©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

LOCUS

Solved Examples

1. If the distances from P to the points $(3,4),(-3,4)$ are in the ratio 3 :

2 , then the locus of P is
A. $5 x^{2}+5 y^{2}-12 x-86 y+17=0$
B. $5 x^{2}+5 y^{2}-34 x+120 y+29=0$
C. $5 x^{2}+5 y^{2}-5 x+y+14=0$
D. $5 x^{2}+5 y^{2}+78 x-40 y+125=0$

(D) Watch Video Solution

2. $A(2,3), B(1,5), C(-1,2)$ are the three points. If P is a point moves such that $P A^{2}+P B^{2}=2 P C^{2}$, then the locus of P is
A. $10 x-8 y+29=0$
B. $10 x+8 y-29=0$
C. $10 x+8 y+29=0$
D. $10 x-8 y-29=0$

Answer: B

- Watch Video Solution

3. $A(1,-1), B(5,2)$ are two points. If a point P forms a triangle of area 5 sq . Unit with A, B then the locus of P is

$$
\text { A. } 9 x^{2}+24 x y-16 y^{2}+42 x+56 y-51=0
$$

B. $9 x^{2}+24 x y-16 y^{2}-42 x+56 y-51=0$
C. $9 x^{2}-24 x y+16 y^{2}-42 x+56 y-51=0$
D. $9 x^{2}-24 x y+16 y^{2}+42 x+56 y-51=0$

Answer: C

- Watch Video Solution

4. The locus of point of intersection of the lines $y+m x=\sqrt{a^{2} m^{2}+b^{2}}$ and $m y-x=\sqrt{a^{2}+b^{2} m^{2}}$ is
A. $x^{2}+y^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $x^{2}+y^{2}=a^{2}+b^{2}$
C. $x^{2}-y^{2}=a^{2}-b^{2}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=a^{2}-b^{2}$

Answer: B

5. From a point P, perpendiculars $P L$ and $P M$ are drawn upon X and Y axes respectively. If LM passes through a fixed point $\left(x_{1}, y_{1}\right)$ then the locus of P is
A. $\frac{x_{1}}{x}-\frac{y_{1}}{y}=1$
B. $\frac{x_{1}}{x}+\frac{y_{1}}{y}=1$
C. $\frac{x}{x_{1}}-\frac{y}{y_{1}}=1$
D. $\frac{x}{x_{1}}+\frac{y}{y_{1}}=1$

Answer: B

D Watch Video Solution

6. If the roots of the equation
$\left(x_{1}^{2}-a^{2}\right) m^{2}-2 x_{1} y_{1} m+\left(y_{1}^{2}+b^{2}\right)=0,(a>b)$ are the slopes of two perpendicular lines intersecting at $P\left(x_{1}, y_{1}\right)$, then the locus of P is
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $x^{2}+y^{2}=a^{2}-b^{2}$
C. $x^{2}-y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

7. A lines passes through a fixed point (a, b). The locus of the foot of the perpendicualr on it from origin is
A. $x^{2}+y^{2}+a x+b y=0$
B. $x^{2}+y^{2}-a x-b y=0$
C. $x^{2}+y^{2}-a x+b y=0$
D. $x^{2}+y^{2}+a x-b y=0$

Exercise 1 Multiple Choice Questions

1. The locus of the point which is at a distance 5 unit from $(-2,3)$ is
A. $x^{2}-y^{2}+4 x-6 y+12=0$
B. $x^{2}+y^{2}+4 x-6 y-12=0$
C. $x^{2}-y^{2}+4 x-6 y-12=0$
D. $x^{2}+y^{2}+4 x-6 y+12=0$

Answer: B

- Watch Video Solution

2. The locus of $P(x, y)$ such that its distance from $A(0,0)$ is less then 5 units is
A. $x^{2}+y^{2}<5$
B. $x^{2}+y^{2}<10$
C. $x^{2}+y^{2}<25$
D. $x^{2}+y^{2}<20$

Answer: C

- Watch Video Solution

3. The locus of the point which is at a distance 5 unit from x-axis is
A. $y^{2}+25=0$
B. $y^{2}-25=0$
C. $y+25=0$
D. $y-25=0$

Answer: B

4. The locus of the point, for which the sum of the sqaures of distances from the coordinate axes is 25 is
A. $x^{2}+y^{2}=25$
B. $x^{2}+y^{2}=19$
C. $x^{2}+y^{2}=32$
D. $x^{2}+y^{2}=29$

Answer: A

- Watch Video Solution

5. The locus of the point whose distances to the coordinates axes arc in the ratio $2: 3$ is
A. $3 x^{2}-4 y^{2}=0$
B. $4 x^{2}-3 y^{2}=0$
C. $4 x^{2}-16 y^{2}=0$
D. $4 x^{2}-9 y^{2}=0$

Answer: D

- Watch Video Solution

6. The locus of the point which is equidistant to the coordinate axes is `
A. $x^{2}+y^{2}=0$
B. $x^{2}-y^{2}=0$
C. $x+y=0$
D. $x-y=0$

Answer: B

7. The equation of the locus of the point whose distance from x-axis is twice its distance from the y -axis, is
A. $y^{2}=4 x^{2}$
B. $4 y^{2}=x^{2}$
C. $y=3 x$
D. $4 x+y=0$

Answer: A

- Watch Video Solution

8. The equation to the locus of points equidistant from the points $(2,3),(-2,5)$ is
A. $2 x-y+4=0$
B. $2 x-y-1=0$
C. $2 x+y-4=0$
D. $2 x+y+1=0$

Answer: A

- Watch Video Solution

9. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$ then the value of c is
A. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$
B. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$

Answer: A

- Watch Video Solution

10. The equation to the locus of a point P for which the distance from P to
$(4,0)$ is double the distance from P to x - axis is
A. $x^{2}+3 y^{2}+8 x+16=0$
B. $x^{2}+3 y^{2}-8 x-16=0$
C. $x^{2}-3 y^{2}+8 x-16=0$
D. $x^{2}-3 y^{2}-8 x+16=0$

Answer: D

- Watch Video Solution

11. A point moves so that its distance from y-axis is half of its distance from the origin. The equation to the locus is
A. $x^{2}-3 y^{2}=0$
B. $3 x^{2}-y^{2}=0$
C. $x^{2}-2 y^{2}=0$
D. $2 x^{2}-y^{2}=0$

Answer: B

- Watch Video Solution

12. The locus of P for which the distance from P to origin is double the distance from P to $(1,2)$ is
A. $3 x^{2}+3 y^{2}-8 x-16 y+20=0$
B. $3 x^{2}+3 y^{2}-8 x+16 y+20=0$
C. $3 x^{2}-3 y^{2}-8 x-16 y+20=0$
D. $3 x^{2}-3 y^{2}-8 x+16 y+20=0$

Answer: A

13. $A(-9,0), B(-1,0)$ are two points. If P is a point such that $P A: P B=3: 1$, then the locus of P is
A. $x^{2}+y^{2}=9$
B. $x^{2}+y^{2}+9=0$
C. $x^{2}-y^{2}=9$
D. $x^{2}-y^{2}+9=0$

Answer: A

- Watch Video Solution

14. The locus of the moving point P , such that $2 P A=3 P B$ where $A(0,0), B(4,-3)$ is
A. $5 x^{2}+5 y^{2}-72 x+54 y+225=0$
B. $5 x^{2}+5 y^{2}+72 x-54 y-225=0$
C. $3 x^{2}+3 y^{2}-70 x+52 y+225=0$
D. none of these

Answer: A

- Watch Video Solution

15. $A(2,3), B(3,-4)$ are two points. The locus of the point P such that $P A^{2}+P B^{2}=10$ is
A. $x^{2}-y^{2}+5 x+y+14=0$
B. $x^{2}+y^{2}-5 x+y-14=0$
C. $x^{2}-y^{2}+5 x-y+14=0$
D. $x^{2}+y^{2}-5 x+y+14=0$

- Watch Video Solution

16. If $A(a, 0), B(-a, 0)$, then the locus of the point P such that $P A^{2}+P B^{2}+2 c^{2}$ is
A. $x^{2}+y^{2}+a^{2}-c^{2}=0$
B. $x^{2}+y^{2}+a^{2}+c^{2}=0$
C. $2 x^{2}+y^{2}+3 a^{2}-c^{2}=0$
D. $x^{2}+y^{2}=a^{2}$

Answer: B

- Watch Video Solution

17. The point P moves such that the sum of the squares of its distances from two fixed points $A(a, 0)$ and $B(-a, 0)$ is constant and equal to $6 a^{2}$. The locus of P is
A. $x^{2}-y^{2}=a^{2}$
B. $x^{2}-y^{2}=2 a^{2}$
C. $x^{2}+y^{2}=2 a^{2}$
D. $x^{2}+y^{2}=a^{2}$

Answer: C

- Watch Video Solution

18. Sum of the sqaures of the distances from a point to $(c, 0)$ and $(-c, 0)$ is $4 c^{2}$. Its locus is
A. $x^{2}+y^{2}+c^{2}=0$
B. $x^{2}+y^{2}=4 c^{2}$
C. $x^{2}+y^{2}=c^{2}$
D. $x^{2}-y^{2}=c^{2}$

Answer: C

- Watch Video Solution

19. $A(1,2), B(2,-3), C(-2,3)$ are three points. If P is a point moves such that $P A^{2}+P B^{2}=2 P C^{2}$, then the locus of P is
A. $7 x-7 y+4=0$
B. $7 x+7 y-4=0$
C. $7 x+7 y+4=0$
D. $7 x-7 y-4=0$

Answer: A

- Watch Video Solution

20. The ends of the hypertenuse of right angled triangle are $(0,6),(6,0)$
.The locus of the third vertex is
A. $x^{2}+y^{2}-6 x-6 y=0$
B. $x^{2}+y^{2}-6 x+6 y=0$
C. $x^{2}-y^{2}-6 x-6 y=0$
D. $x^{2}-y^{2}+6 x-6 y=0$

Answer: A

- Watch Video Solution

21. $A(2,3), B(-1,1)$ are two points. If P is a point such that $\angle A P B=90^{\circ}$, then the locus of P is
A. $x^{2}+y^{2}-x-4 y+1=0$
B. $x^{2}+y^{2}+x+4 y-1=0$
C. $x^{2}+y^{2}-x+4 y-1=0$
D. $x^{2}+y^{2}+x-4 y+1=0$

Answer: A

- Watch Video Solution

22. The locus of P such that area of $\triangle P A B$ is 12 square units where $A=(2,3)$ and $B=(-4,5)$ is
A. $x^{2}+6 x y+9 y^{2}+22 x+66 y+23=0$
B. $x^{2}-6 x y+9 y^{2}+22 x 66 y+23=0$
C. $x^{2}+6 x y+9 y^{2}-22 x-66 y-23=0$
D. $x^{2}-6 x y+9 y^{2}-23 x-66 y-23=0$

Answer: C

- Watch Video Solution

23. $O(0,0), A(6,0), B(0,4)$ are three points. If P is a point such that the area of the quadrilateral PABC is 10 sq. Unit, then the locus of P is
A. $x^{2}-9 y^{2}=0$
B. $y^{2}-9 x^{2}=0$
C. $9 x^{2}-y^{2}=0$
D. $9 y^{2}-x^{2}=0$

Answer: A

- View Text Solution

24. $A(5,3), B(3,-2), C(2,-1)$ are three points. If P is a point such that the area of the quadrilateral PABC is 10 sq. unit, then the locus of P is
A. $16 x^{2}+24 x y-9 y^{2}+144 x+108 y-76=0$
B. $16 x^{2}-24 x y+9 y^{2}-144 x+108 y-76=0$
C. $16 x^{2}+24 x y+9 y^{2}-144 x+108 y+76=0$
D. $16 x^{2}-24 x y-9 y^{2}+144 x+108 y+76=0$

Answer: B

- Watch Video Solution

25. The locus of a point such that the sum of its distances from the points $(0,2)$ and $(0,-2)$ is 6 is
A. $9 x^{2}-5 y^{2}=45$
B. $5 x^{2}+9 y^{2}=45$
C. $9 x^{2}+5 y^{2}=45$
D. $5 x^{2}-9 y^{2}=45$

Answer: C

- Watch Video Solution

26. $A(2,3), B(2,-3)$ are two points. The equation to the locus of P such that $P A+P B=8$ is
A. $16 x^{2}+7 y^{2}-64 x-48=0$
B. $16 x^{2}+7 y^{2}-64 x+48=0$
C. $16 x^{2}-7 y^{2}+64 x-48=0$
D. $16 x^{2}-7 y^{2}+64 x+48=0$

Answer: A

- Watch Video Solution

27. $A(a, 0), B(-a, 0)$ are two points. The equation to the locus of P such that $P A+P B=c$ is
A. $4\left(c^{2}-4 a^{2}\right) x^{2}+4 c^{2} y^{2}=c^{2}\left(c^{2}-4 a^{2}\right)$
B. $4\left(c^{2}+4 a^{2}\right) x^{2}-4 c^{2} y^{2}=c^{2}\left(c^{2}+4 a^{2}\right)$
C. $2\left(c^{2}+2 a^{2}\right) x^{2}+2 c^{2} y^{2}=c^{2}\left(c^{2}+4 a^{2}\right)$
D. $2\left(c^{2}-4 a^{2}\right) x^{2}-4 c^{2} y^{2}=c^{2}\left(c^{2}-4 a^{2}\right)$

Answer: A

- Watch Video Solution

28. $A(a e, 0), B(-a e, 0)$ are two points. The equation to the locus of P such that $P A-P B=2 a$ is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
B. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$
C. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1$
D. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(1+e^{2}\right)}=1$

Answer: A

- View Text Solution

29. $A(2,3), B(-2,3)$ are two points. The locus of P which moves such that $P A-P B=4$ is
A. $y+3=0$
B. $y-3=0$
C. $y^{2}+3=0$
D. $y^{2}-3=0$

Answer: B

- Watch Video Solution

30. $A(0,4), B(0,-4)$ are two points. The locus of P which moves such that $|A P-P B|=6$ is
A. $9 x^{2}-7 y^{2}+63=0$
B. $9 x^{2}+7 y^{2}-63=0$
C. $9 x^{2}+7 y^{2}+63=0$
D. $9 x^{2}-7 y^{2}-63=0$

Answer: A

31. The perimeter of a triangle is 20 and the points $(-2,3)$ and $(-2,3)$ are two of the vertices of it. The locus of the third vertex is
A. $\frac{(x+2)^{2}}{40}+\frac{y^{2}}{49}=1$
B. $\frac{(x-2)^{2}}{40}+\frac{y^{2}}{49}=1$
C. $\frac{(x+2)^{2}}{49}+\frac{y^{2}}{40}=1$
D. none

Answer: A

- Watch Video Solution

32. The locus represented by $x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{a}{2}\left(t-\frac{1}{t}\right)$ is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}-y^{2}=a^{2}$
C. $2 x^{2}-y^{2}=a^{2}$
D. $x^{2}-2 y^{2}=a^{2}$

Answer: B

- Watch Video Solution

33. The locus of the point ($a \cos \theta, b \sin \theta$) where $0 \leq \theta<2 \pi$ is
A. $\sqrt{x}+\sqrt{v}=\sqrt{a b}$
B. $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$
c. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
D. $\frac{x}{a}+\frac{y}{b}=1$

Answer: C

- Watch Video Solution

34. The locus of the point $(a \cos h \theta, b \sin h \theta)$ is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
B. $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$
C. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
D. $\sqrt{\frac{x}{a}}-\sqrt{\frac{y}{b}}=1$

Answer: C

- Watch Video Solution

35. The locus of the point ($a \sec \theta, b \tan \theta$) where $0 \leq \theta<2 \pi$ is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
B. $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$
C. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
D. $\sqrt{\frac{x}{a}}-\sqrt{\frac{y}{b}}=1$

Answer: C

36. The locus of the point $(a \cos \theta+b \sin \theta, a \sin \theta-b \cos \theta)$ where $0 \leq \theta<2 \pi$ is
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=16 x y$
C. $x^{2}-y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}-b^{2}$

Answer: A

- Watch Video Solution

37. The locus of the point $(a \sec \theta+b \tan \theta, b \sec \theta+a \tan \theta)$ where $0 \leq \theta<2 \pi$ is
A. $x^{2}+y^{2}=a^{2}+b^{2}$
B. $\left(x^{2}-y^{2}\right)^{2}=16 x y$
C. $x^{2}-y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}-b^{2}$

- Watch Video Solution

38. The locus of the point $\left(a \cos ^{3} \theta, b \sin ^{3} \theta\right)$ where $0 \leq \theta<2 \pi$ is
A. $\left(x^{2} y\right)^{2 / 3}+\left(x y^{2}\right)^{2 / 3}=1$
B. $\left(x^{2} y^{2}\right)^{2 / 3}+\left(x y^{2}\right)^{2 / 3}=1$
C. $(x / a)^{2 / 3}+(y / b)^{2 / 3}=1$
D. $\left(x^{2} / a\right)^{2 / 3}+\left(y^{2} / b\right)^{2 / 3}=1$

Answer: C

39. If a point $(x, y)=(\tan \theta+\sin \theta, \tan \theta-\sin \theta)$, then the locus of (x, y) is
A. $\left(x^{2} y\right)^{2 / 3}+\left(x y^{2}\right)^{2 / 3}=1$
B. $x^{2}-y^{2}=4 x y$
C. $x^{2}-y^{2}=12 x y$
D. $\left(x^{2}-y^{2}\right)^{2}=16 x y$

Answer: D

- Watch Video Solution

40. The locus of the point $(\cot \theta+\cos \theta, \cot \theta-\cos \theta)$ where $0 \leq \theta<2 \pi$ is
A. $x^{2}-y^{2}=4 x y$
B. $x^{2}+y^{2}=4 x y$
C. $\left(x^{2}+y^{2}\right)^{2}=16 x y$
D. $\left(x^{2}-y^{2}\right)^{2}=16 x y$

Answer: D

- Watch Video Solution

41. The locus of the point $(\operatorname{cosec} \theta-\sin \theta, \sec \theta-\cos \theta)$ where $0 \leq \theta<2 \pi$ is
A. $\left(x^{2} y\right)^{2 / 3}+\left(x y^{2}\right)^{2 / 3}=1$
B. $\left(x^{2} y^{2}\right)^{2 / 3}+\left(x y^{2}\right)^{2 / 3}=1$
C. $(x / a)^{2 / 3}+(y / b)^{2 / 3}=1$
D. $\left(x^{2} / a\right)^{2 / 3}+\left(y^{2} / b\right)^{2 / 3}=1$

Answer: A

- Watch Video Solution

42. The locus of the point represented by
$x=3(\cos t+\sin t), y=2(\cos t-\sin t)$ is
A. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
C. $\frac{x^{2}}{18}+\frac{y^{2}}{8}=1$
D. $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$

Answer: C

- Watch Video Solution

43. The locus of the point represent by $x=\cos ^{2} t, y=2 \sin t$ is
A. $y^{2}=4 x$
B. $y^{2}-4 x+1$
C. $y^{2}+4 x=1$
D. $y^{2}+4 x=4$

Answer: D

- Watch Video Solution

44. The locus of the represented by $x=t^{2}+t+1, y=t^{2}-t+1$ is
A. $x^{2}-2 x y+y^{2}-2 x-2 y+4=0$
B. $x^{2}+2 x y+y^{2}-2 x-2 y+4=0$
C. $x^{2}-2 x y+y^{2}+2 x+2 y+4=0$
D. $x^{2}-2 x y-y^{2}+2 x+2 y-4=0$

Answer: A

Watch Video Solution

45. The locus of the point represented by
$x=1+4 \cos \theta, y=2+3 \sin \theta$ is
A. $9(x-1)^{2}-16(y-2)^{2}=1$
B. $9(x-1)^{2}+16(y-2)^{2}=144$
C. $16(x-1)^{2}-9(y-2)^{2}=1$
D. $16(x-1)^{2}+9(y-2)^{2}=144$

Answer: B

- Watch Video Solution

46. The line joining $(5,0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at P. the locus of P is
A. a pair of straight lines
B. a straight line
C. a circle
D. a parabola

Answer: C

47. If a point P moves such that its distance from the point $A(1,1)$ and the line $x+y+2=0$ are equal then the locus of P is
A. a straight line
B. a pair of straight lines
C. a parabola
D. an ellipse

Answer: C

- Watch Video Solution

48. the equation to the locus of a point which moves so that the sum of its distances from $(3,0)$ and $(-3,0)$ is less than 9 is

$$
\text { A. } 20 x^{2}+36 y^{2}<405
$$

B. $2 x^{2}+36 y^{2}>405$
C. $36 x^{2}+20 y^{2}<405$
D. $36 x^{2}+20 y^{2}>405$

Answer: A

- View Text Solution

49. If the sum of the distances of a point P from two perpendicular lines in a planes is 1 , then the locus of P is a
A. rhombus
B. circle
C. straight line
D. pair of straight lines

Answer: A

50. A straight rod of length 9 unit, slides with its ends A, B always on the x and y axes repectively. Then the locus of the centroid of $\triangle O A B$ is
A. $x^{2}+y^{2}=3$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=1$
D. $x^{2}+y^{2}=81$

Answer: B

- Watch Video Solution

51. The ends of a rod of length l move on two mutually perpendicular lines. The locus of the point on the rod which divides it in the ratio $1: 2$ is
A. $9 x^{2}+34 y^{2}=2 l^{2}$
B. $9 x^{2}-34 y^{2}=l^{2}$
C. $9 x^{2}+36 y^{2}=4 l^{2}$
D. None of these

Answer: C

- Watch Video Solution

52. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha-\cos \alpha), C(1,2)$ are the vertices of a
$\triangle A B C$, then the locus of its centroid is
A. $x^{2}+y^{2}-2 x-4 y+1=0$
B. $3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
C. $x^{2}+y^{2}-2 x-4 y+3=0$
D. None

Answer: B

- Watch Video Solution

53. Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t-b \cos t)$ and $(1,0)$ where t is a parameter, is
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

Exercise 2 Special Type Questions Set 1

1.I: The locus of the point for which the sum of the sqaures of distances from the coordinate axes is 25 is $x^{2}+y^{2}=25$

II: The locus of the point whose distances to the coordinate axes are in the ratio $2: 3$ is $4 x^{2}-9 y^{2}=0$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

2.I: If the distances from P to the points $(3,4),(-3,4)$ are in the ratio $3: 2$, then the locus of P is $5 x^{2}+5 y^{2}+78 x-40 y+125=0$

II : $A(-9,0), B(-1,0)$ are two points. If P is a point such that $P A: P B=3: 1$, then the locus of P is $x^{2}+y^{2}=9$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

3. I: Let $A(0,0), B(\cos \alpha, \sin \alpha), C(\sin \alpha-\cos \alpha)$ are vertices of a triangle then the locus of the centroid of triangle is $9 x^{2}+9 y^{2}=4$.
II. The locus of the point $(a \cos \theta, b \sin \theta)$ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: B

D Watch Video Solution

1. If the equation of the locus of points equidistant from the points $(-2,3),(6,-5)$ is $a x+b y+c=0$ then ascending order of a, b, c is
A. a, b, c
B. c, b, a
C. b, c, a
D. a, c, b

Answer: B

- Watch Video Solution

2. If the locus of the point P such that $P A^{2}+P B^{2}=10$ where $A(2,3), B(3,-4)$ is $x^{2}+y^{2}+a x+b y+c=0$ then ascending order of a, b, c is
A. a, b, c
B. c, b, a
C. b, c, a
D. a, c, b

Answer: A

- Watch Video Solution

3. If the locus of the point P such that are of $\triangle P A B$ is 12 sq unit where $A=(2,3), B=(-4,5)$ is $x^{2}+6 x y+9 y^{2}+a x+b y+c=0$ then ascending order of a, b, c is
A. a, b, c
B. c, b, a
C. b, c, a
D. a, c, b

Answer: C

Set 3

1. Match the following
I. Locus of a point which is equidistant from two fixed points is II. Locus of a point which is a constant distance from a point is III. The locus of the point whose distance from x -axis is twice that of $I V$. A, B are two points. If $P A=k(>A B)$ then locus of P is
A. c, d, b, a
B. d, c, a, e
C. d, c, e, a
D. c, d, b, e

Answer: A

2. Match the following

Given condition
I. The sum of the squares of distances from P to the coordinate axes is II. The distances to the coordinate axes from P are in the ratio $2: 3$ res III. The square of whose distance from P to the origin is 4 times of its J $I V$. The distance from P to $(4,0)$ is double the distance from P to the x
A. a, b, c, d
B. a, e, c, d
C. a, b, d, c
D. b, a, c, e

Answer: A

- View Text Solution

3. Match the following

I. The locus of the point $\left(a t^{2}, 2 a t\right)$ is
(a) $\quad x y=$
II. The locus of the point $(c t, c / t)$ is
(b) $y^{2}+$
III. The locus of the point $\left(\cos ^{2} t, 2 \sin t\right)$ is
(c) $x^{2}+$
$I V$. The locus of the point $(\cos t+\sin t, \cos t-\sin t)$ is
(d) $y^{2}=$
A. a, c, b, d
B. a, b, c, d
C. a, b, d, c
D. d, a, b, c

Answer: D

- Watch Video Solution

Set 4

1. A : The equation to the locus of points which are equidistant from the points $(-3,2),(0,4)$ is $6 x+4 y-3=0$.

R : The locus of points which are equidistant to A, B is perpendicular bisector of $A B$
A. A true, R true and R is correct explanation of A
B. A true, R true but R is not the correct explantion of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution

2. A : $A(0,2), B(0,-2)$ and $P A+P B=3$ the locus of P is an ellipse R: Locus of a point, the sum of whose distances from two fixed points always constant (which is less than distance between the points) is an ellipse
A. A true, R true and R is correct explanation of A
B. A true, R true but R is not the correct explantion of A
C. A is true but R is false
D. A is false, R is false

Answer: D

3. Assertion (A): The sum of the distances of a point from two perpendicular lines is 1 , then its locus is a square

Reason (R): The locus of a point which is at a distance ' p ' from the given point is a circle
A. A true, R true and R is correct explanation of A
B. A true, R true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: B

- Watch Video Solution

4. A : If $A(4,0), B(-4,0)$ are two points and $P A-P B=4$ then the locus of P is $3 x^{2}-y^{2}=12$

R : Let A, B be two points. If $\mathrm{PA}-\mathrm{PB}=$ constant $k(<A B)$ then locus of P is hyperbola
A. A true, R true and R is correct explanation of A
B. A true, R true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true.

Answer: A

- Watch Video Solution

