©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

PRODUCTS OF VECTORS

Solved Examples

1. Let $\mathrm{a}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}, \mathrm{b}=\mathrm{I}+2 \mathrm{j}-\mathrm{k}$ and $\mathrm{c}=\mathrm{I}+\mathrm{j}-2 \mathrm{k}$ be three vectors. A vector in the plane of b and c whose projection on a is of magnitude $\sqrt{2 / 3}$ is
A. $2 \mathrm{i}+3 \mathrm{j}-3 \mathrm{k}$
B. $2 i+2 j+3 k$
C. $-2 i-j+5 k$
D. $2 i+j+5 k$

Watch Video Solution

2. If a vector a expressed as the sum of two vectors $\vec{\alpha}$ and $\vec{\beta}$ along and perpendicular to a given vector b , then $\vec{\beta}=$
A. $\frac{(a \times b) \times b}{|b|^{2}}$
B. $\frac{b \times(a \times b)}{|b|^{2}}$
C. $\frac{b \times(a \times b)}{|b|}$
D. ((a.b)/(|b|^(2)))b`

Answer: B

- View Text Solution

3. Let a, b, c the distinct non-negative numbers. If the vectors $a i+a j+c k$, I +k and $\mathrm{ci}+\mathrm{cj}+\mathrm{bk}$ lie in a plane, then c is
A. the arthithmetic mean of a and b
B. the geometric mean of a and b
C. the harmonic of a and b
D. equal to zero

Answer: B

- Watch Video Solution

4. Let $\mathrm{a}=\mathrm{i}-\mathrm{k}, \mathrm{b}=\mathrm{xi}+\mathrm{j}+(1-\mathrm{x}) \mathrm{k}$ and $\mathrm{c}=\mathrm{yi}+\mathrm{xj}+(1+\mathrm{x}-\mathrm{y}) \mathrm{k}$. Then $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ depends on
A. only x
B. only y
C. neither x nor y
D. both x and y

Answer: C

5. Let $\mathrm{a}=2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$ and $\mathrm{b}=\mathrm{l}+\mathrm{j}$. If c is vector such that $\mathrm{ac}=|\mathrm{c}|,|\mathrm{c}-\mathrm{a}|=2 \sqrt{2}$ and the angle between $a \times b$ and c is 30°, then $|(a \times b) \times c|=$
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: B

- Watch Video Solution

6. Let $v=2 i+j-k$ and $w=l+3 k$. If u is unit vector. Then the maximum value of the scalar triple product [$\mathrm{u} v \mathrm{w}$] is
A. -1
B. $\sqrt{10}+\sqrt{16}$
C. $\sqrt{59}$
D. $\sqrt{6}$

Answer: C

- Watch Video Solution

7. Let P, Q, R be points with poistion vectors $r_{1}=3 i-2 j-k, r_{2}=I+3 j+4 k$ and $r_{3}=2 i+j-2 k$ relavtive to an origin. The distance of P from the plane $O Q R$ is
A. 2
B. 3
C. 1
D. $11 / \sqrt{3}$

Answer: B

8. Consider the parallelopiped wide sides $a=3 i+2 j+k, b=I+j+2 k$ and c
$=I+3 j+3 k$ then the angle between a and the plane containing the face determined by b and c is
A. $\sin ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{9}{14}\right)$
C. $\sin ^{-1}\left(\frac{9}{14}\right)$
D. $\sin ^{-1}\left(\frac{2}{3}\right)$

Answer: C

- Watch Video Solution

Exercise 1 A

1. If $|a|=3,|b|=4$ and $|a+b|=1$, then $|a-b|=$
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution

2. if θ is the angle between the unit vectors a, b then $|a-b|=$
A. $\sin (\theta / 2)$
B. $2 \sin (\theta / 2)$
C. $\cos (\theta / 2)$
D. $2 \operatorname{Cos}(\theta / 2)$

Answer: B

3. If θ is the angle between the unit vectors a, b then $|a+b|=$
A. $\sin (\theta / 2)$
B. $2 \sin (\theta / 2)$
C. $\cos (\theta / 2)$
D. $2 \operatorname{Cos}(\theta / 2)$

Answer: D

- Watch Video Solution

4. If a and b are unit vectors and α is the angle between them then $\mathrm{a}-\mathrm{b}$ will be a unit vector if $\alpha=$
A. $\pi / 4$
B. $\pi / 3$
C. $2 \pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

5. If the unit vector a and b are inclined at an angle 2θ such that $|\mathrm{a}-\mathrm{b}|$ <1 then θ lies in the interval
A. $[0, \pi / 6]$
B. $[5 \pi / 6, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $[\pi / 2,5 \pi / 6]$

Answer: A

- Watch Video Solution

6. If a, b, c are three vectors such that $a=b+c$ and the angle between b and c is $\pi / 2$, then (here $\mathrm{a}=|\mathrm{a}|, \mathrm{b}=|\mathrm{b}|, \mathrm{c}=|\mathrm{c}|$)
A. $a^{2}=b^{2}+c^{2}$
B. $b^{2}=c^{2}+a^{2}$
C. $c^{2}=a^{2}+b^{2}$
D. $2 a^{2}-b^{2}=c^{2}$

Answer: A

- Watch Video Solution

7. If $a+b+c=0$ and $|a|=3,|b|=4$ and $|c|=\sqrt{37}$ the angle between a and b is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 6$
D. $\pi / 3$
8. If a and b are noncollinear unit vectors and $|a+b|=\sqrt{3}$, then (2a + 5b). (3a-b) =
A. $15 / 4$
B. $15 / 2$
C. 15
D. none

Answer: B

- Watch Video Solution

9. If a, b, are two vectors of lengths 2,1 respectively and $|a-b|=\sqrt{3}$ then $(a, b)=$

$$
\text { A. } \pi / 4
$$

B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

- Watch Video Solution

10. If, in a right angled triangle $A B C$, the hypotenuse, $A B=p$, then $A B . A C+$ $B C . B A+C A . C B=$
A. $2 p^{2}$
B. $p^{2} / 2$
C. p^{2}
D. none

Answer: C

11. If a, b, c are unit vectors such that $a+b+c=0$ then $a \cdot b+b \cdot c+c+c . A=$
A. 2
B. $3 / 2$
C. -2
D. $-3 / 2$

Answer: D

Watch Video Solution

12. If two out of the three vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are unit vectors, $a+b+c=0$ and $2 .(a . b+b . c+c . a)+3=0$, then the third vector is of length
A. 3
B. 2
C. 1
D. 0

Answer: C

- View Text Solution

13. If a, b, c are three vectors such that $a+b+c=0,|a|=1,|b|=2,|c|=3$ then a.b+b.c $+\mathrm{c} . \mathrm{a}=$
A. 0
B. -7
C. 7
D. 1

Answer: B

14. If a, b, c are mutally perpendicular unit vectors, then $|a+b+c|=$
A. $\sqrt{2}$
B. 1
C. $\sqrt{3}$
D. 0

Answer: C

- Watch Video Solution

15. If $A .(B+C)=B \cdot(C+A)=C .(A+B)=0,|A|=3,|B|=4,|C|=5$ then $\mid A+B+$ $C \mid=$
A. 5
B. $5 \sqrt{2}$
C. $5 / \sqrt{2}$
D. $\sqrt{2}$

- Watch Video Solution

16. If a, b, c are vector of length $4,4,5$ respectively and a, b, c are perpendicular to $b+c, c+a, a+b$ respectively, then $|a+b+c|=$
A. $\sqrt{57}$
B. $\sqrt{75}$
C. $\sqrt{47}$
D. 7

Answer: A

- Watch Video Solution

17. Let u, v, w be such that $|u|=1,|v|=2,|w|=3$. If the projection v along u is equal to that w along u and v, w are prependicular to each other then $\mid u$ -
$v+w \mid=$
A. 1
B. 14
C. $\sqrt{14}$
D. $\sqrt{7}$

Answer: C

- Watch Video Solution

18. If a, b and c are vectors with magnitudes 2,3 and 4 respectively then the least upper bound of $|a-b|^{2}+|b-c|^{2}+|c-a|^{2}$ among the given values is
A. 97
B. 87
C. 90
D. 93

Answer: B

- Watch Video Solution

19. If $p^{t h}, q^{\text {th }}, r^{\text {th }}$ terms of a geometric progression are the positive numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively, then the angle between the vectors $\left(\log a^{2}\right) I+\left(\log b^{2}\right) j+\left(\log c^{2}\right) k$ and $(q-r) I+(r-p) j+(p-q) k$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\sin ^{-1} \frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

20. The vectors $A B=3 i-2 j+2 k$ and $B C=-1-2 k$ are the adjacent sides of a parallelogram. The angle between its diagonals is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
C. $\frac{3 \pi}{4}$ or $\frac{\pi}{4}$
D. $\frac{5 \pi}{6}$ or $\frac{\pi}{6}$

Answer: C

- Watch Video Solution

21. Let a and b be two unit vectors. If the vectors $c=a+2 b$ and $d=5 a-4 b$ are perpendicular to each other, then the angle between a and b is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

22. If a, b are vectors of lengths a, b respectively then $\left(\frac{a}{a^{2}}-\frac{b}{b^{2}}\right)^{2}=$
A. $\left(\frac{a+b}{a b}\right)^{2}$
B. $\left(\frac{a-b}{a b}\right)^{2}$
c. $\left(\frac{a+b}{a b}\right)$
D. $\left(\frac{a-b}{a b}\right)$

Answer: B

Watch Video Solution
23. If $a . b=0$ and $a+b$ makes an angle of 30° with a, then
A. $|b|,=2|a|$
B. $|\mathrm{a}|=2|\mathrm{~b}|$
C. $|a|=\sqrt{3}|b|$
D. none

Answer: C

- Watch Video Solution

24. If a, b, c are three mutally perpendicular vectors such that $|a|=|b|=|c|$ then find the angle between vector a and $(a+b+c)=$
A. $\pi / 3$
B. $\cos ^{-1}(1 / 3)$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(2 / 3)$

Answer: C

25. If three unit vectors a, b, c satisfy $a+b+c=0$ then the angle between a and b is :
A. $\frac{2 \pi}{3}$
B. $\frac{5 \pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

26. In the parallelogram $\mathrm{ABCD}, \overline{A C}^{2}-\overline{B D}^{2}=$
A. $4 \overline{A B}$. (orthogonal projection of $\overline{A D}$ on $\overline{A B}$)
B. $2 \overline{A B}$. (orthogonal projection of $\overline{A D}$ on $\overline{A B}$)
C. $\overline{A C}$. (orthogonal projection of $\overline{B D}$ on $\overline{A C}$)
D. $2 \overline{A C}$. (orthogonal projection of $\overline{B D}$ on $\overline{A C}$)

Answer: A

- Watch Video Solution

27. In the parallelogram $\mathrm{ABCD}, \overline{A D}^{2}-\overline{A B}^{2}=$
A. $4 \overline{A B}$. (orthogonal projection of $\overline{A D}$ on $\overline{A B}$)
B. $2 \overline{A B}$. (orthogonal projection of $\overline{A D}$ on $\overline{A B}$)
C. $\overline{A C}$. (orthogonal projection of $\overline{B D}$ on $\overline{A C}$)
D. $2 \overline{A C}$. (orthogonal projection of $\overline{B D}$ on $\overline{A C}$)

Answer: C

28. If a, b are unit vectors such that the vector $a+3 b$ is perpendicular to $7 a-5 b$ then the angle between a and b is
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

29. P.T the smaller angle θ between any two diagonals of a cube is given by $\cos \theta=1 / 3$
A. $\cos ^{-1}(1 / \sqrt{3})$
B. $\cos ^{-1}(1 / 3)$
C. $\cos ^{-1}(2 / 3)$
D. $\left.\cos ^{-1}(\sqrt{2} / 3)\right)$

Answer: B

- Watch Video Solution

30. The angle between a diagonal of a cube and the diagonal of a face of the cube is
A. $\cos ^{-1}(1 / \sqrt{3})$
B. $\cos ^{-1}(1 / 3)$
C. $\cos ^{-1}(2 / 3)$
D. $\left.\cos ^{-1}(\sqrt{2} / 3)\right)$

Answer: D

- Watch Video Solution

31. The cartesian equation of the plane passing through A and perpendicular to $\overrightarrow{A B}$ where $3 \mathrm{i}+\mathrm{j}+2 \mathrm{k}, \mathrm{l}-2 \mathrm{j}+4 \mathrm{k}$ are the position vectorsof A, B respectively
A. $[r(3 i+j-2 k)] .(2 i+3 j+6 k)=0$
B. $[r-(3 i+j+2 k)] \cdot(2 i+3 j+6 k)=0$
C. $[r-(3 i-j+2 k)] .(2 i+3 j+6 k)=0$
D. $[r-(3 i-j+2 k)] \cdot(2 i+3 j-6 k)=0$

Answer: B

- Watch Video Solution

32. The cartesian equation of the plane passing through A and perpendicular to $\overrightarrow{A B}$ where $3 \mathrm{i}+\mathrm{j}+2 \mathrm{k}, \mathrm{l}-2 \mathrm{j}+4 \mathrm{k}$ are the position vectorsof A, B respectively

$$
\text { A. } 2 x+3 y-2 z-5=0
$$

B. $2 x-3 y+6 z-21=0$
C. $2 x+3 y+6 z+21=0$
D. $2 x+3 y-6 z-21=0$

Answer: A

D Watch Video Solution

33. If $A=(1,3,-5)$ and $B=(3,5,-3)$ then the vector equation of the plane passing through the midpoint of $A B$ and perpendicular to $A B$ is
A. $r \cdot(I+j+k)=2$
B. r. $(1+j-k)=2$
C. r. $(1-j+4 k)$
D. none

Answer: A

34. The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+$ lambda $(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is
A. $\frac{10}{9}$
B. $\frac{10}{3 \sqrt{3}}$
C. $\frac{3}{10}$
D. $\frac{10}{3}$

Answer: B

- Watch Video Solution

35. The angle between the planes $\mathrm{r} .(2 \mathrm{i}-\mathrm{j}+2 \mathrm{k})=3$ and $\mathrm{r} .(3 \mathrm{i}-6 \mathrm{j}+2 \mathrm{k})=4$
A. $\cos ^{-1}\left(\frac{16}{21}\right)$
B. $\sin ^{-1}\left(\frac{4}{21}\right)$
C. $\cos ^{-1}\left(\frac{1}{4}\right)$
D. $\cos ^{-1}\left(\frac{3}{4}\right)$

Answer: A

- Watch Video Solution

36. The angle between the lies $r=(2 i-3 j+k)+\lambda(I+4 j+3 k)$ and $r=(1-j+$ $2 k)+\mu(1+2 j-3 k)$ is
A. $\cos ^{-1}\left(\frac{9}{\sqrt{91}}\right)$
B. $\cos ^{-1}\left(\frac{7}{\sqrt{84}}\right)$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

37. The distance from the origin to the plane passing through A and perpendicular to $\overrightarrow{A B}$ where $3 \mathrm{i}+\mathrm{j}+2 \mathrm{k}, 5 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$ are the position vectors of A, B respectively is
A. 1
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

38. The vector equation of the sphere with centre $3 i+2 j-5 k$ and radius 7 is
A. $[r-(3 i+2 j-5 k)]^{2}=49$
B. $[r+(3 i-2 j-5 k)]^{2}=49$
C. $r^{2}=(3 i+2 j-5 k)^{2}+49$
D. $r^{2}=(3 i+2 j-5 k)^{2}+7$

Answer: A

- Watch Video Solution

39. The centre and radius of the sphere $r^{2}-2 r .(3 i+4 j-5 k)+1=0$ are
A. $3 \mathrm{i}+4 \mathrm{j}+5 \mathrm{k}, 7$
B. $3 i+4 j-5 k, 1$
C. $-3 i-4 j+5 k, 7$
D. $3 i+4 j-5 k, 7$

Answer: D

- Watch Video Solution

40. The centre and radius of the sphere $3 x^{2}+3 y^{2}+3 z^{2}-2 x-12 y+6 z+7=0$ are
A. $(1,2-1), 5$
B. $(1 / 3,2,-1), 5 / 3$
C. $(2 / 3,4,-2) 10 / 3$
D. $2 / 3,4,-5 / 2$

Answer: B

- Watch Video Solution

41. The equation of the sphere on the join of $(3,4,-2),(-2,-1,0)$ as diameter is
A. $r^{2}-r .(I+3 j-2 k)=10$
B. $r^{2}-2 r .(I+2 j-2 k)+10=0$
C. $r^{2}-2 r .(I+2 j-2 k)=10$
D. $r^{2}-2 r .(5 i+5 j-2 k)+20=0$

Answer: A

- View Text Solution

42. The centre of the sphere $(r-3 i-4 j+5 k) .(r-21+3 j-4 k)=0$ is
A. $5 \mathrm{i}+\mathrm{j}-\mathrm{k}$
B. $\frac{1}{2}(5 \mathrm{i}+\mathrm{j}-\mathrm{k})$
C. $1+7 \mathrm{j}-9 \mathrm{k}$
D. $\frac{1}{2}(1+7 j-9 k)$

Answer: B

- View Text Solution

43. Tae radius of the sphere $(r-2 i+3 j-k) \cdot(r+3 i-j+2 k)=0$ is
A. 5
B. $5 \sqrt{2}$
C. $5 / \sqrt{2}$
D. $2 \sqrt{5}$

Answer: C

- View Text Solution

44. The work done by the force $F=2 i-3 j+2 k$ in moving a particle from $(3,4,5)$ to $(1,2,3)$ is
A. 0
B. $3 / 2$
C. -4
D. -2
45. The force $f=2 i+2 j-k$ acting at $a=1-2 j+k$ is displaced to a unit distance on z -axis $(\mathrm{Oz}=1)$ direction. The magnitude of the work done is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

46. Constant force $P=2 i-5 j+6 k$ and $Q=-1+2 j-k$ act on a particle. When the particle is displaced from $\mathrm{A}(4,-3,-2)$ to $\mathrm{B}(6,1,-3)$ then the work done is
A. 14 unit
B. -14 unit
C. 15 units
D. -15 unit

Answer: D

D Watch Video Solution

47. A particle acted on by constant forces $4 i+j-3 k$ and $3 i+j-k$ is displaced from the point $I+2 j+3 k$ to the point $5 i+4 j+k$. The total work done by the forces is
A. 20 unit
B. 30 unit
C. 40 unit
D. 50 unit

Answer: C

- Watch Video Solution

48. If forces of magnitudes 6 and 7 units acting in the direction $I-2 j+2 k$ and $2 i-2 j-k, I+2 j+2 k$ and $-2 i+j-2 k$ respectively act on a particl which is displaced from $P(2,-1,-3)$ to $Q(5,-1,1)$ then the work done by the forces is
A. 4
B. -4
C. 7
D. -7

Answer: A

49. Three forces having magnitude 5,4 and 3 units act on a particle in the directions $2 i-2 j+k, i+2 j+2 k$ and $-2 i+j-2 k$ respectively and the particle gets displaced from the point A whose vector is $6 i-2 j+3 k$ to the point whose position vector is $9 i+7 j+5 k$. Then the work done by these forces is
A. 9 unit
B. 43 unit
C. 38 unit
D. $38 / 3$ unit

Answer: A

- View Text Solution

50. The work done by force $F=a i+j+k$ in moving a particle from $(1,1,1)$ to $(2,2,2)$ along a straight line is 5 unit. Then $a=$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

Exercise 1 B Cross Product Of Vectors

1. If $a=I+j+k, b=2 i-3 j+k$ then $a \times b$ is
A. $4 i+j-5 k$
B. $4 i-j+5 k$
C. $4 i+j+5 k$
D. $4 \mathrm{i}-\mathrm{j}-5 \mathrm{k}$

- Watch Video Solution

2. If $\mathrm{a}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}, \mathrm{b}=3 \mathrm{i}+4 \mathrm{j}-\mathrm{k}$ then $|a \times b|=$
A. 9
B. $3 s q t(10)$
C. $\sqrt{155}$
D. $5 \sqrt{5}$

Answer: C

3. If $|\bar{P}|=2,|\bar{q}|=3$ and $(\bar{p}, \bar{q})=\frac{\pi}{6}$, then find $|\bar{p} \times \bar{q}|^{2}$
A. 7
B. 9
C. 8
D. 12

Answer: B

- Watch Video Solution

4. If $(a \times b)^{2}+(a . b)^{2}=144$ and $|a|=4$ then $|\mathrm{b}|=$
A. 16
B. 8
C. 3
D. 12

Answer: C

5. If $|a|=5,|b|=6,|a . b|=24$ then $|a \times b|=$
A. $\sqrt{224}$
B. 18
C. $\sqrt{300}$
D. $\sqrt{254}$

Answer: B

- Watch Video Solution

6. $u=a-b, v=a+b,|a|=|b|=\Rightarrow|u \times v|=$
A. $2 \sqrt{16-(a . b)^{2}}$
B. $2 \sqrt{16-(a . b)^{2}}$
C. $2 \sqrt{4-(a . b)^{2}}$
D. $\sqrt{4-(a . b)^{2}}$

- Watch Video Solution

7. The unit vector perpendicular to each of the vectors $2 i-j+k$ and $3 i+4 j$

- k is
A. $-3 i+5 j+11 k$
B. $\frac{-3 i+5 j+11 k}{\sqrt{155}}$
c. $\frac{-3 i+5 j+11 k}{155}$
D. $\frac{3 i-5 j+11 k}{\sqrt{155}}$

Answer: B

- Watch Video Solution

8. A unit vector perpendicular to $2 i+3 j+4 k$ and $4 i-3 j+2 k$ is
A. $\frac{3 i+2 j-3 k}{\sqrt{22}}$
B. $\frac{3 i-2 j-3 k}{\sqrt{22}}$
C. $\frac{3 i-2 j+3 k}{\sqrt{22}}$
D. none

Answer: A

- Watch Video Solution

9. The unit vector normal to the plane containing $\mathrm{a}=\mathrm{I}-\mathrm{j}-\mathrm{k}$ and $\mathrm{b}=\mathrm{l}+\mathrm{j}+$ k is
A. $j-k$
B. k - j
C. $\frac{k-j}{\sqrt{2}}$
D. $\frac{k-i}{\sqrt{2}}$

Answer: C

10. A unit vector perpendicular to the plane of $a=2 i-6 j-3 k, b=4 i+3 j-k$ is
A. $\frac{4 i+3 j-k}{\sqrt{26}}$
B. $\frac{2 i-6 j-3 k}{7}$
C. $\frac{3 i-2 j+6 k}{7}$
D. $\frac{2 i-3 j-6 k}{7}$

Answer: C

- Watch Video Solution

11. The number of vectors of unit length perpendicular to the vectors $a=(1,1,0)$ and $b=(0,1,1)$ is
A. one
B. two
C. three
D. infinite

Answer: B

- View Text Solution

12. A unit vector perpendicular to the plane determined by the points $P(1$,
$-1,2) Q(2,0,-1)$ and $R(0,2,1)$ is
A. $\frac{2 i+j+k}{\sqrt{6}}$
B. $\frac{2 i+j+k}{3}$
C. $\frac{2 i-j-k}{\sqrt{3}}$
D. $\frac{2 i-j-k}{3}$

Answer: A

13. A unit vector normal to the plane through the point $\mathrm{I}, 2 \mathrm{j}, 3 \mathrm{k}$ is
A. $6 i+3 j+2 k$
B. $1+2 j+3 k$
C. $\frac{6 i+3 j+2 k}{7}$
D. $\left|\frac{6 i+3 j+2 k}{7}\right|$

Answer: C

Watch Video Solution

14. The unit vector orthogonal to $a=2 i+2 j+k, b=3 i+4 j-12 k$ and forming a right handed system with a and b is
A. $28 \mathrm{i}-27 \mathrm{j}-2 \mathrm{k}$
B. $-28 i+27 j+2 k$
c. $\frac{28 i-27 j-2 k}{\sqrt{1517}}$
D. $\frac{-28 i+27 j+2 k}{\sqrt{1517}}$

Answer: D

- Watch Video Solution

15. If $a=2 i+j-3 k, b=1-2 j+k$ then the vector of length $2 \sqrt{3}$ and perpendicular to both a and b is
A. $I+j+k$
B.I-j-k
C. $2 \mathrm{i}-2 \mathrm{j}+2 \mathrm{k}$
D. $2 \mathrm{i}-2 \mathrm{j}-2 \mathrm{k}$

Answer: C

16. The sine of the angle between the vectors $I+3 j-2 k, 2 i-4 j-k$ is
A. $3 / 4$
B. $3 / 5$
C. $5 / 6$
D. $5 / 7$

Answer: D

- Watch Video Solution

17. If θ is th angle between the vector $2 i-2 j+4 k$ and $3 i+j+2 k$, then $\sin \theta$ $=$
A. $2 / 7$
B. $2 / \sqrt{7}$
C. $\sqrt{2} / 7$
D. $\sqrt{2 / 7}$

Answer: B

- Watch Video Solution

18. If $a=2 i+3 j+6 k, b=3 i-6 j+2 k, c=6 i+2 j-3 k$ then $a \times b=$
A. 3 c
B. 5 c
C. 7 c
D. 11c

Answer: C

19. If $13 \mathrm{a}=3 \mathrm{i}+4 \mathrm{j}+12 \mathrm{k}, 13 \mathrm{~b}=4 \mathrm{i}-12 \mathrm{j}+3 \mathrm{k}, 13 \mathrm{c}=12 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k}$ then $a \times b=$
A. C
B. 5 c
C. 13c
D. 169 c

Answer: A

- Watch Video Solution

20. If $(2 i+4 j+2 k) \times(2 i-x j+5 k)=16 i-6 j+2 x k$, then the value of x is
A. 2
B. -2
C. 0
D. none

Answer: B

21. If $a=2 i-3 j-k, b=1+4 j-2 k$ then $(a+b) \times(a-b)=$
A. $20 \mathrm{i}-6 \mathrm{j}-22 \mathrm{k}$
B. $-20 i+6 j-22 k$
C. $-20 i-6 j-22 k$
D. $20 i+6 j-22 k$

Answer: C

- Watch Video Solution

22. If $a=3 i-j-2 k, b=2 i+3 j+k$ then $(a+2 b) \times(2 a-b)=$
A. $25 i+35 j-55 k$
B. $25 i-35 j-55 k$
C. $-25 i-35 j-55 k$
D. $-25 i+35 j-55 k$

- Watch Video Solution

23. If $\mathrm{a}=\mathrm{I}+2 \mathrm{j}-3 \mathrm{k}, \mathrm{b}=2 \mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{c}=\mathrm{I}+3 \mathrm{j}-2 \mathrm{k}$ then $(a \times b) \times(b \times c)=$
A. $5(2 i+j+k)$
B. $-5(2 i+j+k)$
C. $10(2 i+j+k)$
D. $-10(2 i+j+k)$

Answer: D

- Watch Video Solution

24. $2 i \times(3 i-4 k)+(I+2 j) \times k=$
25. If $\mathrm{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$ then $(r \times i) .(r \times j)+x y=$
A. 0
B. 1
C. xy
D. $I \times j$

Answer: A

- Watch Video Solution

26. If $|a|=1,|b|=2$ and the angle between a and b is 120 , then $\{(a+3 b) \times(3 a-b)\}^{2}=$
A. 425
B. 375
C. 325
D. 300

- Watch Video Solution

27. $(a+b) \times c+(b+c) \times a+(c+a) \times b=$
A. 0
B. $a+b$
C. $\mathrm{a}-\mathrm{b}$
D. $a \times b$

Answer: A

Watch Video Solution
28. If $|a \times b|=|a . b|$ then $(\mathrm{a}, \mathrm{b})=$
A. 0
B. π
C. $\pi / 2$
D. $\pi / 4$

Answer: D

- Watch Video Solution

29. If a and b are unit vectors and $a \times b=1$, then the angle between a and b is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 3$
D. π

Answer: B

30. If a and b are unit vectors such that $|a \times b|=a . b$, then $|a+b|^{2}=$
A. 2
B. $2+\sqrt{2}$
C. $2-\sqrt{2}$
D. $\sqrt{2}$

Answer: B

31. If $a+b+c=0$ then
A. $\mathrm{a} . \mathrm{b}=\mathrm{b} . \mathrm{c}=\mathrm{c} . \mathrm{a}$
B. $a \times b=b \times c=c \times a$
C. $a \times b=b . c$
D. $a+b=(a \times c)+(b \times c)$

Answer: B

- Watch Video Solution

32. Let a, b, c represent respectively $B C, C A$ and $A B$ where $A B C$ is a triangle.

Then
A. $a+b=c$
B. $b+c=a$
C. $a \times b=b \times c=c \times a$
D. none

Answer: C

- Watch Video Solution

33. If a.b $=$ a.c, $a \times b=a \times c$ then
A. $a=0$
B. $b=c$
C. $a=0$ or $b=c$
D. $a=0$ and $b=c$

Answer: C

D Watch Video Solution

34. If $a . b=$ a.c, $a \times b=a \times c$ then
A. $a-b$ is parallel to c
B. $a-b$ is perpendicular to c
C. $a+b$ is parallel to c
D. $a-b$ is perpendicular to c

Answer: A

35. $a \neq 0, b \neq 0, C \neq 0, a \times b=0, b \times c \Rightarrow a \times c=$
A. b
B. a
C. 0
D. $1+j+k$

Answer: C

- View Text Solution

36. If $a \times b=b \times c \neq 0$, then $\mathrm{a}+\mathrm{c}=$
A. pa where p is scalar
B. pb where p is a scalar
C. pe where p is a scalar
D. none

Answer: B

- Watch Video Solution

37. If $a \times b=c \times d, a \times c=b \times d$ then
A. $a-d$ is parallel to $b-c$
B. $a-b$ is parallel to $c-d$
C. $\mathrm{a}-\mathrm{c}$ is parallel to $\mathrm{b}-\mathrm{d}$
D. $a+b$ is parallel to $c+d$

Answer: A

- Watch Video Solution

38. If a, b, c be unit vectors such that $a \cdot b=a . c=0$ and the angle between b and c is $\pi / 6$ then $\mathrm{a}=$
A. $\pm(a \times c)$
B. $\pm 2(a \times c)$
C. $\pm(b \times c)$
D. $\pm 2(b \times c)$

Answer: D

- Watch Video Solution

39. Let $u=I+j, v=I-j, w=I+2 j+3 k$. If n a unit vector such that $u . n=0 v . n$
$=0$ then $|w . n|=$
A. 0
B. 1
C. 2

D. 3

Answer: D

- Watch Video Solution

40. If u and v are unit vectors and θ is the acute angle between them, then $2 u \times 3 v$ is a unit vector for
A. Exactly two values of θ
B. More than two values of θ
C. No value of θ
D. Eaxctly value of θ

Answer: D

- Watch Video Solution

41. If $r . a=r . b=r . c=0$ where a, b, c are noncoplannar, then
A. $r \perp c \times a$
B. $r \perp a \times b$
C. $r \perp b \times c$
D. $r=0$

Answer: D

- Watch Video Solution

42. If a is any vector then $(a \times i)^{2}+(a \times j)^{2}+(a \times k)^{2}=$
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: B

- Watch Video Solution

43. If $a \times I+2 a-5 j=0$ then $\mathrm{a}=$
A. $2 i+k$
B. $1+2 k$
C. $2 j+k$
D. $j+2 k$

Answer: C

D View Text Solution

44. If \vec{a} is a unit vector and $\vec{a} \times \vec{i}=\vec{j}$, then $\vec{a} \cdot \vec{i}=$
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

45. If three vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are such that $a \neq 0$ and $a \times b=2(a \times c),|a|=|c|=1,|b|=4$ and the angle between b and c is $\cos ^{-1}(1 / 4)$, then $\mathrm{b}-2 \mathrm{c}=\lambda$ a where $\lambda=$
A. 4
B. 3
C. 2
D. 1
46. The vector area of the parallelogram whose adjacent sides are $i+j+k, 2 i-j+2 k$ is
A. $3(i+k)$
B. $3(i-k)$
C. $(2 i+j-2 k)$
D. $-2 i-j-2 k$

Answer: B

- Watch Video Solution

47. The area of the parallelogram whose adjacent sides are $3 i+2 j+k$ and $3 i+k$ is
A. $\sqrt{10}$
B. $10 \sqrt{2}$
C. $2 \sqrt{10}$
D. 20

Answer: C

- Watch Video Solution

48. The vector area of the parallelogram whose diagonals are $\mathrm{I}+\mathrm{j}-\mathrm{k}, 2 \mathrm{i}-\mathrm{j}$
+2 k is
A. $\frac{1}{2}(I+4 j 3 k)$
B. $\frac{1}{2}(I-4 j+3 k)$
C. $\frac{1}{2}(I+4 j+3 k)$
D. $\frac{1}{2}(I-4 j-3 k)$

Answer: D

49. The area of the parallelogram whose diagonals are $I-3 j+2 k,-I+2 j$ is
A. $4 \sqrt{29}$ sq. unit
B. $\frac{1}{2} \sqrt{21}$ sq. unit
C. $10 \sqrt{3}$ sq. unit
D. $\frac{1}{2} \sqrt{270}$ sq. unit

Answer: B

Watch Video Solution

50. The vector area of the rectangle whose adjacent sides are $2 \mathrm{i}+3 \mathrm{j}, 4 \mathrm{k}$ is
A. $12 \mathrm{i}+8 \mathrm{j}$
B. $12 \mathrm{i}-8 \mathrm{j}$
C. $-12 i-8 j$
D. $-12 i+8 j$

Answer: B

D Watch Video Solution

51. The vector area of the triangle whose adjacent sides are $\mathrm{I}-2 \mathrm{j}+2 \mathrm{k}, 3 \mathrm{i}+$ $2 j-5 k$ is
A. $\frac{1}{2}(6 i+11 j-8 k)$
B. $\frac{1}{2}(6 i-11 j+8 k)$
C. $\frac{1}{2}(6 i+11 j+8 k)$
D. $\frac{1}{2}(6 i-11 j-8 k)$

Answer: C

- Watch Video Solution

52. The area of the triangle whose sides are given by $2 i-7 j+k$ and $4 j-3 k$ is
A. 17
B. $17 / 2$
C. $17 / 4$
D. $\frac{1}{2} \sqrt{389}$

Answer: D

- Watch Video Solution

53. The vector area of the triangle with vertices $I+j+k, I+j+2 k, l+2 j+k$ is
A. $I+j+k$
B. $-i$
C. $\frac{1}{2} i$
D. $-\frac{1}{2} i$
54. The area of the triangle formed by the points whose position vectors are $3 i+j 5 i+2 j+k, i-2 j+3 k$ is
A. $\sqrt{23}$ sq. unit
B. $\sqrt{21}$ sq. unit
C. $\sqrt{29}$ sq. unit
D. $\sqrt{33}$ unit

Answer: C

- Watch Video Solution

55. The area of the triangle with vertices $(1,2,3),(2,5,-1),(-1,1,2)$ is
A. 6 sq. unit
B. $\sqrt{3 / 2}$ sq. unit
C. $\sqrt{29}$ sq. unit
D. $\frac{1}{2} \sqrt{155}$ sq. unit

Answer: D

- Watch Video Solution

56. The vector area of the $\triangle A B C$ whose vertices are a,b,c is
A. $\{(a \times b)+(b \times c)+(c \times a)\}$
B. $\frac{1}{2}\{(a \times b)+(b \times c)+(c \times a)\}$
C. $2\{(a \times b)-(b \times c)+(c \times a)\}$
D. none of these

Answer: B

- Watch Video Solution

57. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of $\triangle A B C$ then $(a \times b)+(b \times c)+(c \times a)=$
A. (1/2) (Area $\Delta A B C$)
B. $2($ Area $\triangle A B C$)
C. 3 (Area $\triangle A B C$)
D. none

Answer: B

- Watch Video Solution

58. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2,(\vec{a}, \vec{b})=\frac{\pi}{3}$, then the area of the triangle with adjacent sides $\vec{a}+2 \vec{b}$ and $2 \vec{a}+\vec{b}$ (in sq.u) is
A. $3 \sqrt{3}$ sq. unit
B. $9 \sqrt{3}$ sq. unit
C. $\frac{9 \sqrt{3}}{2}$ sq. unit
D. $\frac{9}{2}$ unit

Answer: C

- Watch Video Solution

59. If the area of the parallelogram whose adjacent sides are $3 \vec{i}-4 \vec{j}+\lambda \vec{k}, 2 \vec{j}-4 \vec{k}$ is $\sqrt{436}$ sq. units $(\lambda \geq 0)$, then $\lambda=$
A. 0
B. 4
C. 1
D. 3

Answer: A

- Watch Video Solution

60. If $\mathrm{a}=2 \mathrm{i}+2 \mathrm{j}+\mathrm{k}, \mathrm{a} \cdot \mathrm{b}=14, a \times b=3 \mathrm{i}+\mathrm{j}-8 \mathrm{k}$ then $\mathrm{b}=$
A. $5 i+j+2 k$
B. $5 i-5 j+2 k$
C. $5 i+5 j-2 k$
D. $5 \mathrm{i}-5 \mathrm{j}-2 \mathrm{k}$

Answer: A

- Watch Video Solution

61. If $a=(1,1,1) c=(0,1,-1)$ are given vectors then a vector b satisfying the equntions $a \times b=c$ and $a . b=3$ is
A. $5 i+2 j+2 k$
B. $\frac{5}{2} I+j+k$
C. $\frac{5}{3} I \frac{2}{3} j+\frac{2}{3} K$
D. $I+\frac{2}{5} j+\frac{2}{5} k$

D View Text Solution

62. If $a=2 i+k, b=1+j+k, c=4 i-3 j+7 k$. The vector r satisfying $r \times b=c \times b$ and $\mathrm{r} . \mathrm{a}=0$ is
A. $I+8 j+2 k$
B. $1-8 j+2 k$
C. $-1-8 j+2 k$
D. $1-8 j-2 k$

Answer: C

- View Text Solution

63. The vector c is perpendicular to both $a=(1,-2,-1), b=(2,1,-1)$ and c also satisfyies $|c \times(I-j+k)|=2 \sqrt{6}$ then $\mathrm{c}=$
A. $\pm(3 i-j+5 k)$
B. $\pm(-4 i+5 j+k)$
C. $\pm(I+j+k)$
D. none

Answer: A

- View Text Solution

64. If a, b are two unit perpendicular vectors and c is a unit vector which is inclined an angle 0 with a and b . if $\mathrm{c}=\alpha a+\beta b+\gamma(a \times b)$ and $\gamma^{2}=$
A. $\cos 2 \theta$
B. $-\cos 2 \theta$
C. $\sin 2 \theta$
D. $-\sin 2 \theta$

Answer: B

65. If $a=1+2 j+3 k, b=-1+2 j+k, c=3 i+j$ and d is normal to both a and b, then $(\mathrm{c}, \mathrm{d})=$
A. $\cos ^{-1}\left(\frac{4}{\sqrt{30}}\right)$
B. $\sin ^{-1}\left(\frac{4}{\sqrt{30}}\right)$
C. $\cos ^{-1}\left(\frac{2}{\sqrt{30}}\right)$
D. $\sin ^{-1}\left(\frac{2}{\sqrt{30}}\right)$

Answer: A

- Watch Video Solution

66. If $\mathrm{x} . \mathrm{a}=0, x \times b=c \times b$ then $\mathrm{x}=$
A. $c-\frac{c . a}{b . a} b$
B. $c-\frac{c . a}{c . b} a$
C. $a-\frac{c . a}{c . b} b$
D. $b-\frac{c . a}{c . b} b$

Answer: A

- View Text Solution

67. $r \times a=b \times a, r \times b=a \times b, r \times b=a \times b, \neq 0, b \neq 0, a \neq \lambda b$, a is not perpendicular to $b \Rightarrow r=$
A. $a-b$
B. $a+b$
C. $a \times b+a$
D. $a \times b+b$

Answer: B

68. Let $\mathrm{a}=\mathrm{I}+\mathrm{j}, \mathrm{b}=2 \mathrm{i}-\mathrm{k}$. Then the point of intersection of the lines $r \times a=b \times a$ and $r \times b=a \times b$ is
A. $-I+j+k$
B. $3 i-j+k$
C. $3 i+j-k$
D. I-j-k

Answer: C

- Watch Video Solution

69. The perpendicular distance from $A(1,4,-2)$ to the line $B C$, where $B=(2$,
$1,-2)$ and $C=(0,-5,1)$ is
A. $\frac{\sqrt{26}}{7}$
B. $\sqrt{\frac{26}{7}}$
C. $\frac{2 \sqrt{26}}{7}$
D. $\frac{3 \sqrt{26}}{7}$

Answer: D

- View Text Solution

70. The perpendicular distance from the point $3 i-2 j+k$ to the line joining the points $I-3 j+5 k, 2 i+j-4 k$ is
A. 7
B. $\sqrt{3}$
C. $2 \sqrt{3}$
D. $7 \sqrt{3}$

Answer: B

71. If $A(1,2,3), B(2,3,1), C(3,1,2)$ then the length of the altitude through C is
A. 3
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $3 / \sqrt{2}$

Answer: D

- View Text Solution

72. The torque about the point $2 \mathrm{i}+\mathrm{j}-\mathrm{K}$ of a force represented by $4 \mathrm{i}+\mathrm{k}$ acting through the point $(\mathrm{I}-\mathrm{j}+2 \mathrm{k})$ is
A. $2 \mathrm{i}+13 \mathrm{j}+8 \mathrm{k}$
B. $2 \mathrm{i}+13 \mathrm{j}-8 \mathrm{k}$
C. $2 i-13 j+8 k$
D. $-2 i+13 j+8 k$

D Watch Video Solution

73. A force $\mathrm{F}=2 i-\lambda j+5 k$ is applied at the point $\mathrm{A}(1,2,5)$. If its moment about the point $(-1,-2,3)$ is $16 \mathrm{i}-6 \mathrm{j}+2 \lambda \mathrm{k}$, then $\lambda=$
A. -2
B. -1
C. 0
D. 2

Answer: A

- Watch Video Solution

1. $[1-\mathrm{j} j-\mathrm{kk}-\mathrm{i}]=$
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

2. If $\mathrm{a}=\mathrm{I}+\mathrm{j}-\mathrm{k}, \mathrm{b}=\mathrm{I}-\mathrm{j}+\mathrm{k}, \mathrm{c}=\mathrm{I}-\mathrm{j}-\mathrm{k}$ then $a \times(\mathrm{b} \times \mathrm{c})=$
A. 0
B. 1
C. -1
D. 2

- Watch Video Solution

3. The vectors $2 i-3 j+k, I-2 j+3 k, 3 i+j-2 k$
A. -12
B. 14
C. 10
D. 15

Answer: A

4. $(a+2 b-c) \cdot(a-b) \times(a-b-c)=$

$$
\text { A. }-[a b c]
$$

B. 2 [a b c]
C. $-2[\mathrm{ab} \mathrm{c}]$
D. 0

Answer: C

- View Text Solution

5. If a is perpendicular to b and $c,|a|=2,|b|=3,|c|=4$ and the angle between b and c is $2 \pi / 3$ then $[\mathrm{ab} \mathrm{c}$] =
A. 24
B. 12
C. $12 \sqrt{3}$
D. $24 \sqrt{3}$

Answer: C

6. If u, v, w are non-coplanar vectors and p, q are real numbers, then the equality [3u pvpw] - [pvwqw] - [2w qvqu] $=0$ holds for
A. exactly two values of (p, q)
B. more than two but not all value of (p, q)
C. all values of (p, q)
D. exactly one value of (p, q)

Answer: D

- Watch Video Solution

7. If x, y, z are non-zero real numbers, $a=x i+2 j, b=y i+3 k$ and $c=x i+y i+$ $z k$ are such that $a \times b=z i-3 j+k$ then $[\mathrm{abc}]=$
A. 10
B. 9
C. 6
D. 3

Answer: B

- Watch Video Solution

8. If $\bar{a}, \bar{b}, \bar{c}$ are mutually perpendicular unit vectors, then find $[\bar{a} \bar{b} \bar{c}]^{2}$.
A. 1
B. 0
C. 2
D. 3

Answer: A

9. The volume of parallelopiped with edges $\mathrm{I}, \mathrm{l}+\mathrm{j}, \mathrm{l}+\mathrm{j}+\mathrm{k}$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

10. The volume of the parallelopiped whose coterminal edges are $2 i-3 j+$ $4 \mathrm{k}, \mathrm{I}+2 \mathrm{j}-2 \mathrm{k}, 3 \mathrm{i}-\mathrm{j}+\mathrm{k}$ is
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution

11. The volume of the parallelopiped whose edges are represented by $2 \mathrm{i}-$ $3 j, i+j-k, 3 i-k$ is
A. -1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution

12. The volume of the parallelopiped with edges $(2,-3,0),(1,1,-1),(3,0,-1)$ is
A. 1
B. 4
C. 2
D. 8

Answer: B

- Watch Video Solution

13. If $[a b c]=3$, then the volume (in cube units) of the parallelopiped with
$2 a+b, 2 b+c$ and $2 c+a$ as coteminous edges is
A. 15
B. 22
C. 25
D. 27
14. The volume of the parallelopiped whose sides are $\mathrm{OA}=$ $(\lambda+1) i+\lambda(\lambda+1) j+k, O B=(\lambda+2) i+(\lambda+1)(\lambda+2) j+k, O C=1$ is
A. 2
B. 4λ
C. $\lambda+3$
D. none

Answer: A

- Watch Video Solution

15. The volume of the parallelopiped whose sides ae $O A=$ $(\lambda+2) i+(\lambda+2)(\lambda+1) j+k . O B(\lambda+3) I+(\lambda+2)(\lambda+3) j+k$ and OC $=(\lambda+4) i+(\lambda+3)(\lambda+4) j+k$ is
A. 2λ
B. 3λ
C. 4λ
D. 2

Answer: D

- Watch Video Solution

16. Let $\mathrm{Oa}, \mathrm{Ob}, \mathrm{OC}$ be the co-terminal edges of a rectangular parallelopiped of volume V and let P be the vertex opposite to O . Then $[A P B P C P]=$
A. 2 V
B. 12 V
C. $3 \sqrt{3} \mathrm{~V}$
D. 0
17. The volume of the tetrabodron with vertices at ($0,0,0$), ($1,0,0$),($0,1,0$), $(0,0,1)$ is
A. 1
B. $1 / 2$
C. $1 / 3$
D. $1 / 6$

Answer: D

- Watch Video Solution

18. The volume of the tetrahedron formed by $(1,2,3),(4,3,2),(5,2,7),(6,4,8)$ is
A. $22 / 3$
B. $11 / 3$
C. $1 / 3$
D. $16 / 3$

Answer: D

- Watch Video Solution

19. The volume of the tetrahedron formed by $4 i+5 j+k,-j+k, 3 i+9 j+4 k$, $4(-1+j+k)$ is
A. 7
B. 9
C. 11
D. 13

Answer: C

20. The volume of (in cubic units) of the tetrahedron with edges $\mathrm{I}+\mathrm{j}+\mathrm{k}, \mathrm{I}$ $-j+k$ and $I+2 j-k$ is
A. 4
B. $2 / 3$
C. $1 / 6$
D. $1 / 3$

Answer: B

- Watch Video Solution

21. If a,b,c are noncoplanner vectors then $\frac{a .(b \times c)}{(c \times a) . B}+\frac{b .(a \times c)}{c .(a \times b)}=$
A. 0
B. 1
C. 2
D. -1

D View Text Solution

22. $[2+6-2+78-10]=$

Watch Video Solution
23. If $(a-\lambda b) .(b-2 c) \times(c+3 a)=0$ then $\lambda=$
A. -1
B. -3
C. 6
D. $-1 / 6$

Answer: D

24. If a.i $=4$ then $(a . j) \times(2 j-3 k)=$
A. 12
B. 2
C. 0
D. -12

Answer: D

- Watch Video Solution

25. $\{a .(b \times i)\}+\{a .(b \times j)\} j+\{a .(b \times k)\} k=$
A. $2(a \times b)$
B. $3(a \times b)$
C. $(a \times b)$
D. none

- View Text Solution

26. $(a+b) \times c+(b+c) \times a+(c+a) \times b=$
A. 0
B. $-[a b c]$
C. 2 [abc]
D. $[\mathrm{abc}]$

Answer: D

Watch Video Solution
27. $(a-b) .(b-c) \times(c-a)=$
A. $(b \times c)$
B. $2 a .(b \times c)$
C. $3 a(b \times c)$
D. 0

Answer: D

- Watch Video Solution

28. $C .(b+c) \times(a+b+c)=$
A. $c . b \times a$
B. 0
C. c. $a \times b$
D. $-a c \times b$

Answer: A

29. If u, v, w are three nonceplannar vectors then $(u+v-w),(u-v) \times(v-$ w) $=$
A. 0
B. $u . v \times w$
C. $u . w \times v$
D. $3 u . V \times w$

Answer: D

30. If a, b, c are three vectors such that $[a b c]=5$, then the value of [$a \times b b \times c c \times a$] is
A. 15
B. 20
C. 25
D. 54

Answer: C

- Watch Video Solution

31. If a,b,c are linearly independent, then $\frac{[2 a+b 2 b+c .2 c+a]}{[a b c]}=$
A. 9
B. 8
C. 7
D. none

Answer: A

- Watch Video Solution

32. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are linearly independent, $\frac{(a+2 b) \cdot(2 b+c) \times(5 c+a)}{a \cdot(b \times c)}=k$ then k is
A. 10
B. 14
C. 18
D. 12

Answer: D

D View Text Solution

33. Let a, b and C be three non - coplanar vectors and let p, q and r be the vectors defined by $p=\frac{b \times c}{[a b c]} . Q=\frac{c \times a}{[a b c]} . R \frac{a \times b}{[a b c]}$. Then (a+b). P + (b +c) $q+(C+a) \cdot R=$
A. 0
B. 1
C. 2
D. 3

Answer: D

- View Text Solution

34. If the vectors $2 i-3 j+4 k, I+2 j-k$ and $x i-j+2 k$ are coplanar then $x=$
A. $8 / 5$
B. $5 / 8$
C. 0
D. 1

Answer: A

35. If the vectors $2 i-j+k, I+m j . I+j+k$ are coplannar then the value of m is
A. 1
B. -1
C. -2
D. 2

Answer: C

- Watch Video Solution

36. If the three vectors $2 i-j+k, I+2 j-3 k$ and $3 i+\lambda j+5 k$ are coplanar then $\lambda=$
A. 4
B. -4
C. 2
D. 3

Answer: B

- Watch Video Solution

37. If $\mathrm{I}-2 \mathrm{j}, 3 \mathrm{j}+\mathrm{k}$ and $\lambda \mathrm{I}+3 \mathrm{j}$ are coplanar. Then $\lambda=$
A. -1
B. $1 / 2$
C. $-3 / 2$
D. 2

Answer: C

- Watch Video Solution

38. If $I+j+k, I-j, I+2 j+a k$ are coplanar then a is
A. $3 / 2$
B. 3
C. -3
D. 0

Answer: A

- Watch Video Solution

39. If $3 \mathrm{i}+3 \mathrm{j}+\sqrt{3} k, \mathrm{l}+\mathrm{k}, \sqrt{3} \mathrm{I}+\sqrt{3} \lambda \mathrm{k}$ are coplanar, then $\lambda=$
A. 1
B. 2
C. 3
D. 4

Answer: A

40. If a, b, c are non-coplanar vectors and λ is a real number, then the vectors $\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c}, \lambda b+4 \mathrm{c}$ and $(2 \lambda-1) \mathrm{c}$ are non coplanar for
A. all values of λ
B. no value of λ
C. except two values of λ
D. except one value of λ

Answer: C

- View Text Solution

41. Let $a=I+j+k, b=I-j+2 k$ and $c=x i+(x-2) j-k$. If the vector c lies in the plane of a and b. then x equals
A. 0
B. 1
C. -4
D. -2

Answer: D

- View Text Solution

42. Let $\mathrm{a}=\mathrm{I}-2 \mathrm{j}+3 \mathrm{k}, \mathrm{b}=2 \mathrm{i}+3 \mathrm{j}-\mathrm{k}$ and $\mathrm{c}=\lambda \mathrm{I}+\mathrm{j}+(2 \lambda-1) \mathrm{k}$. If c is parallel to the plane containing a, b then $\lambda=$
A. 0
B. 1
C. -1
D. 2

Answer: A

43. If the vectors $a i+j+k, I+b j+k, I+j+c k(a \neq b, c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
A. 0
B. 3
C. 2
D. 1

Answer: D

- View Text Solution

44. Let a, b, c the distinct non-negative numbers. If the vectors $a i+a j+c k$, l $+k$ and $c i+c j+b k$ lie in a plane, then c is
A. the arthematic mean of then c is
B. the geometric mean of a and b
C. the harmonic mean of a and b
D. equal to zero

Answer: B

- Watch Video Solution

45. If $\mathrm{a}=\mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{b}=4 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}, \mathrm{c}=\mathrm{i}+\alpha j+\beta k$ are linearly dependent and $|c|=\sqrt{3}$ then
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha= \pm 1, \beta=1$

Answer: D
46. If the volume of the parallelopiped whose edges are represented by $12 i+\lambda k, 3 j=k, 2 i+j-15 K$ is 546 then $\lambda=$
A. 1
B. 2
C. 3
D. 4

Answer: C

- View Text Solution

47. If $a=2 i+3 j, b=I+j+k, c=\lambda I+4 j+2 k$ are the edges of a parallelopiped of volume 2 cubic units, then a value of λ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

48. If the volume of the parallelopiped with eoterminus edges $4 i+5 j+k$, $j+k$ and $3 i+9 j+p k$ is 34 cubic units, then the negative value of $p=$
A. 4
B. -13
C. 13
D. 6

Answer: B

- Watch Video Solution

49. The value of k for which the points $A(1,0,3), B(-1,3,4) C(1,2,1)$ and $D(k, 2,5)$ are coplanar is
A. 1
B. 2
C. 0
D. -1

Answer: D

- Watch Video Solution

50. If the points $3 i-2 j-k, 2 i+3 j-4 k, I+j+2 k, 4 i+5 j+\lambda k$ are coplanar then $\lambda=$
A. 12
B. $-94 / 7$
C. $3 / 2$
D. 5

Answer: B

- Watch Video Solution

51. If the volume of the tetrahedron with edges $2 i+j-k, I+a j+k$ and $I+2 j$
-k is one cubic unir then $\mathrm{a}=$
A. 1
B. -1
C. 2
D. -2

Answer: C

52. The volume of the tetrahedron having the edges $I+2 j+k, I+j+k, i-j$ $+\lambda K$ as coteninous is $2 / 3$ cubic units. Then $\lambda=$
A. 1
B. 2
C. 3
D. 4

Answer: A

- View Text Solution

53. If a, b, c, d are the position vectors of A, B, C, D respectively then the volume of the tetrahedron $A B C D$ is
A. $\pm \frac{1}{6}\{[a b c]-[a b d]+[a c d]-[b c d]\}$
B. $\{[\mathrm{abc}]-[\mathrm{a} b \mathrm{~d}]+[\mathrm{a} \operatorname{c} \mathrm{d}]-[\mathrm{b} \mathrm{c} d]\}$
C. $\pm \frac{1}{6}\{[b c a]-[c b a]+[a c d]-[b c d]\}$
D. $\pm \frac{1}{8}\{[b a c]-[a c d]+[a b d]-[b c d]\}$

Answer: A

- View Text Solution

54. If $\mathrm{d}=\mathrm{x}(a \times b)+y(b \times c)+z(c \times a)$ and $[\mathrm{ab} \mathrm{c}]=1 / 8$, then $\mathrm{x}+\mathrm{y}+\mathrm{z}=$
A. 8.d $(a+b+c)$
B. d. $(a+b+c)$
C. $4 \mathrm{~d} .(\mathrm{a}+\mathrm{b}+\mathrm{c})$
D. none

Answer: A
55. If a, b, c are non-coplanar vector and λ is a real number then
$\left[\lambda(a+b) \lambda^{2} b \lambda c\right]-[a b+c b]$ for
A. exactly one value of λ
B. no value of λ
C. exactly three values of λ
D. exactly two value of λ

Answer: B

- View Text Solution

56. Let $\mathrm{a}=\mathrm{l}-\mathrm{k}, \mathrm{k} \mathrm{b}-\mathrm{xi}+\mathrm{j}+(1-\mathrm{x}) \mathrm{k}$ and $\mathrm{c}=\mathrm{yi}+\mathrm{xj}+(1+\mathrm{x}-\mathrm{y}) \mathrm{k}$. Then $[\mathrm{abc} \mathrm{c}]$ depends on
A. only y
B. only x
C. both x and y
D. neither x or y

Answer: D

- View Text Solution

57. let a be unit vector, $b=2 i+j-k$ and $c=1+3 k$. The maximum value of $[a$ $\mathrm{b} c]$ is
58. The vectors $a+2 b+3 c, 2 a+b-2 c, 3 a-7 c$ are
A. coplanar
B. collinear
C. noncoplanar
D. none

D View Text Solution

59. The points $2 a+3 b-c, a-2 b+3 c, 3 a+4 b-2 c, a-6 b+6 c$ are
A. collinear
B. coplanar
C. noncoplanar
D. none

Answer: B

60. The vectors $5 i+6 j+7 k, 7 i-8 j+9 k, 3 i+20 j+5 k$ are
A. coplanar
B. collinear
C. neocoplanar
D. none

Answer: A

- View Text Solution

61. The points (2,1, -1), ($1,1,1$), $(2,2,1),(0,2,5)$ are
A. coplanar
B. collinear
C. noncoplanar
D. none

Answer: A

62. Let $a=2 i+j+k, b=I+2 j-k$ and a unit vector c be coplanar. If c is perpendicular to a , then $\mathrm{c}=$
A. $\frac{1}{\sqrt{2}}(-j+k)$
B. $\frac{1}{\sqrt{3}}(-j-j-K)$
C. $\frac{1}{\sqrt{5}}(j-2 j)$
D. $\frac{1}{\sqrt{3}}(I-j-k)$

Answer: A

63. A unit vector coplanar with $I+j+3 k$ and $I+3 j+k$ and perpendicular to $\mathrm{I}+\mathrm{j}+\mathrm{k}$ is
A. $\frac{1}{\sqrt{2}}(j+k)$
B. $\frac{1}{\sqrt{3}}(I-j+k)$
C. $\frac{1}{\sqrt{2}}(j-k)$
D. $\frac{1}{3}(I+j-k)$

Answer: C

- View Text Solution

64. The shortest distance between the straight line passing through the point $A=(6,2,2)$ and parallel to the vector $(1,-2,2)$ and the straight line passing through $A^{1}=(-4,0,-1)$ and parallel to the vector (3, $-2,-2$) is
A. 9
B. 8
C. 5
D. 2

Answer: A

65. The shortest distance between the line $r=(1+2 j+3 k)+t(I+3 j+2 k)$ and $r=(4 i+5 j+6 k)+t(2 i+3 j+k)$ is
A. 3
B. $2 \sqrt{3}$
C. $\sqrt{3}$
D. $\sqrt{6}$

Answer: C

- View Text Solution

66. The shortest distance between the line $r=3 i+5 j+7 k+\lambda(1+2 j+k)$
and $r=1-j-k+\mu(7 i-6 j+k)$ is
A. $\frac{16}{5 \sqrt{5}}$
B. $\frac{26}{5 \sqrt{5}}$
C. $\frac{36}{5 \sqrt{5}}$
D. $\frac{46}{5 \sqrt{5}}$

Answer: D

- View Text Solution

67. If $A=(1,-2,-1), B=(4,0,-3) C=(1,2,-1)$ and $D=(2,-4,-5)$ then the distance between $A B$ and $C D$ is
A. $2 / 3$
B. $4 / 2$
C. $3 / 2$
D. $5 / 3$

Answer: B

68. $(I \times j) \times k+(j \times k) \times I+(k \times i) \times j=$
A. $1+k$
B. i
C. j
D. 0

Answer: D

- Watch Video Solution

69. $(a \times b) \times c+(b \times c) \times a+(C \times a) \times b=$
A. 0
B. a
C. b
D. C

D View Text Solution

70. $a \times(b \times c)=$
A. (a.b) $c=(a . c) b$
B. (a.c) b-(a.b) c
C. (c.a) b-(c.b) a
D. (c.b)a - (c.a) t

Answer: B

- View Text Solution

71. $a \times(b \times c), b \times(c \times a, c \times(a \times b)$ are
A. coplanar
B. collinear
C. non-coplanar
D. none

Answer: A

- View Text Solution

72. If $\mathrm{a}=2 \mathrm{i}+3 \mathrm{j}+5 \mathrm{k}, \mathrm{b}=-\mathrm{I}+\mathrm{j}+\mathrm{k}, \mathrm{c}=4 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$ then $(a \times b) \times c=$
A. $8 \mathrm{i}-19 \mathrm{j}-\mathrm{k}$
B. $-I-4 j+4 k$
C. $7 \mathrm{i}+3 \mathrm{i}-\mathrm{k}$
D. $-I-5 j-5 k$

Answer: B

73. If $\mathrm{a}=\mathrm{l}+\mathrm{j}-\mathrm{k}, \mathrm{b}=\mathrm{l}-\mathrm{j}+\mathrm{k}, \mathrm{c}=\mathrm{I}-\mathrm{j}-\mathrm{k}$ then $a \times(b \times c)=$
A. $1-j+k$
B. $2 \mathrm{i}-2 \mathrm{j}$
C. $3 i-j+k$
D. $2 i+2 j-k$

Answer: B

- Watch Video Solution

74. If $\mathrm{a}=\mathrm{i}-2 \mathrm{j}+\mathrm{k}, \mathrm{b}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \mathrm{c}=4 \mathrm{i}+4 \mathrm{j}+3 \mathrm{k}$ then $|(a \times b) \times c|=$
A. $\sqrt{474}$
B. $\sqrt{33}$
C. $\sqrt{74}$
D. $\sqrt{130}$

- Watch Video Solution

75. If $\mathrm{a}=2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k}, \mathrm{b}=\mathrm{I}+\mathrm{j}+\mathrm{k}$ and $\mathrm{c}=4 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$, then $|a \times(b \times c)|=$
A. $\sqrt{10}$
B. 1
C. 2
D. $\sqrt{5}$

Answer: D

76. If $\mathrm{a}=\mathrm{I}+\mathrm{j}+\mathrm{k}, \mathrm{b}=\mathrm{i}+\mathrm{j}, \mathrm{c}=\mathrm{I}$ and $(a \times b) \times c=\lambda a+\mu b$, then $\lambda+\mu=$
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

77. If $\bar{a}=\frac{1}{\sqrt{10}}(3 \bar{i}+\bar{k})$ and $\bar{b}=\frac{1}{7}(2 \bar{i}+3 \bar{j}-6 \bar{k})$, then the value of $(2 \bar{a}-\bar{b}) \cdot[(\bar{a} \times \bar{b}) \times(\bar{a}+2 \bar{b})]$
A. 5
B. 3
C. -5
D. -3

Answer: C

78. $I \times(a \times i)+j \times(a \times j)+k \times(a \times k)=$
A. 3 a
B. 2a
C. a
D. 0

Answer: B

D View Text Solution

79. $a=I+j-2 k \Rightarrow \sum\{(a \times i) \times j\}^{2}$
A. $\sqrt{6}$
B. 6
C. 36
D. $6 \sqrt{6}$

D View Text Solution

80. $[b \times c c \times a a \times b]=$
A. [abc]
B. $2[\mathrm{abc}]$
C. $[a b c]^{2}$
D. 0

Answer: C

View Text Solution
81. $(A \times B) \cdot\{(B \times C) \times(C \times A)\}=$
A. $(B+C) \cdot\{(C+A) \times(A+B)\}$
B. $\{A .(B \times C)\}^{2}$
C. $2 A$. $(B \times C)$
D. none

Answer: B

- View Text Solution

82. If $[a \times b b \times c c \times a] \lambda[a b c]^{2}$ then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

83. $a \times[a \times(a \times b)]=$
A. $a^{2}(a \times b)$
B. $a^{2}(b \times a)$
C. $-a^{2}(b \times a)$
D. $a .(b \times a)$

Answer: B

D Watch Video Solution

84. $(b \times c) \times(c \times a)=$
A. $[\mathrm{abc} c$
B. $[\mathrm{a} b \mathrm{c}] \mathrm{b}$
C. $[\mathrm{abc}] \mathrm{a}$
D. $a \times(b \times c)$

D View Text Solution

85. If $\mathrm{a}=\mathrm{I}+2 \mathrm{j}-3 \mathrm{k}, \mathrm{b}=2 \mathrm{i}+\mathrm{j}+\mathrm{k}, \mathrm{c}=\mathrm{I}+3 \mathrm{j}-2 \mathrm{k}$ then $(a \times b) \times(b \times c)=$
A. [abc] a
B. $[a b c] b$
C. $[\mathrm{abc}] \mathrm{c}$
D. $[\mathrm{abc}]$

Answer: B

86. $[(a \times b) \times(a \times c)] . D=$
A. (a.d) [a b c]
B. (b.d) $[\mathrm{ab} \mathrm{b}]$
C. (c.d) [a b c]
D. 0

Answer: A

- View Text Solution

$$
\text { 87. } a \times\{b \times(C \times a)+(p \times q)\}=
$$

A. (a.q) P-(a.p) q + (b.a) $(a \times c)-(b \times c)$
B. (a.q) p - (a.p) q + (b.a) $(a \times c)$
C. $a \times(p \times q)+[a b c] c$
D. none of these

Answer: B

88. If a is a unit vector, $a \times r=b, a . r=c, a . b=0$ then r is
A. $c a-a \times b$
B. $b-a \times b$
C. $c a+a \times b$
D. $c b+a \times b$

Answer: A

D Watch Video Solution

89. a, b are non-zero vectors, c is given non-zero scalar such that a is perpendicular to b. Then the vector x satisfying the equaitons $a . x=c$ and $a \times x=b$ is
A. $c a-(a \times b)$
B. $c a-\frac{a \times b}{|a|^{2}}$
C. $\frac{c a-(a \times b)}{|a|^{2}}$
D. $\frac{c a}{|a|^{2}}-(a \times b)$

Answer: C

- View Text Solution

90. If a and b are two non-zero perpendicular vectors, then a vector y satisfying equations a. $\mathrm{y}=\mathrm{c}$ (c scalar) and $a \times y=b$ is
A. $|a|^{2}(c a-(a \times b))$
B. $|a|^{2}(c a+(a \times b))$
C. $\frac{1}{|a|^{2}}(c a-(a \times b))$
D. $\frac{1}{|a|^{2}}(c a+(a \times b))$

Answer: C

91. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the vector \vec{d} is equal to
A. $b+\left(\frac{b . c}{a . b}\right) c$
B. $c-\left(\frac{a . c}{a . b}\right) b$
C. $b-\left(\frac{b . c}{a . b}\right) c$
D. $c+\left(\frac{a . c}{a . b}\right) b$

Answer: B

- Watch Video Solution

92. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are nonzero vectors, then $(a \times b) \times c=a(b \times c)$ iff $(a \times c) \times b=$
A. $a+b$
B. 0
C. a
D. b

Answer: B

- View Text Solution

93. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three unit vectors such that $a \times(b \times c)=\frac{1}{2} b$ then the angles between a, b and a, c are
A. $90^{\circ} \cdot 90^{\circ}$
B. $90^{\circ} .60^{\circ}$
C. $60^{\circ} .90^{\circ}$
D. $60^{\circ} .30^{\circ}$

Answer: B

94. Let a.b and c be non-zero vectors such that $(a \times b) \times c=\frac{1}{3}|b||c| a$. If θ is the acute angle between the vectors b and c then $\sin \theta=$
A. $\frac{1}{3}$
B. $\frac{2 \sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{2}}{3}$

Answer: B

- Watch Video Solution

95. If $(a \times b) \times c=a \times(b \times c)$. Where a, b and c are any three vectors such that $a . b \neq 0, b . c \neq 0$ then a and c are
A. perpendicular
B. parallel
C. inclined at an angle of $\pi / 3$ between them
D. inclined at an angle of $\pi / 6$ between them

Answer: B

- Watch Video Solution

96. If \vec{a} and \vec{b} are unit vectors, then the vectors
$(\vec{a}+\vec{b}) \times(\vec{a} \times(\vec{b})$ is parallel to the vector.
A. $\vec{a} \cdot \vec{b}$
B. $\vec{a} \vec{b}$
C. $\vec{a}-\vec{b}$
D. $2 \vec{a}+\vec{b}$

Answer: C

97. $(a \times b) .(a \times c)=$
A. (a.c) (b.c) - (a.b) (b.c)
B. (a.b) (b.c) - (a.b) (a.b)
C. (a.a) (b.c) - (a.b). (a.c)
D. (a.a) (b.b) - (a.b) (a.c)

Answer: C

- View Text Solution

98. If $a \times b=c \times d, a \times c=b \times d$ then
A. 0
B. $|a+b+c|$
C. [abc]
D. (a.b) (c.d)

- Watch Video Solution

99. $[d \mathrm{~b} c] \mathrm{a}+[\mathrm{adc}] \mathrm{b}+[\mathrm{abc}] \mathrm{c}=$
A. [abc]
B. $[a b c] d$
C. d
D. 0

Answer: B

100. If the four vectors a,b,c,d are coplanar, then $(a \times b) \times(c \times d)=$
A. 1
B. a
C. b
D. 0

Answer: D

- Watch Video Solution

101. If $\mathrm{a}=\mathrm{I}+\mathrm{j}+\mathrm{k}, \mathrm{b}=\mathrm{I}+\mathrm{j}-\mathrm{k}, \mathrm{c}=\mathrm{I}-\mathrm{j}+\mathrm{k}, \mathrm{d}=\mathrm{I}-\mathrm{j}-\mathrm{k}$ then $(a \times b) \cdot(c \times d)=$
A. 0
B. 1
C. 2
D. 3

Answer: A

102. If $a=2 i+j-3 k, b=I-2 j+k, c-1+j-4 k, d=I+j+k$ then $(a \times b) \times(c \times d)=$
A. $5 \sqrt{114}$
B. $\sqrt{114}$
C. $5 \sqrt{134}$
D. $\sqrt{134}$

Answer: A

Watch Video Solution
103. The vector equation of a straight line passing through \bar{a} and perpendicular to \bar{b} and \bar{c} is
A. $r-a=(b \times c)$
B. $r=a \times(b \times c)$
C. $r-b=t(a \times c)$
D. $r=b \times(a \times c)$

Answer: A

D Watch Video Solution

104. The perpendicular distance of the point c from the line joining a and b is
A. $\frac{|b \times c+c \times a+a \times b|}{|b-a|}$
B. $\frac{|b \times c-c \times a+a \times b|}{|b-a|}$
C. $\frac{|b \times c+c \times a-a \times b|}{|b-a|}$
D. $\frac{|b \times c-c \times a-a \times b|}{|b-a|}$

Answer: A

- Watch Video Solution

105. If a,b,c,d are four vectors then $(A \times b) \times(C \times d)=$
A. $[\mathrm{adc} \mathrm{c}$ a - [b c a] a
B. [a c d] b-[b c d] a
C. [a c b] c-[b c d] c
D. [acd] b-[bad] c

Answer: B

- Watch Video Solution

106. If the vectors b, c, d are not coplanar, then the vector $(a \times b) \times(c \times d)+(a \times c) \times(d \times b)+(a \times d) \times(b \times c)$ is
A. [b c d]a
B. $2[\mathrm{~b} \mathrm{c} \mathrm{d}] \mathrm{a}$
C. $-[b c d] a$
D. $-2[b c d] a$

- Watch Video Solution

107. a.a' + b.b' + c.c' =
A. 0
B. 1
C. 2
D. 3

Answer: D

- View Text Solution

108. a.b' + b.c' + c.a' =
A. 0
B. 1
C. 2
D. 3

Answer: A

- View Text Solution

109. [a b c] [a' b' c'] =
A. 0
B. 1
C. 2
D. 3

Answer: B

- View Text Solution

110. $(a+b) \cdot A^{\prime}+(b+c) \cdot B^{\prime}+(c+a) \cdot C^{\prime}=$
A. 0
B. 1
C. 2
D. 3

Answer: D

D View Text Solution

111. If a, b, c are three non-coplanar vectors and if r is any vector then $r=$
A. (r.a') a + (r.b') b+(r. c') c
B. (r.c') a + (r. b') b+(r. a' c
C. (r. a') a - (r. b') b-(r. c') c
D. (a.a') a + (b. b') b+(c. c') c

- View Text Solution

112. $a^{\prime} \times b^{\prime}+b^{\prime} \times c^{\prime}+c^{\prime} \times a^{\prime}=$
A. $\frac{a+b+c}{[a b c]}$
B. $\frac{a-b-c}{[a b c]}$
C. $\frac{a+b+c}{[b a c]}$
D. $\frac{a+b+c}{2[a b c]}$

Answer: A

View Text Solution

Exercise 2 Special Type Questions Set A

1.I: The vector $6 i+2 j+k, 2 i-9 j+6 k$ are mutually perpendicular.

II : The vectors $I+2 j-, 2 i+j+k$ are mutually perpendicular
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: A

- Watch Video Solution

2. I: If the vectors $a=(1, x,-2), b=(x, 3,-4)$ are mutually perpendicular, then
$x=2$

II : If $a=I+2 j+3 k, b=-I+k, c=3 i+j$ and $a+b$ is perpendicular to c then $t=5$.
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: B

- View Text Solution

3. I: If $|a+b|=|a-b|$ then $(a, b)=\pi / 2$

II: If $\mathrm{a}, \mathrm{b}, \mathrm{a}+\mathrm{b}$ are unit vectors then $(\mathrm{a}, \mathrm{b})=2 \pi / 3$
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: C

4. If $|\mathrm{a} . \mathrm{b}|=|a \times b|$ then $(\mathrm{a}, \mathrm{b})=\pi / 4$

- Watch Video Solution

5. I: If $|\mathrm{a}+\mathrm{b}|=|\mathrm{a}-\mathrm{b}|$ then $|a \times b|=0$
$\mathrm{II}:(a \times b)^{2}+(a . b)^{2}=|a|^{2}|b|^{2}$
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: B

6. I: If $(\mathrm{a}+\mathrm{b}) \mathrm{c}=(\mathrm{a}-\mathrm{b}) \mathrm{c}=0$ then $(a \times b) \times c=0$

II: If $a \times(b \times c)$ is a vector perpendicular to a,b,c
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: A

- View Text Solution

7. I : For any vector a, $(a \times i)^{2}+(a \times j)^{2}+(a \times k)^{2}=2 a^{2}$ and $(a . i)^{2}+(a . j)^{2}+(a . k)^{2}=a^{2}$

II: If $(2 i+4 j+2 k) \times(2 i-x j+5 k)=16 I-6 j+2 x k$ then $x=2$
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: A

- View Text Solution

8. Statement I : If a and b are any two vectors, then $|a \times b|^{2}+|a . b|=|a|^{2}|b|^{2}$
Statement II : If a and b any two vectors then $|a \times b|^{2}=\begin{array}{ll}a . & a \\ b . & a . b \\ b . & b . b\end{array}$. Then
A. Both statement are true and II is a correct explanation of I
B. Both statements are true, but II is not a correct explanation of I
C. I is true and II is false
D. I is false and II is true

Answer: A

9.I: If $a=1+j-k, b=2 i-3 j+2 k, c=13 I-7 j+3 k$ then $[a b c]=0$

II : If a,b,c are mutually perpendicular unit vector then $[a b c]^{2}=1$
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: C

- View Text Solution

10. The volume of the parallelopiped with edges $2 i-4 j+5 k, I-j+k, 3 i-5 j+$ 2 k is -8
11. If the vectors $2 i-3 j+4 k, I+2 j-k, x i-j+2 k$ are coplanar then $x=8 / 5$

- Watch Video Solution

12.I: $I \times(a \times i)+j \times(a \times j+k \times(a \times k)=2 a$

$$
\text { II: } I \times[(a \times b) \times i)+j \times[(a \times b) \times j)+k \times[(a \times b) \times k)=0
$$

A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: A

- View Text Solution

13. I: If a, b, c, d are four vectors then $[b c d] a+[c a d] b+[a b c] c=[a b c] d$ II : The points with position vectors a,b,c,d are coplanar then
$[a b d]+[b c d]+[c a d]=[a b c]$
A. only I is ture
B. Only II is ture
C. both I and II are true
D. Neither I nor II are true

Answer: C

- View Text Solution

Exercise 2 Special Type Questions Set B

1. The value of $a . b$ where $a=2 i-3 j-k, b=3 i+2 j-2 k$

- Watch Video Solution

2. Arrange the value of $|a+b+c|$ in ascending order
(A) If a,b,c are mutually perpendicular unit vectors
(b) If a,b,c are vectors of lengths $2,3,4$ respectively and if a, b, c are perpendicular to $b+c, c+a, a+b$ respectively.

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are vector of length $4,4,5$ respectively and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are perpendicular to $\mathrm{b}+\mathrm{c}, \mathrm{c}+\mathrm{a}, \mathrm{a}+\mathrm{b}$ respectively.
A. A, B, C
B. C, B, A
C. B, C, A
D. B, A, C

Answer: A

- View Text Solution

3. Arrange the following angles in ascending order
(A) Angle between the vectors $\mathrm{I}+3 \mathrm{j}+4 \mathrm{k}$ and $\mathrm{I}-3 \mathrm{j}+2 \mathrm{k}$
(B) Angle between the planes r. $(2 i-j+k)=7$ and $r . ~(I+j+2 k)=11$
(C) Angle between the lines $r=x(I+2 j+2 k)$ and $r=t(3 i+2 j+6 k)$
A. A,B,C
B. C, B, A
C. B,C,A
D. B, A, C

Answer: B

- View Text Solution

4. Arrange the magnitudes of following vectors in ascending order
(A) $I \times j+j \times k+k \times i$
(B) If $|\mathrm{a}|=2,|\mathrm{~b}|=3,(\mathrm{~A}, \mathrm{~b})=45^{\circ}$ then $a \times b$
(C) $(2 i-3 j+2 k) \times(3 i-j+4 k)$
A. A, B, C
B. C, B, A
C. B,C,A
D. B,A,C

Answer: A

- Watch Video Solution

5. Arrange the following in ascending order of magnitude
(A) Area of parallelogram with adjacent sides $\mathrm{I}+2 \mathrm{j}+3 \mathrm{k}, 3 \mathrm{i} 2 \mathrm{j}+\mathrm{k}$
(B) Area of parallelogram with diagonals $\mathrm{I}+2 \mathrm{j} 3 \mathrm{k}, 3 \mathrm{i}-2 \mathrm{j}+\mathrm{k}$
(C) Area of parallelogram with diagonals are $3 \mathrm{i}+\mathrm{j}-2 \mathrm{k}, \mathrm{i}-3 \mathrm{j}+4 \mathrm{k}$
(D) Area of parallelogram whose sides are $3 \mathrm{i}+\mathrm{j}-2 \mathrm{k}, \mathrm{i}-3 \mathrm{j}+4 \mathrm{k}$
A. B,A,C,D
B. D,A,C,B
C. D,C,A,B
D. B, C, A, D

Answer: D

(D) Watch Video Solution

6. find Area of the triangle with sides $3 i-7 j+k, 4 j-3 k$

- Watch Video Solution

7. The ascending order of the following
(A) volume of the tertrahedron formed by $4 i+5 j+k .-j+k .3 i+9 j+4 k,-4 i$ $+4 j+4 k$
(B) Volume of the parallelopiped with edges $2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k} . \mathrm{I}+2 \mathrm{j}-2 \mathrm{k}, 3 \mathrm{i}-\mathrm{j}+\mathrm{k}$
(C) $|a \times(b \times c)|$ where $\mathrm{a}=2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k}, \mathrm{b}=\mathrm{i} \mathrm{j}+\mathrm{k}, \mathrm{c}=4 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$
(D) $|(a \times b) \times c|$ where $\mathrm{a}=\mathrm{i}-2 \mathrm{j}+\mathrm{k}, \mathrm{b}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \mathrm{c}=4 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$
A. A,B,C,D
B. A,D,B,C
C. A, C, B, D
D. C, B, A, D

Answer: D

- Watch Video Solution

8. Set the following vectors in the increasing order of their magnitudes. a)
$3 i+4 j$ b) $2 i+4 j+6 k$ c) $2 i+2 j+2 k$
A. b,a,c
B. c, a, b
C. a, c, b
D. a,b,c

Answer: A

D Watch Video Solution

9. Arrange the following in the descending order of magnitude (A)
$[I \times j j \times k k \times i]$
(B) $[\mathrm{l}+\mathrm{jj}+\mathrm{kk}+\mathrm{i}]$
(C) $(I \times j)(j \times k)$
(D) $(K \times j)(k \times j)$
A. B,A,C,D
B. B,A,D,C
C. D, C, B, A
D. B,C,A,D

Answer: A

- Watch Video Solution

Exercise 2 Special Type Questions Set C

1.

I. The angle between the vectors $2 i .+j-k I-4 j-2 k$
$I I$. The angle between the vectors $I+2 j-k 2 i+j+k$
III. The angle between a.b if a.b if a.b. $\mathrm{a}+\mathrm{b}$ are unit vector
$I V$. The angle bet ween $\overrightarrow{A C} \overrightarrow{B D}$ if $A=(1.1 .0) B=(1 .-1.0) C=(-1.1$
A. a, c, c, b
B. d, c, c, b
C. c,a,b,d
D. d, c, c, a

Answer: B

- View Text Solution

I. Projection of $I-2 j+k$ on $4 i-4 j+7 k \quad a .9$
II. Projection of $2 i-3 j+k$ on $4 i-4 j+7 k \quad$ b. 3
2. III. projection of $9 I-7 j+k$ on x -axis c. 19/9 $I V$. Projection of $2 i-3 j+6 k$ on $I+2 j+2 k \quad d .8 / 3$
A. b,d,c,a
B. c,b,a,c
C. a,d,c,b
D. c,b,a,d

Watch Video Solution

sphere

$$
\text { I. } r^{2}-2 r(3 i+4 j-5 k)+1=0
$$

centre
3. $I I \cdot(r-3 i+2 j-5 k) \cdot(r+i+j+3 k)=0$
III. $i^{1}+y^{2}+z^{2}-6 x+2 y-4 x-1=0$
c. $3 i+2 j-5 k$
IV. $(r-3 i-2 j+5 k)^{2}=49$
d. $3 i-j+2 k$
A. b,a,d,c
B. d, b, c, a
C. c, a, d, b
D. a, d, b, c

Answer: A

- View Text Solution

4.

I. Unit vector perpendicular to the plane of $2 i-6 j-3 k .4 i+3 j-k$
II. Unit vector perpendicular to the plane determined by the points(1. III. Vector perpendicular to the plane of $i-j-k . i+j+k$
$I V$. Vector of length 5 and perpendicular to both $a=2 i+j-3 k$
A. a,c,d,b
B. b,a,d,c
C. a,d,c,b
D. d,c,b,a

Answer: D

- View Text Solution

5.

$$
\begin{array}{ll}
I . \text { If } a=2 i-3 j-k . b=i+4 j-2 k \operatorname{then}(a+b) \times(a-b) & a .42 i+1 . \\
I I . \text { If } a=3 i-j-2 k . b-2 i+3 j+k \operatorname{then}(a+2 b) \times(2 a-b) & b .-5 i+ \\
\text { III. If } a=i+2 j-3 k . b=2 i+j+k \operatorname{then} a \times b & c .-25 i+ \\
I V . \text { If } a=2 i+3 j+6 k . b=3 i-6 j+2 k \operatorname{then} a \times b & d .-20 i-
\end{array}
$$

A. a, c, d, b
B. b,a,d,c
C. a, d, c, b
D. d, c, b, a

Answer: D

- View Text Solution

6.

$$
\begin{array}{ll}
I .|a \times b+b \times c+c \times a| & a . \text { Area of } \triangle A B C \\
I I . \mid A B \times c d+B C \times A D+C A \times B D & b .2 \times \text { Area of } \triangle A B C \\
I I I .|(a-c) \times(b-d)| & c .4 \times \text { Area of } \triangle A B C \\
I V . \frac{1}{2}|(a-b) \times(b-c)| & \text { d. } 2 \times \text { Area of quandrilateral } A \\
& \text { e. none }
\end{array}
$$

A. a,c,c,b
B. b,a,c,c
C. a,d,c,b
D. b,c,c,a

Answer: D

D View Text Solution

7. $\mathfrak{\{ : (I . " A r e a ~ o f ~ t h e ~ p a r a l l e l o g r a m ~ w i t h ~ d i a g o n a l s " ~} 3 i+j-2 k . i-3 j+4 k, a$. (sqrt(569))/(4)), (II. "Area of the triangle whose adjacent sides are" $3 \mathrm{i}+4 \mathrm{j}$ "and" $i-3 j+4 k, b .(2) /(s q r t(14))),(I I I$. . "Volume of parallelopiped whose edges are" $2 \mathrm{i}-3 \mathrm{j} . \mathrm{i}+\mathrm{j}-\mathrm{k} .3 \mathrm{i}-\mathrm{k}, \mathrm{c} .5$ sqrt(3)),(IV. "Projection of" $2 \mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$ "in the direction of" $i+2 j+3 k$, d. 4),(, e. 2//3)):\}"
A. c,a,d,b,
B. c,a,c,b
C. a,c,d,b
D. d,a,c,b

Answer: A

- Watch Video Solution

8.

I. The points $i+j+k .4 i+3 j$ and $10 i+7 j-2 k$ are $\quad a . a \times b=7$ $I I$. The vectors $5 i+5 j+7 k .7 i-8 j+k$ and $i-20 j-5 k$ are b. collincar III. $a=2 i+3 j+6 k . b=3 i-6 j+2 k$ c. non-coplan $I V$. The Points $2 i-j+k . i-3 j=5 k$ and $3 i-4 j-4 k$ are $\quad d$. vertices of e. vertices of
A. b,c,a,e
B. a,c,d,e
C. a,c,b,e
D. e,d,c,a

Answer: A

D View Text Solution

$$
\begin{array}{cl}
{[a \times b b \times c c \times a]} & a .5 \\
I I .[a+b b+c c+a] & b .1 \\
\text { 9. } I I I .[a b c]\left[a^{\prime} b^{\prime} c^{\prime}\right] & c .[a b c]^{2} \\
I V .[a-b b-c c-a] & \text { d. } 0 \\
& e .2[a b c]
\end{array}
$$

A. c,c,b,d
B. c, c, d, b
C. b,c,d,a
D. b, a, c, d

Answer: A

- View Text Solution

10. Observe the following list
List-I List-II
A. $[\vec{a} \vec{b} \vec{c}] \quad$ 1. $|\vec{a}||\vec{b}| \cos (\vec{a} \cdot \vec{b})$
$B .(\vec{c} \times \vec{a}) \times \vec{b} \quad 2 .(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$C \cdot \vec{a} \times(\vec{b} \times \vec{c}) \quad 3 \cdot \vec{a} \cdot \vec{b} \times \vec{c}$
D. $\vec{a} \cdot \vec{b}$
11. $|\vec{a}||\vec{b}|$
12. $(\vec{b}-\vec{c}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{c}$

Then the correct match for List-I from list II is
A. 1,2,3,4
B. 3,5,2,1
C. 3,2,5,1
D. 2,3,4,1

Answer: B

- View Text Solution

11. If $a=I+j+k, b=I-j+k, c=I+j-k, d=I-j-k$, then observe the following list.

List-I List-II
i.a.b A. -1
ii.b.c B. 4
iii. [abc] C. 1
iv. $b \times c \quad D .2 j-2 k$
E. $2 j+2 k$

The correct match of List-I to List-II:
A. C,A,B,E
B. C,A,B,E
C. A,C,B,E

D. A,C,E,D

Answer: B

- Watch Video Solution

12. $a=2 i-3 j, b=I+j-k, c=3 i-k$, Match the following

List-I
List
i. [abc]equals
a. $\frac{2}{3}$
ii. $[b+c c+a a+b]$
b. 16
iii. $[b \times c c \times a a \times b]$ equals
c. 8
$i v$. volume of the tetrahedron for which a.b.c are coterminus edges is
d. 4
A. $1 \rightarrow \mathrm{~d}, \mathrm{ii} \rightarrow$
c, iii \rightarrow
b, iv \rightarrow a
B. $I \rightarrow \mathrm{~b}, \mathrm{ii} \rightarrow \mathrm{c}, \mathrm{iii} \rightarrow \mathrm{a}, \mathrm{iv} \rightarrow \mathrm{d}$
C.I $\rightarrow \mathrm{c}, \mathrm{ii} \rightarrow \mathrm{d}, \mathrm{iii} \rightarrow \mathrm{a}, \mathrm{iv} \rightarrow \mathrm{b}$
D. I $\rightarrow \mathrm{d}, \mathrm{ii} \rightarrow \mathrm{b}, \mathrm{iii} \rightarrow \mathrm{c}, \mathrm{iv} \rightarrow \mathrm{a}$

Answer: A

1. A: Angle between the vectors $\mathrm{I}-2 \mathrm{j}+\mathrm{k}, 2 \mathrm{i}-\mathrm{j}-\mathrm{k}$ is $\frac{\pi}{3}$.
$\mathrm{R}:$ If θ is the angle between a, b then $\cos \theta=\frac{a . b}{|a||b|}$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

2. A: Length of projection of $2 i-3 j+k$ along $4 i-4 j+7 k$ is 3
$\mathrm{R}:$ Length of projection of b on a is $\frac{a . b}{|b|}$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution

3. $A:$ If $|a|=13,|b|=19,|a+b|=24$ then $|a-b|=20$

R: for any vectors $\mathrm{a}, \mathrm{b},|a+b|^{2}+|a-b|^{2}=2\left(|a|^{7}+|b|^{2}\right)$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

4. A : The vector equation of the plane which is at a distance of 5 unit from origin and perpendicular to $2 i-j+2 k$ is $r .(2 i-j+2 k)=15$ R : The vector equation of the plane which is at distance of p from origin and perpendicular to the unit vector n is $r . n=p$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

5. A : The vector equation of the plane passing through the point $(2,-1,-4)$ and perpendicular to the vector $4 \mathrm{i}-12 \mathrm{j}-3 \mathrm{k}$ is $[\mathrm{r}-(2 \mathrm{i}-\mathrm{j}-4 \mathrm{k})]$. $(4 \mathrm{i}-12 \mathrm{j}-3 \mathrm{k})=$
R : the vector equation of the plane passing through the point a and perpendicular to the vector m is $(r-a) m=0$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

6. Let $a=a_{1} I+a_{2}+a_{3} k$.

Assertion (A) : The identity $|a \times i|^{2}+|a \times j|^{2}+|a \times k|^{2}=2|a|^{2}$ hold for a,

Reason (R)
$a \times I=a_{3} j=a_{2} k, a \times j=a_{1} k-a_{3} I, a \times k=a_{2} I=a_{1} j$
Which of the following is correct?
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- View Text Solution

7. A : A vector perpendicular to both $\mathrm{I}+\mathrm{j}+\mathrm{k}$ and $2 \mathrm{i}+\mathrm{j}+3 \mathrm{k}$ is $2 \mathrm{i}-\mathrm{j}-\mathrm{k}$ R : Every vector perpendicular to plane containing a,b is equal to $a \times b$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

8. A : Area of the parallelogram whose adjacent sides are $3 i+2 j+k, 3 i+k$ is $\sqrt{10}$
R : Area of quadrilateral ABCD is $\frac{1}{2}|A C \times B D|$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

9. A : The perpendicular distance from (1,4-2) to the line joining (2,1,-2)
$(0,-5,1)$ is $3 \sqrt{26} / 7$
R : The perpendicular distance from a point P to the line joining the point
A, B is $\frac{|\overrightarrow{A P} \times \overrightarrow{A B}|}{|\overrightarrow{A B}|}$
A. both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

10. $\mathrm{A}:$ If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are vectors such that $[\mathrm{abc}]=4$ then $[a \times b b \times c c \times a]=64$ $\mathrm{R}:[a \times b b \times c c \times a]=[a b c]^{2}$
A. A, R are true, R is correct explanation of A
B. A, R are true, R is not correct explanation of A
C. A is correct R is false
D. A is false R is true

Answer: D

D Watch Video Solution

11. A : If $a=I-j+k, b=I-2 j-k$ and $c=2 i+p j+5 k$ are coplanar then $p=-1 / 2$ R : vectors a, b, c are coplanar if $[a b c]=0$
A. A, R are true, R is correct explanation of A
B. A, R are true, R is not correct explanation of A
C. A is correct R is false
D. A is false R is true

Answer: A

12. A: The vector equation of the plane passing through $I+j+k$ and parallel to the vectors $2 \mathrm{i}+3 \mathrm{j}-\mathrm{k}, \mathrm{I}+2 \mathrm{j}+3 \mathrm{k}$ is $[\mathrm{r}-(\mathrm{I}+\mathrm{j}+\mathrm{k}) 2 \mathrm{i}+3 \mathrm{j}-\mathrm{kI}+2 \mathrm{j}+$ $3 \mathrm{k}]=0$
R : The vector equation of the plane passing through the point a and parallel to the vectors b, c is $[r-a b c]=0$
A. A, R are true, R is correct explanation of A
B. A, R are true, R is not correct explanation of A
C. A is correct R is false
D. A is false R is true

Answer: A

- Watch Video Solution

13. A : The vector equation of the plane passing through the point $(1,-2,5)$,
$(0,-5,-1),(-1,5,0)$ is $[r-(I-2 j+5 k)-1-3 j-6 k-2 i+7 j-6 k]=0$
R : The vector equation of the plane passing through the points a, b, c is $[r$ $-a b-a c-a]=0$
A. A, R are true, R is correct explanation of A
B. A, R are true, R is not correct explanation of A
C. A is correct R is false
D. A is false R is true

Answer: A

- Watch Video Solution

14. A : If $A=(1,-2,-1) B=(4,0,-3), C=(1,2-1), d=(2,-4,-5)$ then the distance between $A B$ and $C D$ is $4 / 3$
R : The shortest distance between the skew lines $r=a+s b, r=c+t d$ is $\frac{[a-c b d]}{|b \times d|}$
A. A, R are true, R is correct explanation of A
B. A, R are true, R is not correct explanation of A
C. A is correct R is false

D. A is false R is true

Answer: A

Watch Video Solution

