©゙’ doubtnut

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

PARABOLA

Examples

1. The equation to the parabola having focus $(1,2)$ qbe and directrix $x+2 y+5=0$ is

$$
\text { A. } 4 x^{2}-4 x y+y^{2}-20 x-40 y=0
$$

$$
\text { B. } 9 x^{2}-24 x y+16 y^{2}-76 x+18 y+91=0
$$

$$
\text { C. } x^{2}+6 x y+9 y^{2} 28 x-16 y+46=0
$$

D. $x^{2}+4 x y+4 y^{2}-50 x+30 y+40=0$

Answer: A

- Watch Video Solution

2. The length of the latus rectum of the parabola $y^{2}+8 x-4 y-4=0$.
A. 2
B. 1
C. 8
D. 3
3. The equation of the directrix of the parabola $x^{2}-4 x+16 y+52=0$ is
A. $x-2=0$
B. $y+3=0$
C. $y-1=0$
D. $x+2=0$

Answer: C
4. The point of contact of $x-y+2=0$ to the parabola $y^{2}=8 x$ is
A. $(2,4)$
B. $(-2,4)$
C. $(2,-4)$
D. $(-2,-4)$

Answer: A

- Watch Video Solution

5. The equation of the common tangent to $x^{2}+y^{2}=18$
and $y^{2}=24 x$ is

$$
\begin{aligned}
& \text { А. } y= \pm(x+3) \\
& \text { В. } y= \pm(x+6) \\
& \text { С. } y= \pm(x+9) \\
& \text { D. } y= \pm(x+2)
\end{aligned}
$$

Answer: B

- Watch Video Solution

6. An equilateral is inscribed in the parabola $y^{2}=8 x$ with one of its vertices is the vertex of the parabola. Then the length of the side of that triangle is
A. $2 \sqrt{3}$
B. $4 \sqrt{3}$
C. $8 \sqrt{3}$
D. $16 \sqrt{3}$

Answer: D

- Watch Video Solution

7. If ((1)/(2),2) is one extermity of a focalchord of the parabola $y^{2}=8 x$. Find the co-ordinates of the other extremity.
A. $(8,8)$
B. $(-8,8)$
C. $(8,-8)$
D. $(-8,-8)$

- Watch Video Solution

8. The line $y=2 x-12$ is a normal to the parabola $y^{2}=4 x$ at the point P whose coordinates are
A. $(4,-4)$
B. $(-2,-2)$
C. $(3,1)$
D. $(0,-4)$

Answer: A
9. The length of the chord of the parabola $y^{2}=x$ are ends of the chord Mid point $(2,1)$ is
A. 3
B. $\sqrt{14}$
C. $\sqrt{6}$
D. $2 \sqrt{5}$

Answer: D

(D) Watch Video Solution

10. The dimeter of the parabola $y^{2}=6 x$ corresponding to the system of parallel chords $3 x-y+c-0$ is
A. $y-1=0$
B. $y-2=0$
C. $y+1=0$
D. $y+2=0$

Answer: A

- Watch Video Solution

11. If the tangent at $P\left(a t^{2}, 2 a t\right)$ to the parabola $y^{2}=\mathrm{ax}$ intersects X-axis at A and the normal at P meets it at B then area of triangle PAB is
A. $4 a^{2}|t| \sqrt{1+r^{2}}$
B. $2 a^{2}|t|\left(1+r^{2}\right)$
C. $4 a^{2}|t|\left(1+t^{2}\right)$
D. $\frac{2 a^{2}\left(1+t^{2}\right)}{|t|}$

Answer: B

- View Text Solution

Exercise 1 A

1. The parabola with directrix $x+2 y-1=0$ and focus $(1,0)$ is
A. $4 x^{2}-4 x y+y^{2}-8 x+4 y+4=0$
B. $4 x^{2}+4 x y+y^{2}-8 x+4 y+4=0$
C. $4 x^{2}+4 x y+y^{2}+8 x-4 y+4=0$
D. $4 x^{2}-4 x y+y^{2}-8 x-4 y+4=0$

Answer: A

(Watch Video Solution

2. The equation of the parabola with focus $(1,-1)$ and directrix $x+y+3=0$ is
A. $x^{2}+y^{2}-10 x-2 y-2 x y-5=0$
B. $x^{2}+y^{2}+10 x-2 y-2 x y-5=0$
C. $x^{2}+y^{2}+10 x+2 y-2 x y-5=0$
D. $x^{2}+y^{2}+10 x+2 y+2 x y-5=0$

Answer: A

3. The equation to the parabola having focus ($-1,-1$) and directrix $2 x-3 y+6=0$ is

$$
\begin{aligned}
& \text { A. } x^{2}-2 x y+y^{2}-18 x-10 y-45=0 \\
& \text { B. } 9 x^{2}+12 x y+4 y^{2}+2 x+62 y-10=0 \\
& \text { C. } x^{2}+6 x y+9 x y+9 y^{2}+28 x-16 y+46=0 \\
& \text { D. } x^{2}+4 x y+4 y^{2}-50 x+30 y+40=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. The equation of the parabola whose vertex is origin axis along x-axis and which passes through the point $(-2,4)$ is
A. $y^{2}=-8 x$
B. $x^{2}=4 y$
C. $y^{2}=8 x$
D. $y^{2}=-12 x$

Answer: A

- Watch Video Solution

5. The equation of the parabola whose vertex is origin axis is along y-axis and which passes through the point $(2,1)$ is
A. $y^{2}=-8 x$
B. $x^{2}=4 y$
C. $y^{2}=8 x$
D. $y^{2}=-12 x$

Answer: B

- Watch Video Solution

6. The equation of the parabola whose vertex is $(3,-2)$ axis is parallel to x-axis and latus rectum 4 is
A. $(y+2)^{2}= \pm 4(x-3)$
B. $(x+2)^{2}= \pm 6(y-1)$
C. $(y-1)^{2}=16(x+2)$
D. $(y-2)^{2}=-8(x-5)$
7. The equation of the parabola having focus $(2,1)$, and vertex $(-2,1)$ is
A. $(y+2)^{2}= \pm 4(x-3)$
B. $(x+2)^{2}= \pm 6(y-1)$
C. $(y-1)^{2}=16(x+2)$
D. $(y-2)^{2}=-8(x-5)$

Answer: C

- Watch Video Solution

8. The equation of the parabola whose vertex is at $(0,0)$ and focus is the point of intersection of $x+y=2,2 x-y=4$ is

$$
\begin{aligned}
& \text { A. } y^{2}=2 x \\
& \text { B. } y^{2}=4 x \\
& \text { C. } y^{2}=8 x \\
& \text { D. } x^{2}=8 y
\end{aligned}
$$

Answer: C

- Watch Video Solution

9. The equation of parabola whose vertex and focus are on
x-axis at distances a and a' respectively from the origin is

$$
\begin{aligned}
& \text { A. } y^{2}=4\left(a^{\prime}+a\right)(x-a) \\
& \text { B. } y^{2}=4\left(a^{\prime}-a\right)(x+a) \\
& \text { C. } y^{2}=4\left(a^{\prime}+a\right)(x+a) \\
& \text { D. } y^{2}=4\left(a^{\prime}-a\right)(x-a)
\end{aligned}
$$

Answer: A

Watch Video Solution

10. Find the equation of the parabola whose axis is parallel to X-axis and which passes through these points.
$(-2,1),(1,2)$, and $(-1,3)$
A. $5 y^{2}+2 x-21 y+20=0$
B. $15 y^{2}+12 x-11 y+10=0$
C. $18 y^{2}-12 x+21 y+56=0$
D. $25 y^{2}-2 x-65 y+120=0$

Answer: A

- Watch Video Solution

11. Find the equation of the parabola whose axis is parallel to Y-axis and which passes through the points $(4,5),(-2,11)$
and (-4,21).
A. $x^{2}-4 x-2 y+10=0$
B. $x^{2}-2 x-y+5=0$
C. $x^{3}-4 x-2 y+10=0$
D. $y^{2}-2 x-3 y+4=0$

Answer: A

(D) Watch Video Solution

12. The equation of parabola whose latus rectum is the line segment joining the points $(-3,1),(1,1)$ is
A. $(x+1)^{2}=4 y$
B. $(x-1)^{2}=4 y$
C. $(x+1)^{2}=2 y$
D. $(x-1)^{2}=2 y$

Answer: A

13. The equation of the parabola with latusrectum joining the points $(6,7)$ and ($6,-1$) is

$$
\begin{aligned}
& \text { A. }(y-3)^{3}=8(x-4) \\
& \text { B. }(y+3)^{2}=8(x+4) \\
& \text { C. }(y-3)^{2}=-8(x-8) \\
& \text { D. } y^{2}=4 a x
\end{aligned}
$$

Answer: B

- Watch Video Solution

14. The vertex of a parabola is the point (a, b) and latusrectum is of length 1 . If the axis of the parabola is along the positive direction of y-axis then its equation is

$$
\begin{aligned}
& \text { A. }(x+a)^{2}=\frac{1}{2}(2 y-2 b) \\
& \text { B. }(x-a)^{2}=\frac{l}{2}(2 y-2 b) \\
& \text { C. }(x+a)^{2}=\frac{l}{4}(2 y-2 b) \\
& \text { D. }(x-a)^{2}=\frac{l}{2}(2 y-2 b)
\end{aligned}
$$

Answer: A

- Watch Video Solution

15. The equation of the parabola having the vertex $(-1,-2)$ and whose axis is vertical and which passes through $(3,6)$ is
A. $x^{2}+2 x-2 y-3=0$
B. $x^{2}+4 x+8 y-13=0$
C. $y^{2}+4 y-16 x-12=0$
D. none

Answer: A

- Watch Video Solution

16. The focus of a parabola is $(2,3)$ and the foot of the perpendicular from the focus to the directrix is $(4,5)$. The equation to the parabola is.

$$
\begin{aligned}
& \text { А. }(x-2)^{2}+(y-3)^{2}=(1 / 2)(x-y+9)^{2} \\
& \text { В. }(x-2)^{2}+(y-3)^{2}=(1 / 2)(x+y+9)^{2} \\
& \text { С. }(x-2)^{2}+(y-3)^{2}=(1 / 2)(x+y-9)^{2}
\end{aligned}
$$

D. none

(D) Watch Video Solution

17. The vertex of the parabola $y^{2}+4 x-2 y+3=0$ is
A. $(-3,1)$
B. $(-3,1)$
C. $(-3 / 2,3)$
D. $(-1 / 2,1)$

Answer: D
(D) Watch Video Solution
18. The vertex of the parabola $x^{2}+8 x+12 y+4=0$ is
A. $(-4,1)$
B. $(4,-1)$
C. $(-4,-1)$
D. $(4,1)$

Answer: A

D Watch Video Solution
19. The vertex of the parabola $x^{2}+12 x-9 y=0$ is
A. $(6,-4)$
B. $(-6,4)$
C. $(6,4)$
D. $(-6,-4)$

Answer: D

- Watch Video Solution

20. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at
A. $(1,0)$
B. $(0,1)$
C. $(2,0)$
D. $(0,2)$

Answer: A

- Watch Video Solution

21. If the focus is $(1,-1)$ and the directrix is the line $x+2 y-9=0$,
the vertex of the parabola is
A. $(1,2)$
B. $(2,1)$
C. (1,-2)
D. $(2,-1)$

Answer: B

22. The locus of the vertices of the family of parabolas
$y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is
A. $x y=\frac{35}{16}$
B. $x y=\frac{64}{105}$
C. $x y=\frac{105}{64}$
D. $x y=\frac{3}{4}$

Answer: C

(Watch Video Solution

23. The focus of the parabola $y^{2}-x-2 y+2=0$ is
A. $(1 / 4,0)$
B. $(1,2)$
C. $(3 / 4,0)$
D. $(5 / 4,1)$

Answer: D

- Watch Video Solution

24. The focus of the parabola $y^{2}-4 y-8 x-4=0$ is
A. $(1,1)$
B. $(1,2)$
C. $(2,0)$
D. $(2,2)$

- Watch Video Solution

25. The focus of the parabola $x^{2}-2 x-8 y-23=0$ is
A. $(1,1)$
B. $(1,-1)$
C. $(-1,1)$
D. $(-1,-1)$

Answer: B

26. The distance between the vertex and the focus of the parabola $x^{2}-2 x+3 y-2=0$ is
A. $\frac{4}{5}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. $\frac{5}{6}$

Answer: B

(Watch Video Solution

27. The two ends of latusrectum of a parabola are the points $(3,6)$ and $(-5,6)$. The focus is
A. $(1,6)$
B. $(-1,6)$
C. (1,-6)
D. $(-1,-6)$

Answer: B

(Watch Video Solution

28. If $(2,0)$ is the vertex and y-axis is the directrix of a parabola then its focus is
A. $(-4,0)$
B. $(4,0)$
C. $(-2,0)$
D. $(2,0)$

Answer: B

- Watch Video Solution

29. The length of the latus rectum of the parabola
$y^{2}+8 x-2 y+17=0$ is
A. 2
B. 4
C. 8
D. 16
30. The length of the latus rectum of the parabola $4 y^{2}+12 x-20 y+67=0$ is
A. 2
B. 1
C. 8
D. 3

Answer: D

- Watch Video Solution

31. The length of the latus rectum of the parabola $x^{2}-4 x+8 y+28=0$ is
A. 16
B. 4
C. 2
D. 8

Answer: D

- Watch Video Solution

32. The length of the latus rectum of the parabola $3 x^{2}-9 x+5 y-2=0$ is
A. 5
B. 4
C. 16
D. $5 / 3$

Answer: D

- Watch Video Solution

33. The point $(3,4)$ is the focus and $2 x-3 y+5=0$ is the directrix of a parabola. Its latusrectum is

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{13}} \\
& \text { B. } \frac{4}{\sqrt{13}} \\
& \text { C. } \frac{1}{\sqrt{13}}
\end{aligned}
$$

D. $\frac{3}{\sqrt{13}}$

Answer: A

D Watch Video Solution

34. The length of the latusrectum of the parabola whose
focus is $\left(\frac{\mu^{2}}{2 g} \sin 2 \alpha,-\frac{\mu^{2}}{2 g} \cos 2 \alpha\right)$
A. $\frac{\mu^{2}}{g} \cos ^{2} \alpha$
B. $\frac{\mu^{2}}{g} \cos 2 \alpha$
C. $\frac{2 \mu^{2}}{g} \cos 2 \alpha$
D. $\frac{2 \mu^{2}}{g} \cos ^{2} \alpha$

- Watch Video Solution

35. Latus rectum of the parabola whose axis is parallel to the y-axis and which passes through the points (0,4), (1,9) and $(-2,6)$ is equal to
A. 2
B. 1
C. $1 / 2$
D. $1 / 4$

Answer: C

36. The point $(3,4)$ is the focus and $2 x-3 y+5=0$ is the directrix of a parabola. Its latusrectum is
A. $2 / \sqrt{13}$
B. $4 / \sqrt{13}$
C. $1 / \sqrt{13}$
D. none

Answer: A

- Watch Video Solution

37. If the parabola $y^{2}=4 a x$ passes through $(-3,2)$ then the length of its latusrectum is
A. $2 / 3$
B. $1 / 3$
C. $4 / 3$
D. 4

Answer: C

(Watch Video Solution

38. If the straight line $y=m x+c$ is parallel to the axis of the parabola $y^{2}=l x$ and intersects the parabola at $\left(\frac{c^{2}}{8}, c\right)$ then the length of the latus rectum is
A. 2
B. 3
C. 4
D. 8

Answer: D

- Watch Video Solution

39. The ends of the latus rectum of the parabola
$(x-2)^{2}=-6(y+1)$ are
A. $(2,7),(3,-7)$
B. $(0,5),(0,-5)$
C. (0,7),(0,-5)
D. $(5,-5 / 2),(-1,-5 / 2)$
40. The equation of the latus rectum of the parabola $(y-2)^{2}=-4(x+2)$ is
A. $y=4$
B. $x=4$
C. $x+3=0$
D. $x+y=0$

Answer: C

- Watch Video Solution

41. The equation of the directrix to the parabola $y^{2}-2 x-6 y-5=0$ is
A. $2 x+15=0$
B. $x+5=0$
C. $2 x+3=0$
D. $x+2=0$

Answer: A

- Watch Video Solution

42. The equation of the directrix of the parabola
$y^{2}+4 y+4 x+2=0$ is
A. $x=-1$
B. $x=1$
C. $x=-3 / 2$
D. $x=3 / 2$

Answer: D

Watch Video Solution

43. The parabola $(y+1)^{2}=a(x-2)$ passes through point (1,-2). The equaiton of its directrix is
A. $4 x+1=0$
B. $4 \mathrm{x}-1=0$
C. $4 x+9=0$
D. $4 x-9=0$

Answer: D

- Watch Video Solution

44. The equation of the directrix of the parabola
$y^{2}-4 a y-2 a x=0$ is
A. $2 y-13=0$
B. $2 x+5 a=0$
C. $2 x+25=0$
D. $2 x-13=0$
45. The equation of the latus rectum of the parabola $x^{2}-12 x-8 y+52=0$ is
A. $x=4$
B. $y=4$
C. $x=6$
D. $y=2$

Answer: B

- Watch Video Solution

46. The equation of the directrix of the parabola $3 x^{2}-9 x+5 y-2=0$ is
A. $4 y+9=0$
B. $y+4=0$
C. $y-3=0$
D. $6 y-13=0$

Answer: D

(Watch Video Solution

47. The equation of the directrix of the parabola whose vertex (3,2) and focus (2,-1) is
A. $x+3 y-19=0$
B. $y-2 y-9=0$
C. $2 x+6 y-24=0$
D. $x-3 y-19=0$

Answer: A

- Watch Video Solution

48. The equation of the axis of the parabola
$(y+3)^{2}=4(x-2)$ is
A. $x-5=0$
B. $y+3=0$
C. $2 x-1=0$
D. $y-1=0$

Answer: B

(D) Watch Video Solution

49. Axis of the parabola $x^{2}-3 y-6 x+6=0$ is
A. $x=-3$
B. $y=-1$
C. $x=3$
D. $y=1$

Answer: C

50. The equation of the axis of the parabola
$3 x^{2}-9 x+5 y-2=0$ is
A. $x-2=0$
B. $x-1=0$
C. $x-3=0$
D. $2 x-3=0$

Answer: D

D Watch Video Solution
51. The parabola $\mathrm{y}=p x^{2}+p x+q$ is symmetrical about the line
A. $x=q$
B. $x=p$
C. $2 x=1$
D. $2 x+1=0$

Answer: D

- Watch Video Solution

52. The focal distance of the point $(9,6)$ on the parabola
$y^{2}=4 x$ is
A. 4
B. 8
C. 10
D. 16

Answer: C

- Watch Video Solution

53. The focal distance of the point $(4,2)$ on the parabola
$x^{2}=8 y$ is
A. 10
B. 4
C. 15
D. 12
54. the eccentricity of the parabola $y^{2}-2 x-6 y+5=0$ is
A. 0
B. 1
C. $1 / 2$
D. 2

Answer: B

- Watch Video Solution

55. If the vertex of the parabola $\mathrm{y}=x^{2}-8 x+c$ lies on x axis then the value of c is
A. -16
B. -4
C. 4
D. 16

Answer: D

- Watch Video Solution

56. If the ordinate of a point on the parabola $y^{2}=4 \mathrm{x}$ is twic the latus rectum then the point is
A. $(16,8)$
B. $(16,-8)$
C. $(-16,8)$
D. $(-16,-8)$

Answer: A

(Watch Video Solution

57. In the parabola $y^{2}-2 y+8 x-23=0$ the length of double ordinate at a distance of 3 from its vertex is
A. $4 \sqrt{6}$
B. $2 \sqrt{6}$
C. $\sqrt{6}$

D. none

Answer: A

- Watch Video Solution

58. For a parabola the distance between the focus and the directrix is equal to
A. a
B. $4 a$
C. semilatus
D. none

Answer: C

59. If $(9,12)$ is one end of a double ordinate of the parabola $y^{2}=16 x$ then its equation is
A. $x+9=0$
B. $y+9=0$
C. $y-9=0$
D. $x-9=0$

Answer: D

- Watch Video Solution

60. The focal distance of a point on the parabola $y^{2}=8 x$ whose focal distance is 10.1 It coordinates are
A. $(2, \pm 2)$
B. $(3, \pm 3)$
C. $(5, \pm 5)$
D. $(8, \pm 8)$

Answer: D

- Watch Video Solution

61. The coordinates of the parabola $y^{2}=2 x$ whose focal distance is $5 / 2$ are
A. $(2, \pm 2)$
B. $(3, \pm 3)$
C. $(5, \pm 5)$
D. $(8, \pm 8)$

Answer: A

- Watch Video Solution

62. The point on the parabola $y^{2}=36 x$ whose ordinate is three times its abscissa is
A. $(4,12)$
B. $(-4,12)$
C. $(4,-12)$
D. $(-4,-12)$

Answer: A

- Watch Video Solution

63. An equilateral is inscribed in the parabola $y^{2}=8 x$ with one of its vertices is the vertex of the parabola. Then the length of the side of that triangle is
A. $24 \sqrt{3}$
B. $16 \sqrt{3}$
C. $8 \sqrt{3}$
D. $4 \sqrt{3}$

- Watch Video Solution

64. If Q is the foot of the perpendicular from a point p on the parabola $y^{2}=8(x-3)$ to its directrix. S is an equilateral triangle then find the lengh of side of the triangle.
A. $(4 \sqrt{3}, 8)$
B. $(8,4 \sqrt{3})$
C. $(9,4 \sqrt{3})$
D. $(4 \sqrt{3}, 9)$

- Watch Video Solution

65. L and L are the ends of the latus rectum of the parabola $x^{2}=6 y$. The equation of OL and OL where O is the origin is
A. $x^{2}+4 y^{2}=0$
B. $x^{2}-4 y^{2}=0$
C. $x^{2}+2 y^{2}=0$
D. $x^{2}-2 y^{2}=0$

Answer: B

66. The coordinates of an endpoint of the latusrectum of the parabola $y^{2}=4 a x$ at its vertex is
A. $(0,-3)$
B. $(0,-1)$
C. $(0,1)$
D. $(1,3)$

Answer: B

- View Text Solution

67. The angle subtended by the double ordinate of length 8 of the parabola $y^{2}=4 a x$ at its vertex is
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 2$
D. $\pi / 6$

Answer: C

- Watch Video Solution

68. If $2 x+y+a=0$ is a focal chord of the parabola $y^{2}+8 x=0$
then $\mathrm{a}=$
A. -4
B. 4
C. -2
D. 2

Answer: B

(D) Watch Video Solution

69. PQ is a double ordinate of the parabola $y^{2}+4 x$. The locus of its point of trisection is
A. $9 y^{2}+4 x=0$
B. $4 y^{2}=9 x$
C. $9 x^{2}+4 y=0$
D. $9 y^{2}=4 x$

Answer: D
70. The ratio in which the line segment joining the points
$(4,-6)$ and $(3,1)$ is divided by the parabola $y^{2}=4 x$ is

$$
\begin{aligned}
& \text { A. } \frac{-20 \pm \sqrt{155}}{11}: 1 \\
& \text { B. } \frac{-2 \pm 2 \sqrt{155}}{11}: 1 \\
& \text { C. }-20 \pm 2 \sqrt{155}: 11 \\
& \text { D. }-20 \pm \sqrt{155}: 11
\end{aligned}
$$

Answer: C

(D) Watch Video Solution

71. The number of point of intersection of the circle $x^{2}+y^{2}=2 a x$ with the parabola $y^{2}=x$ is
A. 3
B. 1
C. 2
D. 4

Answer: C

(Watch Video Solution

72. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ then
A. $d^{2}+(2 b+3 c)^{3}=0$
B. $d^{2}+(3 b-2 c)^{2}=0$
C. $d^{2}+(2 b-3 c)^{3}=0$
D. $d^{2}+(3 b+2 c)^{2}=0$

Answer: A

- Watch Video Solution

73. Which of the following equations represents a parabola
A. $(x-y)^{3}=3$
B. $\frac{x}{y}-\frac{y}{x}=0$
C. $\frac{x}{y}+\frac{4}{x}=0$
D. $(x+y)^{2}+3=0$

- Watch Video Solution

74. The equation of the tangent to the parabola $y^{2}=12 x$ at $(3,-6)$ is
A. $x+y+3=0$
B. $x+y+1=0$
C. $x-y+2 a=0$
D. $x+y+1=0$

Answer: A
75. The equation of the tangent to the parabola $x^{2}=4 \operatorname{yat}(-2,1)$ is
A. $x+y+3=0$
B. $x+y+1=0$
C. $x-y+2 a=0$
D. $x+y+1=0$

Answer: D

- Watch Video Solution

76. The equation of the tangent to the parabola $y^{2}=4 x$ at the end of the latus rectum in the fourth quadrant is
A. $x+y+3=0$
B. $x+y+1=0$
C. $x-y+2 a=0$
D. $x+y-1=0$

Answer: B

- Watch Video Solution

77. The equation of the tangent to the parabola $y^{2}=8 x$ inclined at 30° to the x axis is
A. $3 x-\sqrt{3} y+4=0$
B. $2 x-3 y+14=0$
C. $2 x-\sqrt{2 y}+7=0$
D. $x-\sqrt{3 y}+6=0$

Answer: D

- Watch Video Solution

78. The equation to the normal to the parabola $y^{2}=4 x$ at
$(1,2)$ is
A. $x+y-3=0$
B. $x-y+6=0$
C. $x-y+5=0$
D. $x-y+4=0$
79. The equation of the normal to the curve $x^{2}=4 y$ at $(1,2)$ is
A. $2 x+y+4=0$
B. $2 x+y-4=0$
C. $2 x-y+4=0$
D. $2 x-y-4=0$

Answer: B

- Watch Video Solution

80. The line $x+y=6$ is a normal to the parabola $y^{2}=8 x$ at the point
A. $(18,-12)$
B. $(4,2)$
C. $(2,4)$
D. $(3,3)$

Answer: C

- Watch Video Solution

81. The equation of the normal at the end of latusrectum in the fourth quadrant of the parabola $y^{2}=4 a x$ is
A. $x+y+3 a=0$
B. $x+y-3 a=0$
C. $x-y+3 a=0$
D. $x-y-3 a=0$

Answer: D

(Watch Video Solution

82. The equation of the tangent to the parabola $y^{2}=8 x$ and which is parallel to the line $x-y+3=0$ is
A. $x-y+2=0$
B. $x+y-2=0$
C. $x-y-2=0$
D. $2 x-y+4=0$

Answer: A

- Watch Video Solution

83. The equation of the tangent to the parabola $y^{2}=16 x$ and perpendicular to the line $x-4 y-7=0$ is
A. $4 x+y+1=0$
B. $4 x+y+7=0$
C. $4 x+y-1=0$
D. $4 x+y-7=0$
84. If the line $x+y+2=0$ touches the parabola $y^{2}=k x$ then $\mathrm{k}=$
A. 2
B. 8
C. 1
D. 0

Answer: B

- Watch Video Solution

85. Find the value of k if the line $2 y=5 x+k$ is a tangent to the parabola $y^{2}=6 x$
A. $2 / 3$
B. $4 / 5$
C. $3 / 5$
D. $6 / 5$

Answer: D

(Watch Video Solution

86. If $\mathrm{x}+\mathrm{y}+\mathrm{k}=0$ is a tangent to the parabola $x^{2}=4 y$ then $\mathrm{k}=$
A. 1
B. 2
C. -1
D. 4

Answer: A

- Watch Video Solution

87. The straight line $\mathrm{x}+\mathrm{y}$ touches the parabola $y=x-x^{2}$
then $\mathrm{k}=$
A. 0
B. -1
C. 1
D. none
88. The line $y=2 x+k$ is a normal to the parabola $y^{2}=4 x$ then $\mathrm{k}=$
A. 12
B. -12
C. 10
D. -10

Answer: B
89. The line $\mathrm{y}=x \sqrt{2}+\lambda$ is a normal to the parabola $y^{2}=4 x$ then $\lambda=$
A. $4 \sqrt{2}$
B. $-4 \sqrt{2}$
C. $2 \sqrt{2}$
D. $-2 \sqrt{2}$

Answer: B

- Watch Video Solution

90. Let $\mathrm{x}+\mathrm{y}=\mathrm{k}$ be a normal to the parabola $y^{2}=12 x$. If p is
the length of the perpendicular from the focus of the parabola onto this normal then $4 \mathrm{k}-2 p^{2}=$
A. 1
B. 0
C. -1
D. 2

Answer: B

91. The point of contact of $2 x-y+2=0$ to the parabola
$y^{2}=4 a x$ is
A. $(2,4)$
B. $(3,4)$
C. $(1,4)$
D. $(2,1)$

Answer: C

- Watch Video Solution

92. The point of contact of $x-2 y+4 a=0$ to the parabola
$y^{2}=4 a x$ is
A. $(4 a, 4 a)$
B. $(a, 4 a)$
C. $(3 a, 4 a)$
D. $(4 a, 2 a)$
93. The line $4 \mathrm{x}+6 \mathrm{y}+9=0$ touches the parabola $y^{2}=4 a x$ at the point
A. $(-3,9 / 4)$
B. $(3,-9 / 4)$
C. $(9 / 4,-3)$
D. $(-9 / 4,-3)$

Answer: C

- Watch Video Solution

94. The point on the curve $y^{2}=x$ the tangent at which makes an angle of 45° with x-axis will be given by
A. $(2,4)$
B. $(1 / 2,1 / 2)$
C. $(1 / 2,1 / 4)$
D. $(1 / 4,1 / 2)$

Answer: D

- Watch Video Solution

95. The tangent to $y^{2}=a x$ makes an angle 45° with x-axis .

Then its point of contact is
A. $(a / 2, a / 4)$
B. $(-a / 2, a / 4)$
C. $(a / 4, a / 2)$
D. $(-a / 4, a / 2)$

Answer: C

96. The condition that the line $1 x+m y+n=0$ to touch the parabola $y^{2}=4 a x$ is
A. $a m^{2}=\ln$
B. $a n^{2}=I m$
C. $a^{2} m=I n$
D. $a m=\ln$

Answer: A

- Watch Video Solution

97. The line $y=m(x+a)+a / m$ touch the parabola
$y^{2}=4 a(x+a)$ for m
A. is equal to 0
B. is any positive real number
C. is any negative number
D. is any real number
98. The condition that the line $y=m x+c$ to be a tangent to the parabola $y^{2}=4 a(x+a)$ is
A. $c=a\left(m+\frac{1}{a}\right)$
B. $c=a\left(m+\frac{1}{m}\right)$
C. $c=a\left(m-\frac{1}{m}\right)$
D. $a=c\left(m+\frac{1}{m}\right)$

Answer: B

- Watch Video Solution

99. The line among the following that touches the parabola $y^{2}=4 a x$ is
A. $x+m y+a m^{3}=0$
B. $x-m y+a m^{2}=0$
C. $x+m y-a m^{2}=0$
D. $y+m x+a m^{2}=0$

Answer: B

- Watch Video Solution

100. The equation of the common tangent to
$x^{2}+y^{2}=2 a^{2}$ and $y^{2}=8 a x$ is

$$
\begin{aligned}
& \text { А. } y= \pm(x+a) \\
& \text { В. } y= \pm(x+2 a) \\
& \text { C. } y= \pm(x+3 a) \\
& \text { D. } y= \pm(x+4 a)
\end{aligned}
$$

Answer: B

- Watch Video Solution

101. The equation of the common tangent to $x^{2}+y^{2}=8$ and $y^{2}=16 x$ is
A. $y= \pm(x+2)$
B. $y= \pm(x+4)$
C. $2 x+3 y+36=0$
D. $3 x+2 y+24=0$

Answer: B

(Watch Video Solution

102. The equation of the common tangent to $y^{2}=8 x$ and $x^{2}+y^{2}-12 x+4=0$ is
A. $y= \pm(x+2)$
B. $y= \pm(x+4)$
C. $2 x+3 y+36=0$
D. $3 x+2 y+24=0$
103. The sloope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=32 y$ is
A. $\frac{1}{8}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

104. The points of intersection of the parabolas $y^{2}=5 x$ and $x^{2}=5 y$ lie on the line
A. $x+y=10$
B. $x-2 y=0$
C. $x-y=0$
D. $2 x-y=0$

Answer: C

- Watch Video Solution

105. The two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ intersect at a point P whose abscissae is not zero such that
A. they both touch each other at P
B. they cut at right angles at P
C. the tangents to each curve at P make complementary angles with the x-axis
D. none

Answer: C

- Watch Video Solution

106. If the common tangent of the circle $x^{2}+y^{2}=c^{2}$ and the parabola $y^{2}=4 a x$ subtends an angle θ with x -axis then $\tan ^{2} \theta=$

$$
\text { A. } \frac{\sqrt{c^{2}+4 a^{2}}-c}{2 c}
$$

B. $\frac{\sqrt{c^{2}+4 a^{2}}-c}{2}$
C. $\frac{\sqrt{3 c^{2}+4 a^{2}}-c}{2 c}$
D. $\frac{\sqrt{c^{2}+a^{2}}+4 c}{2 c}$

Answer: A

D Watch Video Solution

107. The sum of the slopes of the tangents to the parabola $y^{2}=8 x$ drawn from the point $(-2,3)$ is
A. -1
B. -2
C. $-3 / 2$
D. 2

Answer: C

(D) Watch Video Solution

108. The product of the slopes of the tangents to the parabola $y^{2}=4 x$ drawn from the point $(2,3)$ is
A. -1
B. -2
C. $-3 / 2$
D. $1 / 2$

Answer: D
109. The slope of tangents drawn from a point $(4,10)$ to the parabola $y^{2}=9 x$ are
A. $1 / 4,3 / 4$
B. 1/4,9/4
C. $1 / 4,1 / 3$
D. none

Answer: B

(Watch Video Solution

110. The point of intersection of the tangents at the ends of
latusrectum of the parabola $=4 x$ is
A. $(0,0)$
B. $(0,1)$
C. $(-1,0)$
D. $(1,0)$

Answer: C

(Watch Video Solution

111. The locus of the point of intersection of perpendicular tangents to the parabola $y^{2}=4 a x$ is
A. $x=a$
B. $x+a=0$
C. $y=a$

D. $y+a=0$

Answer: B

- Watch Video Solution

112. If two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles then the locus of P is
A. $x=1$
B. $2 x+1=0$
C. $x=-1$
D. $2 x-1=0$
113. The tangents at the ends of a focal chord of a parabola $y^{2}=4 a x$ intersect on the directrix at an angle of
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

114. The locus of the point of intersectio of the perpendicular tangents to the parabola $x^{2}=4 a y$ is
A. $y=a$
B. $y=-a$
C. $x=a$
D. $x=-a$

Answer: B

- Watch Video Solution

115. The locus of the point of intersection of two tangents to the parabola $y^{2}=4 a x$ which make an angle 30° with one another is

$$
\begin{aligned}
& \text { A. }(x+a)^{2}=3\left(y^{2}-4 a x\right) \\
& \text { B. }(x-a)^{2}=y^{2}-4 a x \\
& \text { C. } 3(x+a)^{2}=y^{2}-4 a x \\
& \text { D. } x+a=0
\end{aligned}
$$

Answer: A

- View Text Solution

116. The locus of the point of intersection of two tangents
to the parabola $y^{2}=4 a x$ which make complementary angles with the axis of the parabola is
A. $x=a$
B. $x+a=0$
C. $y=a$
D. $y+a=0$

Answer: A

- Watch Video Solution

117. The locus of the point of intersection of two tangents to the parabola $y^{2}=4 a x$ which make the angles θ_{1} and θ_{2} with the axis so that $\tan \theta_{1} \tan \theta_{2}=\mathrm{k}$ is
A. $k x-y=0$
B. $k x-a=0$
C. $y=k a=0$
D. $x-k a=0$

- Watch Video Solution

118. The locus of the point of intersection of two tangents
to the parabola $y^{2}=4 a x$ which make the angles θ_{1} and θ_{2} with the axis so that $\cot \theta_{1}+\cot \theta_{2}=\mathrm{k}$ is
A. $k x-y=0$
B. $k x-a=0$
C. $y=k a=0$
D. $x-k a=0$

Answer: C
119. The locus of the point of intersection of two tangents to the parabola $y^{2}=4 a x$ which make the angles θ_{1} and θ_{2} with the axis so that $\tan \theta_{1} \tan \theta_{2}=k$ is
A. $k x-y=0$
B. $k x-a=0$
C. $y=k a=0$
D. $k x^{2}+2 a x-y^{2}=0$

Answer: D

- Watch Video Solution

120. The locus of point of intersection of tangents to $y^{2}=4 a x$ which includes an angle α is

> A. $\left(y^{2}-4 a x\right)(x+a)^{2}=a^{2} x^{2}$
> B. $\left(y^{2}-4 a x\right)^{2}(x-a)^{2}=d^{2} x^{2}$
> C. $y^{2}-4 a x=d^{2} x^{2}(x+a)^{2}$
D. none

Answer: A

- Watch Video Solution

121. Two straight lines are perpendicular to each other. One of them touches the parabola $y^{2}=4 a(x+a)$, and the
other touches $y^{2}=4 b(x+b)$. Then locus of point of intersection of two lines is
A. $x+a=0$
B. $x+b=0$
C. $x+a+b=0$
D. $x-a-b=0$

Answer: C

- Watch Video Solution

122. The locus of the point of intersection of tangents to the parabola $y^{2}=4(x+1)$ and $y^{2}=8(x+2)$ which are perpendicular to each other is
A. $x+7=0$
B. $x-y=4$
C. $x+3=0$
D. $y-x=12$

Answer: C

- View Text Solution

123. The equation of a tangent to the parabola $y^{2}=8 x$ is $y=x+2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is
A. $(-1,1)$
B. $(0,2)$
C. $(2,4)$
D. $(-2,0)$

Answer: D
(Watch Video Solution
124. Through the vertex O of the parabola $y^{2}=4 a x$ a perpendicular is drawn to any tangent meeting it at P and the parabola at Q . Then OP.OQ=
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: D

D View Text Solution

125. If M is the foot of the perpendicular from a point P on a parabola to its directix and SPM is an equilateral triangle where S is the focus then $S P=$
A. a
B. 2a
C. 3a
D. 4 a

- Watch Video Solution

126. If y_{1}, y_{2} are the ordinates of two points P and Q on the parabola and y_{3} is the ordinate of the point of intersection of tangents at P and Q then
A. y_{1}, y_{2}, y^{3} are in A.P..
B. y_{1}, y_{3}, y_{2} are in A.P
C. y_{1}, y_{2}, y_{3} are in G.P
D. y_{1}, y_{3}, y_{2} are in G.P
127. The locus of foot of perpendicular from the focus upon any tangent to the parabola $y^{2}=4 a x$ is
A. l_{1}, l_{2}, l_{3} are in G.P
B. l_{2}, l_{1}, l_{3} are in G.P
C. l_{3}, l_{1}, l_{2} are in A.P
D. l_{3}, l_{2}, l_{1} are in A.P

Answer: B

D Watch Video Solution

128. The length of the perpendicular from the focus S of the parabola $y^{2}=4 a x$ on the tangent at P is
A. $\sqrt{O S . S P}$
B. OS.SP
C. OS+OP
D. none

Answer: A

- View Text Solution

129. The number of tangents to $y^{2}=2 x$ through (1,2) is
A. 0
B. 1
C. 2
D. 3

Answer: C

(Watch Video Solution
130. The number of tangents to $y^{2}=6 x$ through $(-1,-1)$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

131. If the ends of a focal chord of the parabola $y^{2}=4 a x$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ then $x_{1} x_{2}+y_{1} y_{2}=$
A. a^{2}
B. $-3 a^{2}$
C. $5 a^{2}$
D. $-5 a^{2}$

Answer: B

- Watch Video Solution

132. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the end points of a focal chord of the parabola $y^{2}=5 x$, then $4 x_{1} x_{2}+y_{1} y_{2}=$
A. 25
B. 5
C. 0
D. $\frac{5}{4}$

Answer: C

- Watch Video Solution

133. The point of intersection of the tangents at t_{1} and t_{2} to
the parabola $y^{2}=12 x$ is
A. $\left(2 t_{1}, t_{2}, 2\left[t_{1}-t_{2}\right]\right)$
B. $\left(3 t_{1}, 3\left[t_{1}-t_{2}\right]\right)$
C. $\left(3 t_{1}, t_{2}, 3\left[t_{1}-t_{2}\right]\right)$
D. $\left(2 t_{1}, t_{2}, 3\left[t_{1}-t_{2}\right]\right)$

Answer: C

- Watch Video Solution

134. The slope of a chord of the parabola $y^{2}=4 a x$ which is normal at one end and which subtends a right angle at the origin is
A. $1 / \sqrt{2}$
B. $\sqrt{2}$
C. 2
D. none

- View Text Solution

135. On the parabola $y^{2}=8 x$ if one extremity of a focal chord is $(1 / 2,-2)$ then its other extremity is
A. $(2,2)$
B. $(1 / 8,-8)$
C. $(8,1 / 8)$
D. $(8,8)$

Answer: D
136. A focal chord of the parabola $y^{2}=4 a x$ meets it at P and Q . If S is the focus then $\frac{1}{S P}+\frac{1}{S Q}=$
A. a
B. 1/a
C. 2a
D. 2/a

Answer: B

(D) View Text Solution

137. The latusrectum of a parabola whose focal chord is PSQ such that $S P=3$ and $S Q=2$ is given by
A. $24 / 5$
B. $12 / 5$
C. $6 / 5$
D. none

Answer: A

(Watch Video Solution

138. The circle described on any focal chord of a parabola as
diameter touches the
A. axes
B. directrix
C. parabola

D. none

Answer: B

- View Text Solution

139. The circle on a focal radius as diameter of a parabola
$y^{2}=4 a x$ touches
A. directrix
B. axis
C. tangent at the vertex
D. none

Answer: C

140. A circle of radius 4 drawn on a chord of the parabola $y^{2}=8 x$ as diameter touches the axis of the parabola. Then the slope of the chord is
A. $1 / 2$
B. $3 / 4$
C. 1
D. 2

Answer: C

141. The slopes of the focal chords of the parabola $y^{2}=32 x$ which are tangents to the circle $x^{2}+y^{2}-4$ are
A. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}$
C. $\frac{2}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$
D. $\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$

Answer: B

- Watch Video Solution

142. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is
A. $4 a \sin ^{2} \theta$
B. $4 a \cos ^{2} \theta$
C. $4 a \cos e c^{2} \theta$
D. $4 a \sec ^{2} \theta$

Answer: C

(Watch Video Solution

143. If a chord of the parabola $y^{2}=4 x$ passes through its focus and makes an angle θ with the X-axis then its length is
A. $4 \cos ^{2} \theta$
B. $4 \sin ^{2} \theta$
C. $4 \cos e c^{2} \theta$
D. $\sec ^{2} \theta$

Answer: C

- Watch Video Solution

144. The length of the chord of the parabola $x^{2}=4 a y$ passing through the vertex and having slope $\tan \alpha$ is
A. $4 a \cos e c \alpha \cot \alpha$
B. $4 a \tan \alpha \sec \alpha$
C. $4 a \cos \alpha \cot \alpha$
D. $t a \sin \alpha \tan \alpha$

Answer: B

- Watch Video Solution

145. In the parabola $y^{2}=4 a x$ the length of the chord passing through the vertex and inclined to the axis at $\pi / 4$
A. $4 a \sqrt{2}$
B. $2 a \sqrt{2}$
C. $a \sqrt{2}$
D. none

Answer: A
146. The length of chord intercepted by the parabola $y=x^{2}+3 x$ on the line $\mathrm{x}+\mathrm{y}=5$ is
A. $3 \sqrt{26}$
B. $2 \sqrt{26}$
C. $6 \sqrt{2}$
D. none

Answer: C

- Watch Video Solution

147. If the line $\mathrm{y}=\mathrm{mx}+\mathrm{a}$ meets the parabola $x^{2}=4 a y$ in two points whose abscissa are x_{1} and x_{2} then $x_{1}+x_{2}=0$ If
A. $m=-1$
B. $m=1$
C. $m=2$
D. $m=-1 / 2$

Answer: C

- Watch Video Solution

148. Prove that the portion or the tangent intercepted,between the point of contact and the directrix of the parabola $y^{2}=4 a x$ subtends a right angle at its focuc.
B. 45°
C. 60°
D. 90°

Answer: D

D Watch Video Solution

149. The subnormal of the parabola $y^{2}=4 a x$ is equal to
A. focus
B. vertex
C. end of the latusrectum
D. none

(Watch Video Solution

150. If a normal chord of a puint on the parabola $y^{2}=4 a x$,
subtends a right angle at the vertex, then $t=$
A. $4 a l+n=0$
B. $4 \mathrm{al}+4 \mathrm{am}+\mathrm{n}=0$
C. $4 a m+n=0$
D. $\mathrm{al}+\mathrm{n}=0$

Answer: A
151. If the chord $y=m x+c$ subtends a right angle at the vertex of the parabola $y^{2}=4 a x$ then the value of c is
A. $-4 a m$
B. $4 a m$
C. $-2 a m$
D. $2 a m$

Answer: A

- Watch Video Solution

152. If P is a point on the parabola $y^{2}=8 x$ and A is the point $(1,0)$ then the locus of the midpoint of the line segment AP is

$$
\begin{aligned}
& \text { A. } y^{2}=4\left(x-\frac{1}{2}\right) \\
& \text { B. } y^{2}=2(2 x+1) \\
& \text { C. } y^{2}=x-\frac{1}{2} \\
& \text { D. } y^{2}=2 x+1
\end{aligned}
$$

Answer: A

- Watch Video Solution

153. The locus of the point of intersection of two tangents
to the parabola $y^{2}=4 a x$ which make complementary angles with the axis of the parabola is
A. $\left(y^{2}-4 a x\right)\left(y^{2}+4 a^{2}\right)+4 a^{2} l^{2}=0$
B. $\left(y^{2}-4 a x\right)\left(y^{2}+4 a^{2}\right)-4 a^{2} l^{2}=0$
C. $\left(y^{2}-4 a x\right)\left(y^{2}-4 a^{2}\right)+4 a^{2} l^{2}=0$
D. $\left(y^{2}-4 a x\right)\left(y^{2}-4 a^{2}\right)-4 a^{2} l^{2}=0$

Answer: A

- Watch Video Solution

154. The tangents at the points $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$ are al right angles if
A. $t_{1}=t_{2}$
B. $t_{1}=-t_{2}$
C. $t_{1} t_{2}=2$
D. $t_{1} t_{2}=-1$

- Watch Video Solution

155. The tangent to $y^{2}=a x$ makes an angle 45° with x-axis
. Then its point of contact is
A. A.P.
B. G.P.
C. H.P.
D. none

Answer: B
156. The tangents at the points $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ on the parabola $y^{2}=4 a x$ are al right angles if
A. $t_{1} t_{2}=-1$
B. $t_{1} t_{2}=1$
C. $t_{1} t_{2}=2$
D. $t_{1} t_{2}=-2$

Answer: A

- Watch Video Solution

157. If $\mathrm{P}\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\mathrm{Q}\left(a t_{2}^{2}, 2 a t_{2}\right)$ are two variable points on the curve $y^{2}=4 a x$ and PQ subtends a right angle at the vertex then $t_{1} t_{2}=$
A. -1
B. -2
C. -3
D. -4

Answer: D

- Watch Video Solution

158. The length of the chord of contact of tangents drawn from $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ is
A. $\sqrt{\left(v_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right) / a}$
B. $\sqrt{\left(y_{1}^{2}-4 a x_{1}\right) / a}$
C. $\sqrt{\left(y_{1}^{2}+4 a x_{1}\right)\left(y_{1}^{2}-4 a^{2}\right) / a}$
D. $\sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}-4 a^{2}\right) / a}$

Answer: A

- View Text Solution

159. The area of the triangle formed by the tangents and chord of contact from $\left(x_{1}, y_{2}\right)$ to the parabola $y^{2}=4 a x$ is
A. $\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}$
B. $2 a\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}$
C. $\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}$
D. none
160. If y_{1}, y_{2} and y_{3} are the ordinates of the vertices of a triangle inscribed in the parabola $y^{2}=4 a x$ then its area is
A. $\frac{1}{2 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
B. $\frac{1}{4 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
C. $\frac{1}{8 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
D. none

Answer: C

- Watch Video Solution

161. The area of the triangle inscribed in the parabola $y^{2}=4 x$ the ordinates of whose vertices are 1,2 and 4 is
A. $7 / 2$ sq.unit
B. $5 / 2$ sq.unit
C. $3 / 2$ sq.unit
D. $3 / 4$ sq.unit

Answer: D

- Watch Video Solution

162. The tangents to the parabola $y^{2}=4 a x$ at $\mathrm{P}\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ intersect at R. The area of $\Delta \mathrm{PQR}$ is
A. $\frac{1}{2} a^{2}\left(t_{1}-t_{2}\right)^{2}$
B. $\frac{1}{2} a^{2}\left(t_{1}-t_{2}\right)$
C. $\frac{1}{2} a^{2}\left(t_{1}-t_{2}\right)^{3}$
D. none

Answer: C

(D) Watch Video Solution

163. The orthocentre of the triangle formed by three tangents to the parabola $y^{2}=4 a x$ lies on the
A. axis
B. directrix
C. parabola
D. latus rectum

Answer: B

- View Text Solution

164. Prove that the orthocentre of the triangle formed by any three tangents to a parabola lies on the directrix of the parabola
A. vertex
B. focus
C. foot of the directrix
D. none

(Watch Video Solution

165. The feet of the perpendiculars drawn from the focus of
a parabola to the sides of the triangle formed by its
tangents lie on
A. x-axis
B. y-axis
C. directrix
D. tangent at the vertex

Answer: D
166. If the distances of two points P and Q on the parabola $y^{2}=4 a x$ from the focus of a parabola are 4 and 9 respectively then the distance of the point of intersection of tangents at P and Q from the focus is
A. ST
B. 2ST
C. $S T^{2}$
D. $2 S T^{2}$

Answer: C

167. If the distances of two points P and Q on the parabola $y^{2}=4 a x$ from the focus of a parabola are 4 and 9 respectively then the distance of the point of intersection of tangents at P and Q from the focus is
A. 8
B. 6
C. 5
D. 13

Answer: B
168. If the distances of two points P and Q on the parabola $y^{2}=4 a x$ from the focus of a parabola are 4 and 9 respectively then the distance of the point of intersection of tangents at P and Q from the focus is
A. $\angle T S P=\angle T S Q$
B. $\angle T S P<\angle T S Q$
C. $\angle T S P>\angle T S Q$
D. none

Answer: A

- Watch Video Solution

169. PSQ is a focal chord of a parabola whose focus is S and vertex A. PA and QA are produced to meet the directrix in R and T respectively. Then $\angle R S T=$
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- View Text Solution

170. If L, M, N are the three points on the parabola $y^{2}=4 a x$ whose ordinates are in G.P then the tangents at L and N

meet on the

A. parabola
B. abscissa of M
C. ordinate of M
D. none

Answer: B

- View Text Solution

171. The equation of the normal to the parabola $y^{2}=8 x$ at the point t is

$$
\text { A. } y-x=t+2 t^{2}
$$

B. $y+t x=4 t+2 t^{3}$
C. $x+t y=t+2 t^{2}$
D. $y-x=2 t-3 t^{3}$

Answer: B

- Watch Video Solution

172. The slope of the normal at $\left(a t^{2}, 2 a t\right)$ of the parabola $y^{2}=4 a x$ is
A. $1 / \mathrm{t}$
B. t
C. $-t$
D. $-1 / t$

(D) Watch Video Solution

173. If the normal at t_{1} on the parabola $y^{2}=4 a x$ meet it again at t_{2} on the curve then $t_{1}\left(t_{1}+t_{2}\right)+2=$
A. t
B. $-t-1 / t$
C. $-t-2 / t$
D. none

Answer: C

174. If the normal at t_{1} on the parabola $y^{2}=4 a x$ meet it again at t_{2} on the curve then $t_{1}\left(t_{1}+t_{2}\right)+2=$
A. 0
B. 1
C. t_{1}
D. t_{2}

Answer: A

(D) Watch Video Solution

175. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$ then the value of t is
A. 1
B. 3
C. -3
D. 1

Answer: C

- Watch Video Solution

176. If the normal to the parabola $y^{2}=4 x$ at $\mathrm{P}(1,2)$ meets
the parabola again in Q then $\mathrm{Q}=$
A. $(-6,9)$
B. $(9,-6)$
C. $(-9,-6)$
D. $(-6,-9)$

Answer: B

- Watch Video Solution

177. If the normals at the point t_{1} and t_{2} on $y^{2}=4 a x$ intersect at the point t_{3} on the parabola then $t_{1} t_{2}=$
A. 1
B. 2
C. t_{3}
D. $2 t_{3}$
178. The number of normals drawn to the parabola $y^{2}=4 x$ from the point $(1,0)$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

179. The number of normals that can be drawn through $(-1,4)$ to the parabola $y^{2}-4 x+6 y=0$ are
A. 4
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

180. From a point (C, O) three normals are drawn to the parabola $y^{2}=x$. Then
A. $C<\frac{1}{2}$
B. $C=\frac{1}{2}$
C. $C>\frac{1}{2}$
D. $\frac{1}{2}>C>\frac{1}{4}$

Answer: C

- Watch Video Solution

181. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respctively then
A. $x_{1}=x_{2}$
B. $x_{1}=y_{2}$
C. $y_{1}=y_{2}$
D. $x_{2}=y_{1}$

Answer: C

- View Text Solution

182. The normals at three points P, Q, R of the parabola $y^{2}=4 a x$ meet in (h.k). The centroid of triangle PQR lies on
A. $x=0$
B. $y=0$
C. $x=-0$
D. $y=a$

- View Text Solution

183. The ordinate of the centroid of the triangle formed by
conormal points on the parabola $y^{2}=4 a x$ is
A. 4
B. 0
C. 2
D. 1

Answer: B

- View Text Solution

184. The normals at two points P and Q of a parabola $y^{2}=4 a x$ meet at $\left(x_{1}, y_{1}\right)$ on the parabola. Then $P Q^{2}=$

$$
\begin{aligned}
& \text { A. }\left(x_{1}+4 a\right)\left(x_{1}+8 a\right) \\
& \text { B. }\left(x_{1}+4 a\right)\left(x_{1}-8 a\right) \\
& \text { C. }\left(x_{1}-4 a\right)\left(x_{1}+8 a\right) \\
& \text { D. }\left(x_{1}-4 a\right)\left(x_{1}-8 a\right)
\end{aligned}
$$

Answer: B

- View Text Solution

185. If a normal subtends a right angle at the vertex of a parabola $y^{2}=4 a x$ then its length is
A. $\sqrt{5}$ a
B. $3 \sqrt{5} a$
C. $6 \sqrt{3} a$
D. $7 \sqrt{5} a$

Answer: C

D Watch Video Solution

186. If α is the inclination of a tangent to the parabola $y^{2}=4 a x$ then the distance be tween the tangent and a parallel normal is
A. a cosec $\alpha \sec \alpha$
B. $a \operatorname{cosec} \alpha \sec ^{2} \alpha$
C. a $\cos e c^{2} \alpha \sec \alpha$
D. $a \cos e c^{2} \alpha \sec ^{2} \alpha$

Answer: D

- View Text Solution

187. The length of the normal chord drawn at one end of the latus rectum of $y^{2}=4 a x$ is
A. $2 \sqrt{2}$ a
B. $4 \sqrt{2}$ a
C. $8 \sqrt{2} a$
D. $10 \sqrt{2} a$

- View Text Solution

188. The locus of apoint that divides chords of slope 2 of the parabola $y^{2}=4 x$ internally in the ratio $1: 2$ is a parabola .

Then the vertex is
A. $(2 / 9,8 / 9)$
B. $(3 / 7,5 / 7)$
C. $(-2 / 9,8 / 9)$
D. $(1 / 9,4 / 9)$

Answer: A
189. Let O be the vertex and Q be any point on the parabola , $x^{2}=8 y$. If the point P divides the line segment OQ internally in the ratio $1: 3$ then the locus of P is:

$$
\begin{aligned}
& \text { A. } x^{2}=y \\
& \text { B. } y^{2}=x \\
& \text { C. } y^{2}=2 x \\
& \text { D. } x^{2}=2 y
\end{aligned}
$$

Answer: D

190. If a normal chord of a puint on the parabola $y^{2}=4 a x$, subtends a right angle at the vertex, then $t=$
A. 4
B. 2
C. 1
D. 3

Answer: B

- Watch Video Solution

191. If a normal subtends a right angle at the vertex of a parabola $y^{2}=4 a x$ then its length is
A. $\sqrt{2}$
B. 2
C. $\sqrt{3}$
D. 3

Answer: A

- Watch Video Solution

192. The normal at ' P ' cuts the axis of the parabola
$y^{2}=4 a x$ in G and S is the focus of the parabola. If $\Delta S P G$ is equilateral then each side is of length.
A. SP
B. 2 SP
C. $\frac{1}{2} \mathrm{SP}$
D. none

Answer: A

- Watch Video Solution

193. The circle passing through three conormal points also passes through
A. vertex
B. foot of the directrix
C. focus
D. none

- View Text Solution

194. The normal at ' P ' cuts the axis of the parabola
$y^{2}=4 a x$ in G and S is the focus of the parabola. If $\Delta S P G$ is equilateral then each side is of length.
A. a
B. 2 a
C. 3 a
D. 4 a

Answer: D
195. If the normals at two points on the parabola $y^{2}=4 a x$ intersect on the parabola then the product of the abscissac is
A. $4 a^{2}$
B. $-4 a^{2}$
C. 2a
D. $4 a^{4}$

Answer: A

- Watch Video Solution

196. If the normals at two points on the parabola intersects on the curve then the product of the ordinates of the points is
A. 8 a
B. $8 a^{2}$
C. $8 a^{3}$
D. $8 a^{4}$

Answer: B

- View Text Solution

197. The locus of the point of intersection of perpendicular
tangents to the parabola $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } y^{2}=a(x-3 a) \\
& \text { B. } y^{2}=a(x+3 a) \\
& \text { C. } y^{2}=a(x+2 a) \\
& \text { D. } y^{2}=a(x-2 a)
\end{aligned}
$$

Answer: A

- Watch Video Solution

198. The three normals from a point to the parabola
$y^{2}=4 a x$ cut the axes in points whose distance from vertex are in in A.R then the loous of the point is
A. 27 a $y^{2}=2(x-2 a)^{3}$
B. $27 \mathrm{a} y^{3}=2(x-2 a)^{2}$
C. $9 \mathrm{a} y^{2}=2(x-2 a)^{3}$
D. $9 \mathrm{a} y^{3}=2(x-2 a)^{2}$

Answer: A

- View Text Solution

199. If the normals from any point to the parabola $x^{2}=4 y$ cuts the line $y=2$ in points whose abscissae are in A.P., then the slope of the tangents at the 3 conormal points are in
A. AP
B. GP
C. HP
D. none

Answer: A

- View Text Solution

200. If a circle cuts the parabola $y^{2}=4 a x$ in four points
then the algebraic sum of ordinates of the four points is
A. 0
B. 1
C. -1
D. none

Answer: A
201. The feet of the normals to $y^{2}=4 a x$ from the point
($6 \mathrm{a}, 0$) are
A. $(0,0)$
B. $(4 a, 4 a)$
C. $(4 a,-4 a)$
D. (0,0),(4a,4a),(4a,-4a)

Answer: D

- Watch Video Solution

202. If $P(-3,2)$ is one end of focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$ then slope of the normal at Q is
A. $(-1 / 2)$
B. 2
C. $1 / 2$
D. -2

Answer: A

- Watch Video Solution

203. The normal at a point P on the parabola $y^{2}=4 a x$ cuts
the curve again at Q. If M is the midpoint of $P Q$ then the product of the ordinates of P and M is
A. a^{2}
B. $2 a^{2}$
C. $4 a^{2}$
D. $-4 a^{2}$

Answer: D

D View Text Solution

204. The subnormal of the parabola $y^{2}=4 a x$ is equal to
A. latus rectum
B. semi latus rectum
C. 2(latus rectum)
D. none
205. The length of the subnomal to the curve $y^{2}=2 p x$ is
A. p
B. $p / 2$
C. $2 p$
D. 4 p

Answer: A

- Watch Video Solution

206. If P is a point on the parabola $y^{2}=4 a x$ such that the subtangent and subnormal at p are equal then the
coordinates of P are
A. $(a, 2 a)$ or $(a,-2 a)$
B. $(2 \mathrm{a}, 2 \sqrt{2} a)$
C. $(4 a,-4 a)$ or $(4 a, 4 a)$
D. none

Answer: A

- View Text Solution

207. If $P S P^{1}$ is a focal chord of a parabola $y^{2}=4 a x$ and SL is its semi latusrectum then SP SL and $S P^{1}$ are in
A. A.P.
B. H.P
C. G.P
D. none of these

Answer: B

- Watch Video Solution

208. An arch is in the shape of a parabola whose axis is vertically downwords and measures 24 mts across its boltom on the ground. Its highest point is 24 mts . The measure of the horizontal beam across its cross section at a height or 18 mts is
A. 50 mt
B. 40 mt
C. 45 mt
D. 55 mt

Answer: B

D Watch Video Solution

209. The points on $y=x^{2}+7 x+2$ which is closest to the line $y=3 x-3$ is
A. $(2,8)$
B. $(2,-8)$
C. $(-2,8)$
D. $(-2,-8)$

(D) Watch Video Solution

210. Let P be the point on the parabola $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle $x^{2}+(y+6)^{2}=1$. Then the equation of the circle passing through C and having its centre at P is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-4 x+8 y+12=0 \\
& \text { B. } x^{2}+y^{2}-x+4 y-12=0 \\
& \text { C. } x^{2}+y^{2}-\frac{x}{4}+2 y-24=0 \\
& \text { D. } x^{2}+y^{2}-4 x+9 y+18=0
\end{aligned}
$$

D View Text Solution

Exercise 1 B

1. The chord of contact of $(2,1)$ w.r.t the parabola $x^{2}=y$ is
A. $x+4 y+3=0$
B. $2 x-3 y+4=0$
C. $3 x+2 y+4=0$
D. $4 x-y-1=0$

Answer: D

- Watch Video Solution

2. The polar of $(-2,3)$ w.r.t the parabola $y^{2}=4 x$ is
A. $2 x-3 y-4=0$
B. $2 x-y-2=0$
C. $3 x-y+4=0$
D. $5 x-4 y+24=0$

Answer: A

- Watch Video Solution

3. The polar of $(a, 0)$ w.r.t the parabola $y^{2}=4 a x$ is
A. $x=a$
B. $x+a=0$
C. $y=a$
D. $y+a=0$

Answer: B

(D) Watch Video Solution

4. The pole of the line $2 x+3 y-4=0$ with respect to the parabola $y^{2}=4 x$ is
A. $(2,3)$
B. $(-2,-3)$
C. $(1,1)$
D. $(2,-3)$

Answer: B

Watch Video Solution

5. The pole of the straight lien $x-2 y+4=0$ with respect to the parabola $y^{2}=6 x$ is
A. $(4,6)$
B. $(-4,6)$
C. $(4,-6)$
D. $(-4,-6)$

Answer: A

6. The pole of the line $3 x+4 y-4=0$ w.r.t parabola $x^{2}=4 y$ is
A. $(3 / 2,1)$
B. $(3 / 2,-1)$
C. $(-3 / 2,1)$
D. $(-3 / 2,-1)$

Answer: D
(D) Watch Video Solution
7. The points ($3,-2$) , (1,-2) are conjugate w.r.t. the parabola

$$
\text { A. } y^{2}=2 x
$$

B. $y^{2}=4 x$
C. $y^{2}=8 x$
D. none

Answer: A

- Watch Video Solution

8. The lines $3 x+2 y-1=0,2 x-y-2=0$ are conjugate w.r.t the parabola
A. $y^{2}=8 x$
B. $y^{2}=x$
C. $y^{2}=2 x$
D. none

Answer: A

(Watch Video Solution

9. If the points $(2,4),(k, 6)$ are conjugate with respect to the parabola $y^{2}=4 x$ then $\mathrm{k}=$
A. 10
B. $7 / 2$
C. -12
D. -2

Answer: A

10. If the lines $2 x+3 y+12=0$ and $x-y+k=0$ are conjugate with respect to the parabola $y^{2}=8 x$ then $\mathrm{k}=$
A. 10
B. $7 / 2$
C. -12
D. -2

Answer: C

- Watch Video Solution

11. If the lines $2 x+3 y+12=0$ and $x-y+4 k=0$ are conjugate with respect to the parabola $y^{2}=8 x$ then the value of k is
A. -3
B. 3
C. 2
D. -2

Answer: A

Watch Video Solution

12. The polar of (-a,-2a) w.r.t the circle
$x^{2}+y^{2}-2 a x-3 a^{2}=0$ touches the parabola
A. $y^{2}=4 a x$
B. $y^{2}=6 a x$
C. $x^{2}=4 a x$
D. $y^{2}=a x$

Answer: A

- Watch Video Solution

13. The locus of poles of tangents of the parabola $y^{2}=4 a x$ w.r.t the parabola $y^{2}=4 b x$ is
A. $a x^{2}=4 b^{2} y$
B. $a x=4 b^{2} y^{2}$
C. $a y^{2}=4 b^{2} x$
D. none
14. If the polar of a point P w.r.t the circle $x^{2}+y^{2}=a^{2}$ touches the parabola $y^{2}=4 a x$ then the locus of P is
A. $y^{2}=a x$
B. $y^{2}+a x=0$
C. $y^{2}=2 a x$
D. $y^{2}+2 a x=0$

Answer: B
(Watch Video Solution
15. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is
A. $x+a=0$
B. $x+2 a=0$
C. $x+3 a=0$
D. $x+4 a=0$

Answer: D

- Watch Video Solution

16. If the polar of a point P w.r.t the circle $x^{2}+y^{2}=a^{2}$ touches the parabola $y^{2}=4 a x$ then the locus of P is
A. $x^{2}-y^{2}=4 a^{2}$
B. $x^{2}-y^{2}=2 a^{2}$
C. $x^{2}-y^{2}=a^{2}$
D. none

Answer: A

- Watch Video Solution

17. The chord of contact of a point P to the parabola $y^{2}=4 a x$ touch the circle $x^{2}+y^{2}=r^{2}$. The locus of P is
A. $4 a^{2} x^{2}=r^{2}\left(y^{2}+4 a^{2}\right)$
B. $a^{2} x^{2}=2 r^{2}\left(y^{2}-4 a^{2}\right)$
C. $2 a^{2} x^{2}=2 r^{2}\left(y^{2}+2 a^{2}\right)$

$$
\text { D. } 4 a^{2} x^{2}=r^{2}\left(y^{2}+4 a^{2}\right)
$$

Answer: A

- View Text Solution

18. The locus of the point for which the chord of contact w.r.t $y^{2}=4 a x$ subtends a right angle at the vertex of the parabola is
A. $x+2 a=0$
B. $x+4 a=0$
C. $y+2 a=0$
D. $y+4 a=0$

- View Text Solution

19. The locus of poles of chords of the parabola $y^{2}=4 a x$ which are at a constant distance d from the vertex is
A. $d^{2} x^{2}+4 a^{2}\left(d^{2}-y^{2}\right)=0$
B. $d^{2} y^{2}+4 a^{2}\left(d^{2}-x^{2}\right)=0$
C. $d^{2} y^{2}+2 a^{2}\left(3 d^{2}-2 x^{2}\right)=0$
D. $x^{2}+2 a^{2}\left(d^{2}+2 x^{2}\right)=0$

Answer: C

- View Text Solution

20. A chord of the parabola $y^{2}=4$ ax subtends a right angle at the vertex. The tangents at the extremeties of the chord intersect on
A. $x+a=0$
B. $x+2 a=0$
C. $x+4 a=0$
D. none

Answer: C

D View Text Solution

21. The equation of the chord of the parabola $y^{2}=2 x$ having $(1,1)$ as its midpoint is
A. $x+y=0$
B. $x-y=0$
C. $x-y+1=0$
D. $2 x-y=0$

Answer: B

- Watch Video Solution

22. The midpoint of the chord $2 x-y-2=0$ of the parabola $y^{2}=8 x$ is
A. $(1,0)$
B. $(2,2)$
C. $(3,4)$
D. $(0,-2)$

Answer: B

- Watch Video Solution

23. The tangent at the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R then the midpoint of $Q R$ is
A. $(2,4)$
B. $(4,2)$
C. $(7,9)$
D. none

Answer: A

- View Text Solution

24. If the tangent at the point $P(2,4)$ to the parabola
$y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at Q and R then the midpoint of $Q R$ is
A. $(2,4)$
B. $(4,2)$
C. $(7,9)$
D. none

Answer: A
25. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is
A. $y^{2}=8 a x$
B. $y^{2}=4 a x$
C. $y^{2}=2 a x$
D. $y^{2}=a x$

Answer: C

- Watch Video Solution

26. Let O be the origin and A be a point on the curve $y^{2}=4 x$. Then the locus of the midpoint of OA is

$$
\begin{aligned}
& \text { A. } x^{2}=4 y \\
& \text { B. } x^{2}=2 y \\
& \text { C. } y^{2}=16 x \\
& \text { D. } y^{2}=2 x
\end{aligned}
$$

Answer: D

(Watch Video Solution

27. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is
A. $y^{2}=2 a(x+a)$
B. $y^{2}=2 a(x-a)$
C. $y^{2}=a(2 x+a)$
D. $y^{2}=a(2 x-a)$

Answer: B

- Watch Video Solution

28. The locus of the midpoints of the focal chords of the parabola $y^{2}=6 x$ which pass through a fixed point $(9,5)$ is

$$
\text { A. } y^{2}+5 y+3 x+27=0
$$

B. $y^{2}+5 y-3 x+27=0$
C. $y^{2}-5 y-3 x+27=0$
D. $y^{2}-5 y-3 x-27=0$

Answer: C

29. The locus of middle points of normal chords of the parabola $y^{2}=4 a x$ is
A. $y(y+k)=2 a(x+h)$
B. $y(y-k)=2 a(x-h)$
C. $y(y-h)=2 a(x+h)$
D. $y(y+k)=2 a(x-h)$

Answer: B

D Watch Video Solution
30. The point of intersection of the tangents of the parabola $y^{2}=16 x$ at the extremities of the chord having $(3,4)$ as its midpoint is
A. $(1,4)$
B. $(-1,4)$
C. $(1,-4)$
D. $(-1,-4)$

Answer: B

- View Text Solution

31. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } y^{2}=2 a(x+4 a) \\
& \text { B. } y^{2}=2 a(x-4 a) \\
& \text { C. } y^{2}=a(x+2 a) \\
& \text { D. } y^{2}=a(x-2 a)
\end{aligned}
$$

Answer: B

- Watch Video Solution

32. A variable tangent to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}+4 \mathrm{ax}=0$ at the points P, Q. The locus of the middle point of $P Q$ is
A. $y^{2}+4 a x=0$
B. $y^{2}+2 a x=0$
C. $y^{2}+a x=0$
D. $3 y^{2}+4 a x=0$

Answer: D

D View Text Solution

33. A tangent to the parabola $y^{2}+4 b x=0$ meets the parabola $y^{2}=4 a x$ in P and Q . The locus of the middle point of $P Q$ is
A. $y^{2}(2 a+b)=4 a^{2} x$
B. $y^{2}(2 a-b)=4 a^{2} x$
C. $y^{2}(2 a+b)=4 a x$
D. $y^{2}(2 a-b)=4 a x$

Answer: A

- View Text Solution

34. The locus of midpoints of chords of the parabola $y^{2}=4 a x$ which touch the circle $x^{2}+y^{2}=a^{2}$ is
A. $\left(y^{2}-2 a x\right)^{2}=a^{2}\left(y^{2}+4 a^{2}\right)$
B. $\left(y^{2}+2 a x\right)^{2}=a^{2}\left(y^{2}+4 a^{2}\right)$
C. $\left(y^{2}+2 a x\right)^{2}=a^{2}\left(y^{2}-4 a^{2}\right)$
D. $\left(y^{2}-2 a x\right)^{2}=a^{2}\left(y^{2}-4 a^{2}\right)$

Answer: A

35. The locus of the midpoints of the chords of the parabola $y^{2}=6 x$ which touch the circle $x^{2}+y^{2}+4 x-12=0$ is

$$
\begin{aligned}
& \text { A. }\left(y^{2}-3 x-6\right)^{2}=16\left(y^{2}+9\right) \\
& \text { B. }\left(x^{2}-3 y-16\right)^{2}=16\left(y^{2}+19\right) \\
& \text { C. } 8\left(y^{2}-3 x-6\right)^{2}=16\left(y^{2}+9\right) \\
& \text { D. } 2\left(y^{2}-3 x-6\right)^{2}=16\left(y^{2}-9\right)
\end{aligned}
$$

Answer: A

- View Text Solution

36. The locus of midpoints of chords of the parabola $y^{2}=4 a x$ which are parallel to line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is
A. $x=2 a$
B. $x=2 a / m$
C. $y=2 a$
D. $y=2 a / m$

Answer: D

- Watch Video Solution

37. The tangent at ' t ' on the parabola $y^{2}=4 a x$ is parallel to a normal chord then distance between them is
A. a
B. 2 a
C. 4 a

Answer: C

- Watch Video Solution

38. An equailateral triangle is inscribed in the parabola
$y^{2}=4 a x$ whose vertex is at the vertex of the parabola. The length of its side is
A. $2 \sqrt{3} a$
B. $4 \sqrt{3} \mathrm{a}$
C. $8 \sqrt{3} a$
D. $16 \sqrt{3} a$

- View Text Solution

39. The equation to the pair of tangents drawn from $(3,-2)$
to the parabola $y^{2}=x$ is

$$
\begin{aligned}
& \text { A. } x^{2}+8 x y+12 y^{2}+10 x+24 y+9=0 \\
& \text { B. } 2 x^{2}+3 x y-22 y^{2}+15 x+4 y+9=0 \\
& \text { C. } 3 x^{2}+18 x y+22 y^{2}+50 x+64 y+19=0 \\
& \text { D. } x^{2}-8 x y-12 y^{2}-10 x-24 y+9=0
\end{aligned}
$$

Answer: A

- View Text Solution

40. The combined equation to the tangents to the parabola $y^{2}=4 a x$ from an external point $\mathrm{A}\left(x_{1}, y_{1}\right)$ is

$$
\begin{aligned}
& \text { A. }\left(y^{2}-4 a x\right)\left(y_{1}^{2}-4 a x_{1}\right)=\left(y y_{1}-2 a x-2 a x_{1}\right)^{2} \\
& \text { B. } y^{2}-4 a x=\left(y y_{1}-2 a x-2 a x_{1}\right)^{2} \\
& \text { C. } y^{2}-4 a x=\left(y y_{1}-2 a x\right)^{2}
\end{aligned}
$$

D. none of these

Answer: A

- View Text Solution

41. Two tangents are drawn from a point ($-2,-1$) to the curve $y^{2}=4 x$, If α is the angle between them, then $|\tan \alpha|$ is equal to
A. 3
B. $1 / 3$
C. 1
D. $1 / 2$

Answer: A

- Watch Video Solution

42. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it intersects with the line $x-y-$ $a=0$ is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 6$

Answer: B

- Watch Video Solution

43. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it intersects with the line $x-y-$ $a=0$ is
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 2$

- Watch Video Solution

44. The angle between the tangents drawn from the origin to the parabola $y^{2}=4 a(x-a)$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: D

- View Text Solution

45. The slope of tangents drawn from a point $(4,10)$ to the parabola $y^{2}=9 x$ are

$$
\begin{aligned}
& \text { А. } x-y+1=0, x-2 y+4=0 \\
& \text { B. } x-y-1=0,2 x-y-4=0 \\
& \text { C. } x-4 y+36=0,9 x-4 y+4=0 \\
& \text { D. } x+y+5=0,2 x-2 y-14=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

46. Find the angle between tangents drawn from $P(2,3)$ to
the parabola $y^{2}=4 x$

$$
\begin{aligned}
& \text { А. } x+y+1=0, x+2 y+4=0 \\
& \text { В. } x-y+1=0, x-2 y+4=0 \\
& \text { С. } x+y-1=0, x-2 y+4=0 \\
& \text { D. } x-y-1=0,2 x-y-4=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

47. The locus of middle points of normal chords of the parabola $y^{2}=4 a x$ is
A. $\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}}-x=2 a$
B. $\frac{y^{2}}{2 a}-\frac{4 a^{3}}{y^{2}}-x=2 a$
C. $\frac{y^{2}}{2 a}+\frac{4 a^{3}}{y^{2}}-x+2 a$
D. $\frac{y^{2}}{2 a}-\frac{4 a^{3}}{y^{2}}-x+2 a$

Answer: A

- Watch Video Solution

48. The locus of the middle points of chords of the parabola which are such that the normals at their extremities meet on the parabola is

$$
\begin{aligned}
& \text { A. } y^{2}=2 a(x+2 a) \\
& \text { B. } y^{2}=2 a(x-2 a) \\
& \text { C. } y^{2}=a(x+2 a) \\
& \text { D. } y^{2}=a(x-2 a)
\end{aligned}
$$

Answer: A

- View Text Solution

49. The locus of middle points of normal chords of the parabola $y^{2}=4 a x$ is
A. $(x+2 a) y^{2}=4 a^{3}$
B. $(x+2 a) y^{2}+4 a^{3}=0$
C. $(x-2 a) y^{2}=4 a^{3}$
D. $(x-2 a) y^{2}+4 a^{3}=0$

Answer: B
50. The locus of the midpoints of the focal chords of the parabola $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } y^{2}=a(x-a) \\
& \text { B. } y^{2}=a(x+a) \\
& \text { C. } y^{2}=2 a(x-a) \\
& \text { D. } y^{2}=2 a(x+a)
\end{aligned}
$$

Answer: A

- Watch Video Solution

Exercise 2 Special Type Questions Set 1

1. I : The length of the latus rectum of the parabola $y^{2}+8 x-2 y+17=0$ is 8.

II: The focal distance of the point $(9,6)$ on the parabola $y^{2}=4 x$ is 12
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II true

Answer: A

- Watch Video Solution

2. For the parabola $y^{2}+6 y-2 x+5=0$
I) The vertex is $(-2,-3) \quad I I)$ The directrix is $\mathrm{y}+3=0$

Which of the following is correct ?
A. Both I and II are true
B. I is true II is false
C. I is false, II is true
D. Both I and II are false

Answer: B

- Watch Video Solution

3. I: If the points $(2,-1),(5, k)$ are conjugate with respect to
the parabola $x^{2}=8 y$ then $\mathrm{k}=7$

II : If the lines $2 x+3 y+12=0, x-y+k=0$ are conjugate with respect to the parabola $y^{2}=8 x$ then $\mathrm{k}=-12$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II true

Answer: B

(Watch Video Solution

4. I: The locus of the midpoint of chords of the parabola $y^{2}=4 a x$ which subtends a right angle at the vetex is $y^{2}=2 a(x-4 a)$

II : The locus of midpoint of chords of the parabola $y^{2}=4 a x$ which touch the circle $x^{2}+y^{2}=a^{2}$ is $\left(y^{2}-2 a x\right)^{2}=a^{2}\left(y^{2}+4 a^{2}\right)$.
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II true

Answer: C

D View Text Solution

1. If the equation of the parabola whose axis is parallel to x axis and passing through $(2,-1),(6,1),(3,-2)$ is $a y^{2}+b x+c y+d=0$ then the ascending order of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ is
A. a, b, c, d
B. b,c,a,d
C. c, a, b, d
D. b, a, c, d

Answer: D

- View Text Solution

2. The equation of the directrix of the parabola whose vertex $(3,2)$ and focus $(2,-1)$ is
A. a,b,c
B. b, c, a
C. c, a, b
D. b, a, c

Answer: C

(Watch Video Solution

3. If the line $a x+b y+c=0$ touches both the parabolas
$y^{2}=-32 y$ then the ascending order of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
A. a,b,c
B. b, c, a
C. c, a, b
D. b, a, c

Answer: D

- View Text Solution

4. If the chord of contact of $(3,-2)$ with respect to the parabola $y^{2}=x$ is ax $+\mathrm{by}+\mathrm{c}=0$ then the ascending order of a, b, c is
A. a, c, b
B. b, c, a
C. c, a, b
D. b, a, c

Answer: B

- Watch Video Solution

Exercise 2 Special Type Questions Set 3

1. Match the following .

Parabola
I. $y^{2}-x-3 y+2=0$

Focus
II. $y^{2}-8 x-4 y-4=0$
(a) $(1,2)$
(b) $(-2,5)$
III. $x^{2}+4 x-8 y+28=0$
$(c)(1,-1)$
IV. $x^{2}-2 x-8 y-23=0$
A. a,b,c,d
B. b,c,a,d
C. d, a, b, c
D. b, d, a, c

Answer: C

- View Text Solution

2. Match the following .

Point, parabola
I. $(3,-6) y^{2}=12 x$
II. $(2,4) y^{2}=8 x$
III. $(-2,1) x^{2}=4 y$
(a) $x+y+1=0$
$(b) x+y+3=0$
(a) $x+y+1=0$
$(b) x+y+3=0$
tangent
(c) $x-y+2=0$
A. a,b,c
B. b,c,a
C. c, a, b
D. b, a, c

Answer: B

(Watch Video Solution

3. Match the following

Point, parabola
Polar
I. $(3,-2) y^{2}=x$
(a) $5 x-4 y+24=0$
II. $(2,1) x^{2}=y$
(b) $2 x-3 y-4=0$
III. $(-2,3) y^{2}=4 x$
(c) $4 x-y-1=0$
IV. $(5,-6) x^{2}=8 y$
(c) $x+4 y+3=0$
A. a,b,c,d
B. b,c,a,d
C. d,c,b,a
D. b,d,a,c

Answer: C

D Watch Video Solution

4. Match the following.

Line, parabola
I. $2 x-3 y+4=0 \quad y^{2}=4 x$
II. $2 x+3 y-4=0 \quad y^{2}=4 x$
III. $x-2 y+4=0 \quad y^{2}=6 x$
IV. $3 x+4 y-4=0 \quad x^{2}=4 y$

Pole
(a) $(4,6)$
$(b)(2,3)$
$(c)(-2,-3)$
$(d)(-3 / 2,-1)$
A. a, b, c, d
B. b,c,a,d
C. d,c,b,a
D. b, d, a, c

- Watch Video Solution

Exercise 2 Special Type Questions Set 4

1. A: The focus of the parabola $(y-3)^{2}=6(x+3)$ is
$(-3 / / 2,2)$.
R : The focus of the parabola $(y-\beta)^{2}= \pm 4 a(x-\alpha)$ is
$(\alpha \pm a, \beta)$.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

2. A : The condition that the line $x / p+y / q=1$ to be a tangent to the parabola $y^{2}=4 a x$ is ap $+q^{2}=0$.

R: The condition that the line $1 x+m y+n=0$ may touch the parabola $y^{2}=4 a x$ is $a m^{2}=\ln$
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

(Watch Video Solution

3. A : The sum and product of the slopes of the tangents to the parabola $y^{2}=8 x$ drawn form the point $(-2,3)$ are $-3 / 2,-1$.
$\mathrm{R}:$ If m_{1}, m_{2} are the slopes of the tangents of the parabola
$y^{2} \quad=4 \mathrm{ax} \quad$ through $\mathrm{P}\left(x_{1}, y_{1}\right) \quad$ then
$m_{1}+m_{2}=y_{1} / x_{1}, m_{1} m_{2}=a / x_{1}$.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

4. Given :A circle $2 x^{2}+2 y^{2}=5$ and a parabola $y^{2}=4 \sqrt{5} x$.

Statement -I: an equation of a common tangent to these
curves is $y=x+\sqrt{5}$.
Statement -II - If the line, $y=m x+\frac{\sqrt{5}}{m}(m \neq 0)$ is their common tangent, then m satisfies $m^{4}-3 m^{2}+2=0$
A. Statement $-I$ is true, statement $-I I$ is false
B. Statement -I is false , Statement -II is true
C. Statement -I is true, Statement -II is true ,Statement -

II is a correct explanation for Statement -I
D. Statement -I is true, Statement -II is true ,Statement -

II is not a correct explanation for Statement

Answer: D

- Watch Video Solution

