.}\, y^2(x+a) = x^2$$

D.
$$y^2(x - a) = x^2$$

Answer: B

View Text Solution

23. The locus of the midpoints of chords of $x^2/a^2-y^2/b^2=1$ which pass through the focus (ae, 0) is

A.
$$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}+\dfrac{xe}{a}=0$$

$$\text{B.} \, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{xe}{a} = 0$$

$$\mathsf{C.}\,\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{xe}{a}=0$$

$$\operatorname{D.}\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{xe}{a} = 0$$

Answer: C

24. The locus of midpoints of chords of the ellipse $x^2/a^2+y^2/b^2=1$ which pass through the positive end of the major axis is

A.
$$rac{x^2}{a^2} - rac{y^2}{b^2} - rac{x}{b} = 0$$

$$\text{B.} \ \frac{x^2}{b^2} - \frac{y^2}{a^2} - \frac{x}{a} = 0$$

$$\mathsf{C.}\, \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{x}{a} = 0$$

D.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{x}{a} = 0$$

Answer: C

Watch Video Solution

25. A tangents to the hyperbola $x^2/a^2ig)-y^2/b^2=1$ cuts the elipse

 $x^2/a^2+y^2/b^2=1$ in P and Q . The locus of midpoint of PQ is

A.
$$\left(x^2/a^2 + y^2/b^2 \right)^2 = x^a/a^2 - y^2/b^2$$

B.
$$\left(x^2/a^2 - y^2/b^2 \right)^2 = x^a/a^2 + y^2/b^2$$

C.
$$\left(x^2/a^2+y^2/b^2
ight)^2=x^a/a^2+y^2/b^2$$

D.
$$\left(x^2/a^2-y^2/b^2\right)^2=x^a/a^2-y^2/b^2$$

Answer: A

View Text Solution

26. From points on the circle $x^2+y^2=a^2$,tangents are drawn to the hyperbola $x^2-y^2=a^2$ The locus of the midpoints of chords of contact is

A.
$$\left(x^2 + y^2\right)^2 = a^2 \left(x^2 - y^2\right)$$

B.
$$(x^2 - y^2)^2 = a^2(x^2 + y^2)$$

C.
$$a^2(x^2+y^2)^2=(x^2-y^2)$$

D.
$$a^2(x^2-y^2)^2=(x^2+y^2)$$

Answer: B

27. The locus of the midpoints of chords of the hyperbola

 $3x^2-2y^2+4x-6=0$ which are parallel to y= 2x is

$$\mathsf{A.}\,3x-4y=4$$

B.
$$3y - 4x = 4$$

C.
$$3x - 4y = 2$$

D.
$$3y - 4x = 2$$

Answer: A

28. The locus of midpoints of chords of the hyperbola $x^2/a^2-\frac{y^2}{b^2}=1$ whose poles lie on the auxiliary circle is

A.
$$\left(rac{x^2}{a^2} + rac{y^2}{b^2}
ight)^2 = rac{x^2 + y^2}{a^2}$$

$$\mathsf{B.}\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}\right)^2=\frac{x^2+y^2}{a^2}$$

C.
$$\left(rac{x^2}{a^2}-rac{y^2}{b^2}
ight)^2=rac{x^2-y^2}{a^2}$$

D.
$$\left(rac{x^2}{a^2}-rac{y^2}{b^2}
ight)^2=rac{x^2+y^2}{b^2}$$

Answer: B

View Text Solution

29. Tangents are drawn from (-2,1) to the hyperola $2x^2-3y^2=6$. Find their equations.

A.
$$3x - y + 5 = 0, x - y + 1 = 0$$

B.
$$3x + y + 5 = 0, x + y + 1 = 0$$

C.
$$3x - y - 5 = 0, x - y - 1 = 0$$

D.
$$3x + y - 5 = 0, x + y - 1 = 0$$

Answer: A

30. The equation to the pair of tangents drawn from (1,-2) to the hyperbola $3x^2-2y^2=6$ is

A.
$$7x^2 + 4xy - y^2 - 6x - 8y - 5 = 0$$

B.
$$7x^2 - 4xy - 2y^2 - 4x - 7y - 5 = 0$$

C.
$$7x^2 - 4xy - y^2 - 6x - 8y - 5 = 0$$

D.
$$7x^2 + 4xy + y^2 + 6x + 8y + 5 = 0$$

Answer: A

31. The locus of poles of normal chords of $x^2/a^2-y^2/b^2=1$ is

A.
$$rac{a^6}{x^2} + rac{b^6}{a^2}ig(a^2 + b^2ig)^2$$

B.
$$\displaystyle rac{a^6}{x^2} + rac{b^6}{a^2} = \left(a^2 - b^2
ight)^2$$

C.
$$\displaystyle rac{a^6}{x^2} - rac{b^6}{y^2} = \left(a^2 + b^2
ight)^2$$

D.
$$\displaystyle rac{a^6}{x^2} - rac{b^6}{y^2} = \left(a^2 - b^2
ight)^2$$

Answer: C

View Text Solution

32. The locus of middle points of normal chords of the rectangular hyperbola $x^2-y^2=a^2$ is

A.
$$\left(x^2+y^2\right)^2+4a^2x^2y^2=0$$

B.
$$(x^2 - y^2 + 4a^2x^2y^2 = 0$$

C.
$$\left(x^2+y^2\right)^3-4a^2x^2y^2=0$$

D.
$$(x^2-y^2)^2-4a^2x^2y^2=0$$

Answer: B

1. One of the foci of the hyperbola is origin and the corresponding directrix is 3x+4y+1=0 .The eccentricity of the hyperbola is $\sqrt{5}$.The equation of the hyperbola is

A. only I is true

B. only II is true

C. both I and II are ture

D. neither I nor II true

Answer: C

Watch Video Solution

2. I : If e and e' are the eccentricity of the hyperbola $x^2/a^2-y^2/b^2=1$ and its conjugate hyperbola the value of $1/e^2+1/e^{\,\prime 2}\,$ is 1

II : If e and e_1 are the eccentricity of the hyperbola $xy=c^2,\,x^2-y^2=c^2$ then $e^2+c_1^2$ is equal to 4

A. only I is true

B. only II is true

C. both I and II are ture

D. neither I nor II true

Answer: C

View Text Solution

- **3.** The foci of the ellips $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide ,then the value of b^2 is
 - A. only I is true
 - B. only II is true
 - C. both I and II are ture
 - D. neither I nor II true

Answer: C

4. I : The angle between the asymptotes of the hyperbola
$$x^2-3y^2=3{
m is}\pi/3$$

II: The angle between the asymptotes of the hyperbola $xy=c^2\mathrm{is}\pi/2$

A. only I is true

B. only II is true

C. both I and II are ture

D. neither I nor II true

Answer: C

View Text Solution

Set 2

1. IF the equation of the hyperbola whose focus is (2,4) eccentricity is 5 and directrix

and directrix is 4x-3y+1=0 is $15x^2-24xy+8y^2+ax+by+c=0$ then the

A. a,b,c

ascending order of a,b,c is

B. b,c,a

C. c,a,b

D. c,b,a

Answer: D

View Text Solution

2. The equation of the normal to the hyperbola $x^2-4y^2=5at(3,\;-1)$ is

A. a,b,c

B. b,c,a

C. c,a,b

D. c,b,a

Answer: D

4. The equation of one asymptote of the hyperbola $14x^2+38y+20y^2+x-7y-91=0$ is 7x+5y-3=0. Then the other asymptote is

- A. a,b,c
- B. b,c,a
- C. c,a,b
- D. c,b,a

Answer: B

 $IV \quad x^2 - 4x - y^2 - 2y - 8 = 0$

Centre

$$I = 4(x+3)^2 - 9(y-2)^2 = 36,$$
 $(a)(2,-1)$

$$(b)(-3,2)$$

1.
$$II = 3(x-3)^2 - 4(y-1)^2 = 12,$$
 (b)(-3,2)

$$III \quad 9(x-2)^2(2) - 5(y-1)^2 = 45, \qquad (c)(2,1)$$
 $IV \quad x^2 - 4x - y^2 - 2y - 8 = 0, \qquad (d)(3,1)$

Answer: B

Hyperbola Foci
$$I = rac{(x-1)^2}{16} - rac{(y-2)^2}{9} = 1 \qquad (a)(1,-1)(-9,-1)$$

2.
$$II \quad \frac{(x+2)^2}{9} - \frac{(y-3)^2}{27} = 1 \qquad (b)(6,2)(-4,2)$$

$$III \quad \frac{(x+1)^2}{25} - \frac{(y+2)^2}{16} = 1 \qquad (c)(4,3)(-8,3)$$

$$(2)(-4,2)$$

$$IV \quad 9x^2 - 4y(2) = 8, (2,-) \qquad (d)\Big(-1 \pm \sqrt{41},-2\Big)$$

- A. a,b,c,d
- B. a,d,b,c
- C. c,a,b,d
- D. b,c,d,a

Answer: D

	Hyperbola point	tangent
I	$3x^2 - 4y^2 = 12{,}3x + 2y + 6 = 0$	(a)(2,-3)
3. <i>II</i>	$x^2 - 3y^2 = 3.2x + y - 1 = 0$	(b)(-1,-3)
III	$3x^2 - 4y^2 = 8, (2, -1)$	(c)x+2y-4=0
IV	$9x^2 - 16y^2 = 144,3x - 16y + 48 = 0$	(d)(6,-1)

- A. a,b,c
- B. b,c,a
- C. c,b,a
- D. a,c,b

Answer: B

View Text Solution

Hyperbola point

$$I = 3x^2 - 4y^2 = 12 - 3x + 2y + 6 = 0,$$
 (a)(2,-3)

Pole

(b)(-1,-3)

4.
$$II \quad x^2 - 3y^2 = 32x + y - 1 = 0,$$

$$IV \quad 9x^2 - 16y^2 = 144 - 3x - 16y + 48 = 0, \qquad (d)(6,-1)$$

A. a,b,c,d

B. a,b,d,c

C. c,d,a,b

D. b,c,d,a

Answer: C

Equation of the curve

(a)(Parabola)

 $x = 2(\cos t + \sin t)y = 5(\cos t - \sin t),$ Ι II

 $x = 3(\cosh\theta + \sin h\theta)y = (4\cos h\theta - \sin h\theta),$ (b)(elipse)

 $III \ \ x = \sin^2 ty = 2\cos t,$

View Text Solution

A. a,b,c

B. b,c,a

C. c,b,a

D. a,c,b

Answer: B

Set 4

$$=\sin^2 ty=2\cos t,$$

(c)(hyperbola)

Nature of the curve

1. A : The foci of the hyperbola $\dfrac{\left(x+2\right)^2}{9}-\dfrac{\left(y-3\right)^2}{27}=1$ are (4,3) ,(-8,3). R : The foci of the hyperbola $\dfrac{\left(x-lpha\right)^2}{a^2}-\dfrac{\left(y-eta\right)^2}{b^2}=1$ are $(lpha\pm ae,eta)$

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

2. A : The eqution of the normal to the hyperbola $x^2-4y^2=5at(3,\,-1)is4x-3y=15$

: The equation of the normal to the hyperbola

x - 4y = 5ai(3, -1)is4x - 3y = 16

 $rac{x^2}{a^2} - rac{y^2}{b^2} = 1at(x_1, y_1) ext{is} rac{a^2x}{x_1} + rac{b^2y}{y_1} = a^2 + b^2$

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Watch Video Solution

3. A: If (-3,4),(k,-2) are conjugate points with respect to the hyperbola

$$2x^2 - 3y^2 = 6$$
then $k = 3$

R : The points $(x_1,y_1),(x_2,y_2)$ are conjugate with respect to S = O iff

$$S_{12} = 0$$

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

4. A : The angle between the asymptotes $x^2-y^2=2{
m is}\ \pi/2$

R: The angle between the asymptotes of the hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1 ext{is} 2 rac{ an^{-1}(b)}{a}$$

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

