

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

PRODUCTS OF VECTORS

Solved Examples

1. Let a = 2i - j + k, b = 1 + 2j - k and c = 1 + j - 2k be three vectors. A vector in

the plane of b and c whose projection on a is of magnitude $\sqrt{2/3}$ is

A. 2i + 3j - 3k

B. 2i + 2j + 3k

C. -2i - j + 5k

D. 2i + j + 5k

Answer: A

2. If a vector a expressed as the sum of two vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ along and perpendicular to a given vector b, then $\overrightarrow{\beta}$ =

A.
$$\frac{(a \times b) \times b}{|b|^2}$$
B.
$$\frac{b \times (a \times b)}{|b|^2}$$
C.
$$\frac{b \times (a \times b)}{|b|}$$

D. ((a.b)/(|b|^(2)))b`

Answer: B

View Text Solution

3. Let a,b,c the distinct non-negative numbers. If the vectors ai + aj + ck, I

+ k and ci + cj + bk lie in a plane, then c is

A. the arthithmetic mean of a and b

B. the geometric mean of a and b

C. the harmonic of a and b

D. equal to zero

Answer: B

Watch Video Solution

4. Let a = i - k, b = xi + j + (1 - x) k and c = yi + xj + (1 + x - y)k. Then [a,b,c]

depends on

A. only x

B. only y

C. neither x nor y

D. both x and y

Answer: C

5. Let a = 2i + j - 2k and b = I + j. If c is vector such that ac = |c|, $|c - a| = 2\sqrt{2}$ and the angle between $a \times b$ and c is 30° , then $|(a \times b) \times c|$ =

A. 2/3

B. 3/2

C. 2

D. 3

Answer: B

Watch Video Solution

6. Let v = 2i + j - k and w = I + 3k. If u is unit vector. Then the maximum

value of the scalar triple product [u v w] is

A. -1

 $\mathsf{B.}\,\sqrt{10}+\sqrt{16}$

C. $\sqrt{59}$

D. $\sqrt{6}$

Answer: C

- B. 3
- C. 1

D. $11/\sqrt{3}$

Answer: B

8. Consider the parallelopiped wide sides a = 3i + 2j + k, b = 1 + j + 2k and c = 1 + 3j + 3k then the angle between a and the plane containing the face determined by b and c is

A. $\sin^{-1}\left(\frac{1}{3}\right)$ B. $\cos^{-1}\left(\frac{9}{14}\right)$ C. $\sin^{-1}\left(\frac{9}{14}\right)$ D. $\sin^{-1}\left(\frac{2}{3}\right)$

Answer: C

Watch Video Solution

A. 5

C. 7

D. 8

Answer: C

Watch Video Solution

2. if θ is the angle between the unit vectors a,b then |a - b| =

A. sin $(\theta/2)$

B. 2 sin $(\theta/2)$

C. cos $(\theta/2)$

D. 2 Cos (heta / 2)

Answer: B

3. If θ is the angle between the unit vectors a,b then |a + b| =

A. sin $(\theta/2)$

B. 2 sin $(\theta/2)$

C. cos $(\theta/2)$

D. 2 Cos $(\theta/2)$

Answer: D

Watch Video Solution

4. If a and b are unit vectors and α is the angle between them then a - b

will be a unit vector if α =

A. $\pi/4$

B. $\pi/3$

C. $2\pi/3$

D. $\pi/2$

6. If a,b,c are three vectors such that a = b + c and the angle between b

and c is $\pi/2$, then (here a = |a|, b = |b|, c = |c|)

A.
$$a^2 = b^2 + c^2$$

B. $b^2 = c^2 + a^2$
C. $c^2 = a^2 + b^2$
D. $2a^2 - b^2 = c^2$

Answer: A

Watch Video Solution

7. If a + b + c = 0 and |a| = 3, |b| = 4 and |c| = $\sqrt{37}$ the angle between a and b is

A. $\pi/4$

B. $\pi/2$

 $\mathsf{C.}\,\pi\,/\,6$

D. $\pi/3$

Answer: D

8. If a and b are noncollinear unit vectors and $|\mathsf{a}+\mathsf{b}|~=\sqrt{3}$, then (2a +

5b). (3a - b) =

A. 15/4

B. 15/2

C. 15

D. none

Answer: B

Watch Video Solution

9. If a,b, are two vectors of lengths 2,1 respectively and $|a - b| = \sqrt{3}$ then

(a,b) =

A. $\pi/4$

B. $\pi/6$

C. $\pi/3$

D. $\pi/2$

Answer: C

Watch Video Solution

10. If, in a right angled triangle ABC, the hypotenuse, AB = p, then AB.AC +

BC . BA + CA. CB =

A. $2p^2$

 $\mathsf{B.}\,p^2\,/\,2$

 $\mathsf{C}.\,p^2$

D. none

Answer: C

11. If a,b,c are unit vectors such that a + b + c = 0 then a.b + b.c + c + c. A=

A. 2 B. 3/2 C. -2

D. - 3/2

Answer: D

Watch Video Solution

12. If two out of the three vectors a,b,c are unit vectors, a + b + c = 0and 2. (a. b + b. c + c. a) + 3 = 0, then the third vector is of length

A. 3

B. 2

C. 1

Answer: C

13. If a,b,c are three vectors such that a + b + c = 0, |a| = 1, |b| = 2, |c| = 3 then a.b+ b.c + c.a =

A. 0

 $\mathsf{B.}-7$

C. 7

D. 1

Answer: B

14. If a,b,c are mutally perpendicular unit vectors, then |a + b + c| =

A. $\sqrt{2}$ B. 1 C. $\sqrt{3}$

D. 0

Answer: C

Watch Video Solution

15. If A.(B+ C) = B. (C + A) = C. (A + B) = 0, |A| = 3, |B| = 4, |C| = 5 then |A + B +

C| =

A. 5

B. $5\sqrt{2}$

C. $5/\sqrt{2}$

D. $\sqrt{2}$

Answer: B

16. If a,b,c are vector of length 4,4,5 respectively and a,b,c are perpendicular to b+c, c+a, a+b respectively, then |a+b+c| =

D. 7

Answer: A

17. Let u,v,w be such that |u| = 1, |v| = 2, |w| = 3. If the projection v along u is

equal to that w along u and v,w are prependicular to each other then |u -

v + w =

A. 1

B. 14

 $\mathsf{C.}\,\sqrt{14}$

D. $\sqrt{7}$

Answer: C

Watch Video Solution

18. If a,b and c are vectors with magnitudes 2,3 and 4 respectively then the least upper bound of $|a - b|^2 + |b - c|^2 + |c - a|^2$ among the given values is

A. 97

B. 87

C. 90

Answer: B

Watch Video Solution

19. If p^{th} , q^{th} , r^{th} terms of a geometric progression are the positive numbers a,b,c respectively, then the angle between the vectors $(\log a^2)I + (\log b^2)j + (\log c^2)k$ and (q - r)I + (r - p)j + (p - q)k is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{2}$
C. $\sin^{-1}\frac{1}{\sqrt{a^2+b^2+c^2}}$
D. $\frac{\pi}{4}$

Answer: B

20. The vectors AB = 3i - 2j + 2k and BC = -1 - 2k are the adjacent sides of a

parallelogram. The angle between its diagonals is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$ or $\frac{2\pi}{3}$
C. $\frac{3\pi}{4}$ or $\frac{\pi}{4}$
D. $\frac{5\pi}{6}$ or $\frac{\pi}{6}$

Answer: C

21. Let a and b be two unit vectors. If the vectors c = a + 2b and d = 5a - 4b are perpendicular to each other, then the angle between a and b is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$

D.
$$\frac{\pi}{2}$$

Answer: A

22. If a,b are vectors of lengths a,b respectively then $\left(\frac{a}{a^2} - \frac{b}{b^2}\right)^2$ =

A.
$$\left(\frac{a+b}{ab}\right)^2$$

B. $\left(\frac{a-b}{ab}\right)^2$
C. $\left(\frac{a+b}{ab}\right)$
D. $\left(\frac{a-b}{ab}\right)$

Answer: B

Watch Video Solution

23. If a.b = 0 and a + b makes an angle of $30^{\,\circ}$ with a, then

A. |b|, = 2 |a|

B. |a| = 2 |b|

C. $|a| = \sqrt{3}|b|$

D. none

Answer: C

Watch Video Solution

24. If a,b,c are three mutally perpendicular vectors such that |a| = |b| = |c|then find the angle between vector a and (a + b + c) =

A. $\pi/3$

B. $\cos^{-1}(1/3)$

C. $\cos^{-1}(1/\sqrt{3})$

D. $\cos^{-1}(2/3)$

Answer: C

25. If three unit vectors a,b,c satisfy a + b + c = 0 then the angle between a

and b is :

A.
$$\frac{2\pi}{3}$$

B. $\frac{5\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: A

Watch Video Solution

26. In the parallelogram ABCD, $\overline{AC}^2 - \overline{BD}^2$ =

A. $4\overline{AB}$. (orthogonal projection of \overline{AD} on \overline{AB})

B. $2\overline{AB}$. (orthogonal projection of \overline{AD} on \overline{AB})

C. \overline{AC} . (orthogonal projection of \overline{BD} on \overline{AC})

D. $2\overline{AC}$. (orthogonal projection of \overline{BD} on \overline{AC})

Answer: A

Watch Video Solution

27. In the parallelogram ABCD, $\overline{AD}^2 - \overline{AB}^2$ =

A. $4\overline{AB}$. (orthogonal projection of \overline{AD} on \overline{AB})

B. $2\overline{AB}$. (orthogonal projection of \overline{AD} on \overline{AB})

C. \overline{AC} . (orthogonal projection of \overline{BD} on \overline{AC})

D. $2\overline{AC}$. (orthogonal projection of \overline{BD} on \overline{AC})

Answer: C

View Text Solution

28. If a,b are unit vectors such that the vector a + 3b is perpendicular to

7a - 5b then the angle between a and b is

A. $\pi / 2$ B. $\pi / 3$ C. $\pi / 4$

D. $\pi/6$

Answer: B

> Watch Video Solution

29. P.T the smaller angle θ between any two diagonals of a cube is given

by $\cos heta=1/3$

A. $\cos^{-1}(1/\sqrt{3})$

B. $\cos^{-1}(1/3)$

C. $\cos^{-1}(2/3)$

D.
$$\cos^{-1}(\sqrt{2}/3)$$

Answer: B

30. The angle between a diagonal of a cube and the diagonal of a face of the cube is

A. $\cos^{-1}(1/\sqrt{3})$ B. $\cos^{-1}(1/3)$ C. $\cos^{-1}(2/3)$ D. $\cos^{-1}(\sqrt{2}/3))$

Answer: D

31. The cartesian equation of the plane passing through A and perpendicular to \overrightarrow{AB} where 3i + j + 2k, I - 2j + 4k are the position vectors of A,B respectively

A.
$$[r (3i + j - 2k)]$$
. $(2i + 3j + 6k) = 0$
B. $[r - (3i + j + 2k)]$. $(2i + 3j + 6k) = 0$
C. $[r - (3i - j + 2k)]$. $(2i + 3j + 6k) = 0$
D. $[r - (3i - j + 2k)]$. $(2i + 3j - 6k) = 0$

Answer: B

Watch Video Solution

32. The cartesian equation of the plane passing through A and perpendicular to \overrightarrow{AB} where 3i + j + 2k, I - 2j + 4k are the position vectors of A,B respectively

A. 2x + 3y - 2z - 5 = 0

B. 2x - 3y + 6z - 21 = 0

C. 2x + 3y + 6z + 21 = 0

D. 2x + 3y - 6z - 21 = 0

Answer: A

Watch Video Solution

33. If A = (1,3, -5) and B = (3,5, -3) then the vector equation of the plane

passing through the midpoint of AB and perpendicular to AB is

A. r.(1 + j + k) = 2

B. r. (I + j - k) = 2

C. r. (I - j + 4k)

D. none

Answer: A

34. The distance between the line $\overrightarrow{r} = 2\hat{i} - 2\hat{j} + 3\hat{k} + \text{lambda}$ $(\hat{i} - \hat{j} + 4\hat{k})$ and the plane \overrightarrow{r} . $(\hat{i} + 5\hat{j} + \hat{k}) = 5$ is A. $\frac{10}{9}$ B. $\frac{10}{3\sqrt{3}}$ C. $\frac{3}{10}$ D. $\frac{10}{3}$

Answer: B

Watch Video Solution

35. The angle between the planes r. (2i - j + 2k) = 3 and r. (3i - 6j + 2k) = 4

A.
$$\cos^{-1}\left(\frac{16}{21}\right)$$

B. $\sin^{-1}\left(\frac{4}{21}\right)$
C. $\cos^{-1}\left(\frac{1}{4}\right)$

$$\mathsf{D.}\cos^{-1}\left(\frac{3}{4}\right)$$

Answer: A

Watch Video Solution

36. The angle between the lies $r = (2i - 3j + k) + \lambda (1 + 4j + 3k)$ and $r = (1 - j + 2k) + \mu (1 + 2j - 3k)$ is

A.
$$\cos^{-1}\left(\frac{9}{\sqrt{91}}\right)$$

B. $\cos^{-1}\left(\frac{7}{\sqrt{84}}\right)$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

View Text Solution

37. The distance from the origin to the plane passing through A and perpendicular to \overrightarrow{AB} where 3i + j + 2k, 5i - j + 3k are the position vectors of A, B respectively is

Answer: B

View Text Solution

38. The vector equation of the sphere with centre 3i + 2j - 5k and radius 7

is

A.
$$\left[r-(3i+2j-5k)
ight]^2=49$$

B.
$$[r + (3i - 2j - 5k)]^2 = 49$$

C.
$$r^2 = \left(3i + 2j - 5k
ight)^2 + 49$$

D.
$$r^2 = (3i + 2j - 5k)^2 + 7$$

Answer: A

Watch Video Solution

39. The centre and radius of the sphere $r^2 - 2r$. (3i + 4j - 5k) + 1 = 0

are

A. 3i + 4j + 5k, 7

B. 3i + 4j - 5k, 1

C. -3i - 4j + 5k, 7

D. 3i + 4j - 5k, 7

Answer: D

40.The centre and radius of the sphere $3x^2 + 3y^2 + 3z^2 - 2x - 12y + 6z + 7 = 0$ areA. (1,2 - 1), 5B. (1/3, 2, - 1), 5/3C. (2/3, 4, -2) 10/3

D. 2/3, 4, - 5/2

Answer: B

Watch Video Solution

41. The equation of the sphere on the join of (3,4, -2), (-2, -1, 0) as diameter is

0

A.
$$r^2 - r. (I + 3j - 2k) = 10$$

B. $r^2 - 2r. (I + 2j - 2k) + 10 =$
C. $r^2 - 2r. (I + 2j - 2k) = 10$

D.
$$r^2 - 2r$$
. $(5i + 5j - 2k) + 20 = 0$

Answer: A

42. The centre of the sphere (r - 3i - 4j + 5k). (r - 21 + 3j - 4k) = 0 is

A.
$$5i + j - k$$

B. $\frac{1}{2}$ (5i + j - k)
C. I +7j - 9k
D. $\frac{1}{2}$ (I + 7j - 9k)

Answer: B

View Text Solution

43. Tae radius of the sphere (r - 2i + 3j - k). (r + 3i - j + 2k) = 0 is

A. 5

B. $5\sqrt{2}$

C. $5/\sqrt{2}$

D. $2\sqrt{5}$

Answer: C

View Text Solution

44. The work done by the force F = 2i - 3j + 2k in moving a particle from (3,4,5) to (1,2,3) is

A. 0

B. 3/2

 $\mathsf{C}.-4$

 $\mathsf{D.}-2$

Answer: D

45. The force f = 2i + 2j - k acting at a = 1 - 2j + k is displaced to a unit

distance on z-axis (Oz = 1) direction. The magnitude of the work done is

A. 1 B. 2 C. 3

D. 4

Answer: B

Watch Video Solution

46. Constant force P = 2i - 5j + 6k and Q = -1 + 2j - k act on a particle. When

the particle is displaced from A (4, - 3, -2) to B (6,1, - 3) then the work done

A. 14 unit

 $\mathrm{B.}-14\,\mathrm{unit}$

C. 15 units

 $\mathrm{D.}-15~\mathrm{unit}$

Answer: D

Watch Video Solution

47. A particle acted on by constant forces 4i + j - 3k and 3i + j - k is displaced from the point 1 + 2j + 3k to the point 5i + 4j + k. The total work done by the forces is

A. 20 unit

B. 30 unit

C. 40 unit

D. 50 unit
Answer: C

48. If forces of magnitudes 6 and 7 units acting in the direction I - 2j + 2kand 2i - 2j - k, I + 2j + 2k and -2i + j - 2k respectively act on a particl which is displaced from P (2, -1, -3) to Q (5, -1, 1) then the work done by the forces is

A. 4

- $\mathsf{B.}-4$
- C. 7
- $\mathsf{D.}-7$

Answer: A

View Text Solution

49. Three forces having magnitude 5,4 and 3 units act on a particle in the directions 2i - 2j + k, i + 2j + 2k and -2i + j - 2k respectively and the particle gets displaced from the point A whose vector is 6i - 2j + 3k to the point whose position vector is 9i + 7j + 5k. Then the work done by these forces is

A. 9 unit

B. 43 unit

C. 38 unit

D. 38/3 unit

Answer: A

View Text Solution

50. The work done by force F = ai + j + k in moving a particle from (1,1,1) to

(2,2,2) along a straight line is 5 unit. Then a =

A. 1		
B. 2		
C. 3		
D. 4		

Answer: C

Watch Video Solution

Exercise 1 B Cross Product Of Vectors

1. If a = I + j + k, b = 2i - 3j + k then $a \times b$ is

A. 4i + j - 5k

B. 4i - j + 5k

C. 4i + j + 5k

D. 4i - j - 5k

Answer: A

Answer: C

Watch Video Solution

3. If
$$\left|\overline{P}\right|=2, \left|ar{q}
ight|=3 \, \, ext{and} \, \, (ar{p},ar{q})=rac{\pi}{6}, ext{then find} \, \left|ar{p} imesar{q}
ight|^2$$

A. 7

D. 9

C. 8

D. 12

Answer: B

Watch Video Solution

4. If $\left(a imes b
ight)^2 + \left(a. \, b
ight)^2 = 144$ and |a| = 4 then |b| =

A. 16

B. 8

C. 3

D. 12

Answer: C

Watch Video Solution

5. If |a| = 5, |b| = 6, |a.b| = 24 then $|a \times b| =$

A. $\sqrt{224}$

B. 18

 $\mathsf{C.}\,\sqrt{300}$

D. $\sqrt{254}$

Answer: B

Watch Video Solution

6. u = a - b, v = a + b, $|\mathbf{a}| = |\mathbf{b}| = \Rightarrow |u \times v| =$

A.
$$2\sqrt{16 - (a.\ b)^2}$$

B. $2\sqrt{16 - (a.\ b)^2}$
C. $2\sqrt{4 - (a.\ b)^2}$
D. $\sqrt{4 - (a.\ b)^2}$

Answer: A

7. The unit vector perpendicular to each of the vectors 2i - j + k and 3i + 4j

- k is

A.
$$-3i + 5j + 11k$$

B. $\frac{-3i + 5j + 11k}{\sqrt{155}}$
C. $\frac{-3i + 5j + 11k}{155}$
D. $\frac{3i - 5j + 11k}{\sqrt{155}}$

Answer: B

8. A unit vector perpendicular to 2i + 3j + 4k and 4i - 3j + 2k is

A.
$$\frac{3i + 2j - 3k}{\sqrt{22}}$$

B. $\frac{3i - 2j - 3k}{\sqrt{22}}$
C. $\frac{3i - 2j + 3k}{\sqrt{22}}$

D. none

Answer: A

9. The unit vector normal to the plane containing a = I - j - k and b = I + j +

k is

A. j - k

B. k - j C. $\frac{k-j}{\sqrt{2}}$

D.
$$rac{\sqrt{2}}{\sqrt{2}}$$

Answer: C

10. A unit vector perpendicular to the plane of a = 2i - 6j - 3k, b = 4i + 3j - k

is

A.
$$\frac{4i + 3j - k}{\sqrt{26}}$$

B. $\frac{2i - 6j - 3k}{7}$
C. $\frac{3i - 2j + 6k}{7}$
D. $\frac{2i - 3j - 6k}{7}$

Answer: C

Watch Video Solution

11. The number of vectors of unit length perpendicular to the vectors

a=(1,1,0) and b=(0,1,1) is

B. two

C. three

D. infinite

Answer: B

View Text Solution

12. A unit vector perpendicular to the plane determined by the points P(1,

-1, 2) Q (2, 0, -1) and R (0, 2, 1) is

A.
$$\frac{2i+j+k}{\sqrt{6}}$$

B.
$$\frac{2i+j+k}{3}$$

C.
$$\frac{2i-j-k}{\sqrt{3}}$$

D.
$$\frac{2i-j-k}{3}$$

Answer: A

View Text Solution

13. A unit vector normal to the plane through the point I, 2j, 3k is

A.
$$6i + 3j + 2k$$

B. $1 + 2j + 3k$
C. $\frac{6i + 3j + 2k}{7}$
D. $\left|\frac{6i + 3j + 2k}{7}\right|$

Answer: C

Watch Video Solution

14. The unit vector orthogonal to a = 2i + 2j + k, b = 3i + 4j - 12k and

forming a right handed system with a and b is

A. 28i - 27j - 2k

B. - 28i + 27j + 2k

C.
$$\frac{28i-27j-2k}{\sqrt{1517}}$$

D.
$$\frac{-28i + 27j + 2k}{\sqrt{1517}}$$

Answer: D

15. If a = 2i + j - 3k, b = 1 - 2j + k then the vector of length $2\sqrt{3}$ and perpendicular to both a and b is

A. I + j + k B. I - j - k C. 2i - 2j + 2k D. 2i - 2j - 2k

Answer: C

View Text Solution

16. The sine of the angle between the vectors I + 3j - 2k, 2i - 4j - k is

A. 3/4B. 3/5

C.5/6

D. 5/7

Answer: D

Watch Video Solution

17. If θ is the angle between the vector 2i - 2j + 4k and 3i + j + 2k, then sin θ

A. 2/7

=

B. $2/\sqrt{7}$

C. $\sqrt{2}/7$ D. $\sqrt{2/7}$

Answer: B

Answer: C

Watch Video Solution

19. If 13 a = 3i + 4j + 12k, 13b = 4i - 12j + 3k, 13 c = 12i + 3j - 4k then $a \times b$ =

B. 5c

C. 13c

D. 169 c

Answer: A

Watch Video Solution

20. If $(2i + 4j + 2k) \times (2i - xj + 5k) = 16i - 6j + 2xk$, then the value of x is

A. 2

 $\mathsf{B.}-2$

C. 0

D. none

Answer: B

Watch Video Solution

21. If a = 2i - 3j - k, b = I + 4j - 2k then (a + b) \times (a - b) =

A. 20i - 6j - 22k

B. -20i + 6j - 22k

C. -20i - 6j - 22k

D. 20i + 6j - 22k

Answer: C

Watch Video Solution

22. If a = 3i - j - 2k, b = 2i + 3j + k then (a + 2b) \times (2a - b) =

A. 25i + 35j - 55k

B. 25i - 35j - 55k

C. -25i - 35j - 55k

D. - 25i + 35j - 55k

Answer: D

23. If a = I + 2j - 3k, b = 2i + j + k, c = I + 3j - 2k then
$$(a \times b) \times (b \times c)$$
 =

A. 5 (2i + j + k)

- $\mathsf{B.}-5(2i+j+k)$
- C. 10 (2i + j + k)
- D. -10(2i + j + k)

Answer: D

Watch Video Solution

24.
$$2i imes (3i-4k)+(I+2j) imes k$$
 =

Watch Video Solution

25. If <code>r</code> = xi + yj + zk then (r imes i). (r imes j) + xy =

A. 0

B. 1

C. xy

D. I imes j

Answer: A

Watch Video Solution

26. If |a| = 1, |b| = 2 and the angle between a and b is 120, then $\{(a + 3b) \times (3a - b)\}^2 =$

A. 425

B. 375

C. 325

D. 300

Answer: D

27.
$$(a+b) imes c + (b+c) imes a + (c+a) imes b$$
 =

A. 0

B. a + b

C. a - b

D. a imes b

Answer: A

Watch Video Solution

28. If $|a imes b| = |a.\,b|$ then (a,b) =

A. 0

 $\mathsf{B.}\,\pi$

 $\mathsf{C.}\,\pi\,/\,2$

D. $\pi/4$

Answer: D

Watch Video Solution

29. If a and b are unit vectors and a imes b = 1, then the angle between a

and b is

A. $\pi/4$

B. $\pi/2$

C. $\pi/3$

D. π

Answer: B

Watch Video Solution

30. If a and b are unit vectors such that |a imes b|=a. b, then $|a+b|^2$ =

A. 2 B. $2+\sqrt{2}$ C. $2-\sqrt{2}$ D. $\sqrt{2}$

Answer: B

Watch Video Solution

31. If a + b + c = 0 then

A. a.b = b.c = c.a

B.
$$a imes b = b imes c = c imes a$$

 $\mathsf{C}.\,a imes b=b.\,c$

 $\texttt{D.}\, a + b = (a \times c) + (b \times c)$

Answer: B

32. Let a,b,c represent respectively BC, CA and AB where ABC is a triangle.

Then

A. a + b = c

B.b + c = a

C. a imes b = b imes c = c imes a

D. none

Answer: C

33. If a.b = a.c,
$$a imes b = a imes c$$
 then

A. a = 0

B. b = c

C. a = 0 or b = c

D. a = 0 and b = c

Answer: C

Watch Video Solution

34. If a.b = a.c, a imes b = a imes c then

A. a - b is parallel to c

B. a - b is perpendicular to c

C. a + b is parallel to c

D. a -b is perpendicular to c

Answer: A

35. $a
eq 0, b
eq 0, C
eq 0, a imes b = 0, b imes c \Rightarrow a imes c =$

A. b

B.a

C. 0

D. I + j + k

Answer: C

View Text Solution

36. If a imes b = b imes c
eq 0, then a + c =

A. pa where p is scalar

B. pb where p is a scalar

C. pe where p is a scalar

D. none

Answer: B

37. If
$$a imes b = c imes d, a imes c = b imes d$$
 then

A. a - d is parallel to b - c

B. a - b is parallel to c - d

C. a - c is parallel to b - d

D. a + b is parallel to c + d

Answer: A

38. If a,b,c be unit vectors such that a.b = a.c = 0 and the angle between b and c is $\pi/6$ then a =

A. $\pm (a imes c)$

 ${\sf B}.\pm 2(a imes c)$

 $\mathsf{C}.\pm(b imes c)$

D. $\pm 2(b imes c)$

Answer: D

Watch Video Solution

39. Let u = I + j, v = I - j, w = I + 2j + 3k. If n a unit vector such that u.n = 0 v.n
= 0 then |w.n| =
A. 0
B. 1

C. 2

Answer: D

40. If u and v are unit vectors and θ is the acute angle between them,

then 2u imes 3v is a unit vector for

A. Exactly two values of heta

B. More than two values of θ

C. No value of θ

D. Eaxctly value of θ

Answer: D

Watch Video Solution

41. If r. a = r.b = r.c = 0 where a,b,c are noncoplannar, then

A. $r \perp c imes a$ B. $r \perp a imes b$ C. $r \perp b imes c$

Answer: D

D. r = 0

Watch Video Solution

42. If a is any vector then $(a imes i)^2 + (a imes j)^2 + (a imes k)^2$ =

A.
$$a^2$$

B. $2a^2$
C. $3a^2$

 $\mathsf{D.}\,4a^2$

Answer: B

View Text Solution

44. If \overrightarrow{a} is a unit vector and $\overrightarrow{a} \times \overrightarrow{i} = \overrightarrow{j}$, then $\overrightarrow{a} \cdot \overrightarrow{i} =$

D		1
D	•	I

C. 2

D. 3

Answer: A

Watch Video Solution

45. If three vectors a,b,c are such that $a \neq 0$ and $a \times b = 2(a \times c), |a| = |c| = 1, |b| = 4$ and the angle between b and c is \cos^{-1} (1/4), then b - 2c = λ a where λ =

A. 4

B. 3

C. 2

D. 1

Answer: A

46. The vector area of the parallelogram whose adjacent sides are i + j + k, 2i - j + 2k is A. 3(i + k)B. 3(i - k)C. (2i + j - 2k)D. -2i - j - 2k

Answer: B

Watch Video Solution

47. The area of the parallelogram whose adjacent sides are 3i + 2j + k and

3i + k is

B. $10\sqrt{2}$

 $\mathsf{C.}\,2\sqrt{10}$

D. 20

Answer: C

Watch Video Solution

48. The vector area of the parallelogram whose diagonals are I + j - k, 2i - j

+ 2k is

A.
$$rac{1}{2}(I+4j3k)$$

B. $rac{1}{2}(I-4j+3k)$
C. $rac{1}{2}(I+4j+3k)$
D. $rac{1}{2}(I-4j-3k)$

Answer: D

Watch Video Solution

49. The area of the parallelogram whose diagonals are I - 3j + 2k, -I + 2j is

A.
$$4\sqrt{29}$$
 sq. unit
B. $\frac{1}{2}\sqrt{21}$ sq. unit
C. $10\sqrt{3}$ sq. unit
D. $\frac{1}{2}\sqrt{270}$ sq. unit

Answer: B

Watch Video Solution

50. The vector area of the rectangle whose adjacent sides are 2i + 3j, 4k is

A. 12i + 8j

B. 12i - 8j

C. -12i - 8j

D. - 12i + 8j

Answer: B

51. The vector area of the triangle whose adjacent sides are I - 2j + 2k, 3i +

2j - 5k is

A.
$$rac{1}{2}(6i+11j-8k)$$

B. $rac{1}{2}(6i-11j+8k)$
C. $rac{1}{2}(6i+11j+8k)$
D. $rac{1}{2}(6i-11j-8k)$

Answer: C

52. The area of the triangle whose sides are given by 2i - 7j + k and 4j - 3k is

A. 17

B. 17/2

C.17/4

D.
$$\frac{1}{2}\sqrt{389}$$

Answer: D

Watch Video Solution

53. The vector area of the triangle with vertices I + j + k, I + j + 2k, I + 2j + k

is

A. I + j + k

B. -iC. $\frac{1}{2}i$

$$\mathsf{D.}-\frac{1}{2}i$$

Answer: D

54. The area of the triangle formed by the points whose position vectors are 3i + j 5i + 2j + k, I - 2j + 3k is

A. $\sqrt{23}$ sq. unit

B. $\sqrt{21}$ sq. unit

C. $\sqrt{29}$ sq. unit

D. $\sqrt{33}$ unit

Answer: C

> Watch Video Solution

55. The area of the triangle with vertices (1,2,3), (2,5,-1), (-1,1,2) is

A. 6 sq. unit

B.
$$\sqrt{3/2}$$
 sq. unit
C. $\sqrt{29}$ sq. unit

D. $\frac{1}{2}\sqrt{155}$ sq. unit

Answer: D

Watch Video Solution

56. The vector area of the ΔABC whose vertices are a,b,c is

A.
$$\{(a \times b) + (b \times c) + (c \times a)\}$$

B. $\frac{1}{2}\{(a \times b) + (b \times c) + (c \times a)\}$
C. $2\{(a \times b) - (b \times c) + (c \times a)\}$

D. none of these

Answer: B

57. If a,b,c are the position vectors of A,B,C of ΔABC then (a imes b)+(b imes c)+(c imes a) =

A. (1/2) (Area ΔABC)

B. 2 (Area ΔABC)

C. 3 (Area ΔABC)

D. none

Answer: B

Watch Video Solution

58. If
$$\left|\overrightarrow{a}\right| = \sqrt{3}$$
, $\left|\overrightarrow{b}\right| = 2$, $\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{\pi}{3}$, then the area of the triangle with adjacent sides $\overrightarrow{a} + 2\overrightarrow{b}$ and $2\overrightarrow{a} + \overrightarrow{b}$ (in sq.u) is

A. $3\sqrt{3}$ sq. unit

B. $9\sqrt{3}$ sq. unit

C.
$$rac{9\sqrt{3}}{2}$$
 sq. unit

D.
$$\frac{9}{2}$$
 unit

Answer: C

59. If the area of the parallelogram whose adjacent sides are $3\overrightarrow{i} - 4\overrightarrow{j} + \lambda\overrightarrow{k}, 2\overrightarrow{j} - 4\overrightarrow{k}$ is $\sqrt{436}$ sq. units $(\lambda \ge 0)$, then $\lambda =$

A. 0

B. 4

C. 1

D. 3

Answer: A

60. If a = 2i + 2j + k, a.b = 14, $a \times b$ = 3i + j - 8k then b =

A. 5i + j + 2k

B. 5i - 5j + 2k

C. 5i + 5j - 2k

D. 5i - 5j - 2k

Answer: A

Watch Video Solution

61. If a = (1,1,1) c = (0,1, -1) are given vectors then a vector b satisfying the

equations a imes b = c and a.b = 3 is

A.
$$5i + 2j + 2k$$

B. $\frac{5}{2}I + j + k$
C. $\frac{5}{3}I\frac{2}{3}j + \frac{2}{3}K$
D. $I + \frac{2}{5}j + \frac{2}{5}k$

Answer: C

62. If a = 2i + k, b = 1 + j + k, c = 4i - 3j + 7k. The vector r satisfying $r \times b = c \times b$ and r.a = 0 is A. 1 + 8j + 2kB. 1 - 8j + 2kC. -1 - 8j + 2kD. 1 - 8j - 2kAnswer: C

View Text Solution

63. The vector c is perpendicular to both a = (1, -2, -1), b = (2, 1, -1) and c also

satisfyies $|c imes (I-j+k)|=2\sqrt{6}$ then c =

A.
$$\pm (3i - j + 5k)$$

B. $\pm (-4i + 5j + k)$
C. $\pm (I + j + k)$
D. none

Answer: A

View Text Solution

64. If a,b are two unit perpendicular vectors and c is a unit vector which is inclined an angle 0 with a and b. if c = $\alpha a + \beta b + \gamma (a \times b)$ and γ^2 =

A. $\cos 2\theta$

 $\mathrm{B.}-\cos2\theta$

C. sin 2θ

 $\mathsf{D.} - \sin 2 heta$

Answer: B

65. If a = I + 2j + 3k, b = -I + 2j + k, c = 3i + j and d is normal to both a and b,

A.
$$\cos^{-1}\left(\frac{4}{\sqrt{30}}\right)$$

B. $\sin^{-1}\left(\frac{4}{\sqrt{30}}\right)$
C. $\cos^{-1}\left(\frac{2}{\sqrt{30}}\right)$
D. $\sin^{-1}\left(\frac{2}{\sqrt{30}}\right)$

Answer: A

66. If x.a = 0, x imes b = c imes b then x =

A.
$$c - \frac{c. a}{b. a}b$$

B. $c - \frac{c. a}{c. b}a$

$$\mathsf{C.} \, a - \frac{c.\,a}{c.\,b} b$$
$$\mathsf{D.} \, b - \frac{c.\,a}{c.\,b} b$$

Answer: A

67.
$$r imes a=b imes a, r imes b=a imes b, r imes b=a imes b,
eq 0, b
eq 0, a
eq \lambda b$$
, a

is not perpendicular to b $\ \Rightarrow \ r$ =

A. a - b

B.a+b

 $\mathsf{C}.\,a imes b+a$

D. a imes b + b

Answer: B

68. Let a = 1 + j, b = 2i - k. Then the point of intersection of the lines $r \times a = b \times a$ and $r \times b = a \times b$ is A. -I + j + kB. 3i - j + kC. 3i + j - kD. 1 - j - k

Answer: C

Watch Video Solution

69. The perpendicular distance from A (1,4,-2) to the line BC, where B = (2, -2)

1, -2) and C = (0, -5, 1) is

A.
$$\frac{\sqrt{26}}{7}$$

B. $\sqrt{\frac{26}{7}}$
C. $\frac{2\sqrt{26}}{7}$

D.
$$\frac{3\sqrt{26}}{7}$$

Answer: D

70. The perpendicular distance from the point 3i - 2j + k to the line joining the points I - 3j + 5k, 2i + j - 4k is

A. 7

B. $\sqrt{3}$

C. $2\sqrt{3}$

D. $7\sqrt{3}$

Answer: B

View Text Solution

71. If A (1,2,3), B (2,3,1), C (3,1,2) then the length of the altitude through C is

A. 3 B. $3\sqrt{3}$ C. $3\sqrt{2}$

D. $3/\sqrt{2}$

Answer: D

View Text Solution

72. The torque about the point 2i + j - K of a force represented by 4i + k

acting through the point (I - j + 2k) is

A. 2i + 13 j + 8k

B. 2i + 13 j - 8k

C. 2i - 13j + 8k

D. -2i + 13j + 8k

Answer: D

73. A force F = $2i - \lambda j + 5k$ is applied at the point A (1,2,5). If its moment

about the point (-1, -2, 3) is 16i - 6j + 2 λ k, then λ =

 $\mathsf{A.}-2$

- $\mathsf{B.}-1$
- C. 0

D. 2

Answer: A

Watch Video Solution

Exercise 1 C Triple Product Of Vectors

1. [I - j j - k k - i] =

A. 0

B. 1

C. - 1

D. 2

Answer: A

Watch Video Solution

2. If a = I + j - k, b = I - j + k, c = I - j - k then $a \times (b \times c)$ =

A. 0

B. 1

C. −1

D. 2

Answer: A

Watch Video Solution

4. $(a + 2b - c) . (a - b) \times (a - b - c) =$

A. -[abc]

B. 2 [a b c]

C. -2 [a b c]

D. 0

Answer: C

View Text Solution

5. If a is perpendicular to b and c, |a| = 2, |b| = 3, |c| = 4 and the angle

between b and c is $2\pi/3$ then [a b c] =

A. 24

B. 12

C. $12\sqrt{3}$

D. $24\sqrt{3}$

Answer: C

6. If u,v,w are non-coplanar vectors and p,q are real numbers, then the equality [3u pv pw] - [pv w qw] - [2w qv qu] = 0 holds for

A. exactly two values of (p,q)

B. more than two but not all value of (p,q)

C. all values of (p,q)

D. exactly one value of (p,q)

Answer: D

7. If x,y,z are non-zero real numbers, a = xi + 2j, b = yi + 3k and c = xi + yi + 3k

zk are such that $a \times b$ = zi - 3j + k then [a b c] =

A. 10

B. 9

C. 6

D. 3

Answer: B

B. 0

C. 2

D. 3

Answer: A

9. The volume of parallelopiped with edges I, I + j, I + j + k is

A. O B. 1 C. 2 D. 3

Answer: B

Watch Video Solution

10. The volume of the parallelopiped whose coterminal edges are 2i - 3j +

4k, I + 2j - 2k, 3i - j + k is

A. 5

B. 6

C. 7

D. 8

Answer: C

11. The volume of the parallelopiped whose edges are represented by 2i -

3j , i + j - k, 3i - k is

A. -1

B. 2

C. 3

D. 4

Answer: D

12. The volume of the parallelopiped with edges (2, -3, 0), (1,1, -1), (3,0, -1) is

A. 1	
B.4	
C. 2	
D. 8	

Answer: B

Watch Video Solution

13. If [a b c] = 3, then the volume (in cube units) of the parallelopiped with

2a + b, 2b + c and 2c + a as coteminous edges is

A. 15

B. 22

C. 25

D. 27

Answer: D

14. The volume of the parallelopiped whose sides are OA = $(\lambda+1)i + \lambda(\lambda+1)j + k, OB = (\lambda+2)i + (\lambda+1)(\lambda+2)j + k, OC = 0$ is

A. 2

 $\mathrm{B.}\,4\lambda$

 $\mathsf{C.}\,\lambda+3$

D. none

Answer: A

15. The volume of the parallelopiped whose sides as OA = $(\lambda + 2)i + (\lambda + 2)(\lambda + 1)j + k$. $OB(\lambda + 3)I + (\lambda + 2)(\lambda + 3)j + k$ and OC = $(\lambda + 4)i + (\lambda + 3)(\lambda + 4)j + k$ is A. 2λ

 $\mathrm{B.}\, 3\lambda$

C. 4λ

D. 2

Answer: D

Watch Video Solution

16. Let Oa,Ob,OC be the co-terminal edges of a rectangular parallelopiped of volume V and let P be the vertex opposite to O. Then [APBPCP] =

A. 2V

B. 12V

C. $3\sqrt{3}$ V

D. 0

Answer: A

17. The volume of the tetrabodron with vertices at (0,0,0), (1,0,0),(0,1,0), (0,0,1) is

- A. 1
- B. 1/2
- C.1/3
- D. 1/6

Answer: D

Watch Video Solution

18. The volume of the tetrahedron formed by (1,2,3), (4,3,2), (5,2,7),(6,4,8) is

A. 22/3

B. 11/3

C.1/3

D. 16/3

Answer: D

Watch Video Solution

19. The volume of the tetrahedron formed by 4i + 5j + k, -j + k, 3i + 9j + 4k, 4 (-l + j + k) is

A. 7

B. 9

C. 11

D. 13

Answer: C

20. The volume of (in cubic units) of the tetrahedron with edges I + j + k, I

- j + k and I + 2j - k is

A. 4

B. 2/3

C.1/6

D. 1/3

Answer: B

Watch Video Solution

21. If a,b,c are noncoplanner vectors then $\frac{a. (b \times c)}{(c \times a). B} + \frac{b. (a \times c)}{c. (a \times b)}$ =

- A. 0
- B. 1

C. 2

D. - 1

Answer: A

Watch Video Solution

23. If $(a-\lambda b).$ (b-2c) imes (c+3a)=0 then λ =

A. -1

- B.-3
- C. 6

D. - 1/6

Answer: D

24. If a.i = 4 then (a. j) imes (2j - 3k) =

A. 12

B. 2

C. 0

 $\mathsf{D.}-12$

Answer: D

Watch Video Solution

25. $\{a.~(b imes i)\} + \{a.~(b imes j)\}j + \{a.~(b imes k)\}k$ =

A. 2(a imes b)

B. 3(a imes b)

 $\mathsf{C.}\left(a imes b
ight)$

D. none

Answer: C

26.
$$(a+b) imes c + (b+c) imes a + (c+a) imes b$$
 =

A. 0

 $\mathsf{B.}-[abc]$

C. 2 [a b c]

D. [a b c]

Answer: D

Watch Video Solution

27. (a - b) . (b - c) \times (c - a) =

A. (b imes c)

B. 2a.~(b imes c)C. 3a(b imes c)

D. 0

Answer: D

Watch Video Solution

28. C. (b + c) \times (a + b + c) =

A. c.~b imes a

B. 0

C. c.~a imes b

 $extsf{D.} - ac imes b$

Answer: A

29. If u,v,w are three nonceplannar vectors then (u + v - w), (u - v) \times (v -

w) =

A. 0

 $\mathsf{B}.\,u.\,v\times w$

 $\mathsf{C}.\, u.\, w \times v$

D. 3u.~V imes w

Answer: D

View Text Solution

30. If a,b,c are three vectors such that [abc]=5, then the value of [a×bb×cc×a] is

A. 15

B. 20

C. 25

D. 54

Answer: C

32. If a,b,c are linearly independent, $\frac{(a+2b).(2b+c) \times (5c+a)}{a.(b \times c)} = k$ then k is A. 10 B. 14 C. 18 D. 12

Answer: D

View Text Solution

33. Let a,b and C be three non - coplanar vectors and let p,q and r be the vectors defined by $p = \frac{b \times c}{[abc]}$. $Q = \frac{c \times a}{[abc]}$. $R\frac{a \times b}{[abc]}$. Then (a + b). P + (b + c) q + (C + a) . R =

A. 0

B. 1

C	С
Ċ.	2

D. 3

Answer: D

A. 8/5

B. 5/8

C. 0

D. 1

Answer: A

35. If the vectors 2i - j + k, I + mj. I + j + k are coplannar then the value of m

is

A. 1

- B. -1
- $\mathsf{C}.-2$
- D. 2

Answer: C

Watch Video Solution

36. If the three vectors 2i - j + k, l + 2j - 3k and $3i + \lambda j + 5k$ are coplanar

then λ =

A. 4

 $\mathsf{B.}-4$

Answer: B


```
37. If I - 2j, 3j + k and \lambda I + 3j are coplanar. Then \lambda=
```

A. - 1

B. 1/2

C. - 3/2

D. 2

Answer: C

Watch Video Solution

38. If I + j + k, I - j, I + 2j + ak are coplanar then a is

A. 3/2

B. 3

C. -3

D. 0

Answer: A

Watch Video Solution

39. If 3i + 3j + $\sqrt{3}k$, I + k, $\sqrt{3}$ I + $\sqrt{3}\lambda$ k are coplanar, then λ =

A. 1

B. 2

C. 3

D. 4

Answer: A
40. If a,b,c are non-coplanar vectors and λ is a real number, then the vectors a + 2b + 3c, λb + 4c and $(2\lambda - 1)$ c are non coplanar for

A. all values of λ

B. no value of λ

C. except two values of λ

D. except one value of λ

Answer: C

View Text Solution

41. Let a = I + j + k, b = I - j + 2k and c = xi + (x - 2)j - k. If the vector c lies in

the plane of a and b. then x equals

A. 0

B. 1

C. - 4

 $\mathsf{D.}-2$

Answer: D

42. Let a = I - 2j + 3k, b = 2i + 3j - k and c = λ I + j + $(2\lambda - 1)$ k. If c is parallel

to the plane containing a,b then λ =

A. 0

B. 1

C. -1

D. 2

Answer: A

View Text Solution

43. If the vectors ai + j + k, l + bj + k, l + j + ck ($a \neq b, c \neq 1$) are coplanar, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ A. 0 B. 3 C. 2 D. 1

Answer: D

View Text Solution

44. Let a,b,c the distinct non-negative numbers. If the vectors ai + aj + ck, I

+ k and ci + cj + bk lie in a plane, then c is

A. the arthematic mean of then c is

B. the geometric mean of a and b

C. the harmonic mean of a and b

D. equal to zero

Answer: B

Watch Video Solution

45. If a = i + j + k, b = 4i + 3j + 4k, c = i + $\alpha j + \beta k$ are linearly dependent and $|c| = \sqrt{3}$ then

A. $\alpha = 1, \beta = -1$

- $\texttt{B.}\,\alpha=1,\beta=~\pm\,1$
- $\mathsf{C}.\,\alpha=\,-\,1,\beta=\,\pm\,1$
- $\mathsf{D}.\,\alpha=\,\pm\,1,\beta=1$

Answer: D

Watch Video Solution

46. If the volume of the parallelopiped whose edges are represented by

12i + λ k, 3j = k, 2i + j - 15K is 546 then λ =

A. 1

- B. 2
- C. 3

D. 4

Answer: C

View Text Solution

47. If a = 2i + 3j, b = I + j + k, c = λ I + 4j + 2k are the edges of a

parallelopiped of volume 2 cubic units, then a value of λ is

A. 1

B. 2

C. 3

Answer: D

48. If the volume of the parallelopiped with eoterminus edges 4i + 5j + k, j + k and 3i + 9j + pk is 34 cubic units, then the negative value of p =

A. 4

 $\mathsf{B.}-13$

C. 13

D. 6

Answer: B

Watch Video Solution

49. The value of k for which the points A (1,0,3), B (-1,3,4) C (1,2,1) and D(k,2,5) are coplanar is

A. 1

B. 2

C. 0

 $\mathsf{D.}-1$

Answer: D

Watch Video Solution

50. If the points 3i - 2j - k, 2i + 3j - 4k, 1 + j + 2k, $4i + 5j + \lambda k$ are coplanar

then λ =

A. 12

B. - 94/7

C.3/2

Answer: B

51. If the volume of the tetrahedron with edges 2i + j - k, 1 + aj + k and 1 + 2j

- k is one cubic unir then a =

- A. 1
- B. -1
- C. 2
- $\mathsf{D.}-2$

Answer: C

View Text Solution

52. The volume of the tetrahedron having the edges I + 2j + k, I + j + k, I - j

+ λ K as coteninous is 2/3 cubic units. Then λ =

A. 1 B. 2 C. 3

D. 4

Answer: A

View Text Solution

53. If a,b,c,d are the position vectors of A,B,C,D respectively then the volume of the tetrahedron ABCD is

A.
$$\pm rac{1}{6}\{[abc]-[abd]+[acd]-[bcd]\}$$

B. {[a b c] - [a b d] + [a c d] - [b c d]}

$$\mathsf{C}.\pmrac{1}{6}\{[bca]-[cba]+[acd]-[bcd]\}$$

$$extsf{D}.\pmrac{1}{8}\{[bac]-[acd]+[abd]-[bcd]\}$$

Answer: A

54. If d = x (a imes b) + y(b imes c) + z(c imes a) and [a b c] = 1/8, then x + y + z =

A. 8.d (a + b + c)

B. d. (a + b + c)

C. 4d. (a + b + c)

D. none

Answer: A

View Text Solution

55. If a,b,c are non-coplanar vector and λ is a real number then $\left[\lambda(a+b)\lambda^2b\lambda c
ight]-[ab+cb]$ for

A. exactly one value of λ

B. no value of λ

C. exactly three values of λ

D. exactly two value of λ

Answer: B

View Text Solution

56. Let a = I - k,k b - xi + j + (1 - x) k and c = yi + xj + (1 + x - y) k. Then [a b c]

depends on

A. only y

B. only x

C. both x and y

D. neither x or y

Answer: D

View Text Solution

57. let a be unit vector, b = 2i + j - k and c = I + 3k. The maximum value of [a

b c] is

Watch Video Solution

58. The vectors a + 2b + 3c, 2a + b - 2c, 3a - 7c are

A. coplanar

B. collinear

C. noncoplanar

D. none

Answer: A

Niew Text Solution

59. The points 2a + 3b - c, a - 2b + 3c, 3a + 4b - 2c, a - 6b + 6c are

A. collinear

B. coplanar

C. noncoplanar

D. none

Answer: B

View Text Solution

60. The vectors 5i + 6j + 7k, 7i - 8j + 9k, 3i + 20j + 5k are

A. coplanar

B. collinear

C. neocoplanar

D. none

Answer: A

View Text Solution

61. The points (2,1, -1), (1,1,1), (2,2,1), (0,2,5) are

A. coplanar

B. collinear

C. noncoplanar

D. none

Answer: A

View Text Solution

62. Let a = 2i + j + k, b = I + 2j - k and a unit vector c be coplanar. If c is

perpendicular to a, then c =

A.
$$rac{1}{\sqrt{2}}(-j+k)$$

B. $rac{1}{\sqrt{3}}(-j-j-K)$
C. $rac{1}{\sqrt{5}}(j-2j)$
D. $rac{1}{\sqrt{3}}(I-j-k)$

Answer: A

View Text Solution

63. A unit vector coplanar with I + j + 3k and I + 3j + k and perpendicular

to I + j + k is

A.
$$rac{1}{\sqrt{2}}(j+k)$$

B. $rac{1}{\sqrt{3}}(I-j+k)$
C. $rac{1}{\sqrt{2}}(j-k)$

D.
$$rac{1}{3}(I+j-k)$$

Answer: C

View Text Solution

64. The shortest distance between the straight line passing through the point A = (6, 2, 2) and parallel to the vector (1, -2, 2) and the straight line passing through $A^1 = (-4, 0, -1)$ and parallel to the vector (3, -2, -2) is

A. 9 B. 8

C. 5

D. 2

Answer: A

Watch Video Solution

65. The shortest distance between the line r = (1 + 2j + 3k) + t (1 + 3j + 2k)and r = (4i + 5j + 6k) + t (2i + 3j + k) is A. 3 B. $2\sqrt{3}$ C. $\sqrt{3}$

D. $\sqrt{6}$

Answer: C

View Text Solution

66. The shortest distance between the line $r = 3i + 5j + 7k + \lambda (I + 2j + k)$

and $r = I - j - k + \mu$ (7i - 6j + k) is

A.
$$\frac{16}{5\sqrt{5}}$$

B. $\frac{26}{5\sqrt{5}}$
C. $\frac{36}{5\sqrt{5}}$

D.
$$\frac{46}{5\sqrt{5}}$$

Answer: D

67. If A = (1,-2, -1), B = (4, 0, -3) C = (1,2, -1) and D = (2, -4, -5) then the

distance between AB and CD is

A. 2/3

B. 4/2

C. 3/2

D. 5/3

Answer: B

View Text Solution

68. $(I \times j) \times k + (j \times k) \times I + (k \times i) \times j$ =

A. I + k

B.i

C. j

D. 0

Answer: D

Watch Video Solution

69. $(a \times b) \times c + (b \times c) \times a + (C \times a) \times b$ =

A. 0

B.a

C. b

D. c

Answer: A

C. (c.a) b - (c.b) a

D. (c.b)a - (c.a) t

Answer: B

View Text Solution

71. a imes (b imes c), b imes (c imes a, c imes (a imes b) are

A. coplanar

B. collinear

C. non-coplanar

D. none

Answer: A

View Text Solution

72. If a = 2i + 3j + 5k, b = - I + j + k, c = 4i + 2j + 3k then $(a \times b) \times c$ =

A. 8i - 19j - k

B. -I - 4j + 4k

C. 7i + 3i - k

D. -I - 5j - 5k

Answer: B

View Text Solution

73. If a = I + j - k, b = I - j + k, c = I - j - k then $a \times (b \times c)$ =

A. I - j + k

B. 2i - 2j

C. 3i - j + k

D. 2i + 2j - k

Answer: B

Watch Video Solution

74. If a = i- 2j + k, b = 2i + j - k, c = 4i + 4j + 3k then $|(a \times b) \times c|$ =

A. $\sqrt{474}$

B. $\sqrt{33}$

C. $\sqrt{74}$

D. $\sqrt{130}$

Answer: A

D. $\sqrt{5}$

Answer: D

Watch Video Solution

76. If a = I + j + k, b = i+ j, c = I and $(a imes b) imes c = \lambda a + \mu b$, then $\lambda + \mu$ =

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

77. If
$$\bar{a} = \frac{1}{\sqrt{10}} (3\bar{i} + \bar{k})$$
 and $\bar{b} = \frac{1}{7} (2\bar{i} + 3\bar{j} - 6\bar{k})$, then the value of $(2\bar{a} - \bar{b}) \cdot [(\bar{a} \times \bar{b}) \times (\bar{a} + 2\bar{b})]$

A. 5

B. 3

C.-5

 $\mathsf{D.}-3$

Answer: C

Natch Video Solution

78. I imes (a imes i) + j imes (a imes j) + k imes (a imes k)=

A. 3a B. 2a

C. a

D. 0

Answer: B

View Text Solution

79.
$$a = I + j - 2k \Rightarrow \sum \left\{ (a imes i) imes j
ight\}^2$$

A. $\sqrt{6}$

B. 6

C. 36

D. $6\sqrt{6}$

Answer: B

Answer: C

View Text Solution

81. $(A \times B)$. $\{(B \times C) \times (C \times A)\}$ =

A. (B+C). $\{(C+A) imes (A+B)\}$

 $\mathsf{B.}\left\{A.\left(B\times C\right)\right\}^2$

C. 2A.~(B imes C)

D. none

Answer: B

View Text Solution

82. If $[a imes bb imes cc imes a]\lambda [abc]^2$ then λ is equal to

A. 0

B. 1

C. 2

D. 3

Answer: B

Watch Video Solution

83. $a \times [a \times (a \times b)]$ = A. $a^2(a \times b)$ B. $a^2(b \times a)$ C. $-a^2(b \times a)$ D. $a. (b \times a)$

Answer: B

Watch Video Solution

84. $(b \times c) \times (c \times a)$ =

A. [a b c] c

B. [a b c] b

C. [a b c] a

D. a imes (b imes c)

Answer: A

85. If a = I + 2j - 3k, b = 2i + j + k, c = I + 3j - 2k then
$$(a \times b) \times (b \times c)$$
 =

A. [a b c] a

B. [a b c] b

C. [a b c] c

D. [a b c]

Answer: B

Watch Video Solution

86. [(a imes b) imes (a imes c)]. D =

A. (a.d) [a b c]

B. (b.d) [a b c]

C. (c.d) [a b c]

D. 0

Answer: A

View Text Solution

87.
$$a imes \{b imes (C imes a) + (p imes q)\}$$
 =

A. (a.q) P - (a.p) q + (b.a)
$$(a imes c) - (b imes c)$$

B. (a.q) p - (a.p) q + (b.a) (a imes c)

 $\mathsf{C}.\,a imes(p imes q)+[abc]c$

D. none of these

Answer: B

View Text Solution

88. If a is a unit vector, a imes r = b, a. r = c, a. b = 0 then r is

A. ca - a imes bB. b - a imes bC. ca + a imes bD. cb + a imes b

Answer: A

Watch Video Solution

89. a,b are non-zero vectors, c is given non-zero scalar such that a is perpendicular to b. Then the vector x satisfying the equaitons a. x = c and $a \times x = b$ is

A.
$$ca - (a imes b)$$

B. $ca - \displaystyle rac{a imes b}{\left|a
ight|^2}$
C. $\displaystyle rac{ca - (a imes b)}{\left|a
ight|^2}$

D.
$$rac{ca}{\left|a
ight|^2}-(a imes b)$$

Answer: C

90. If a and b are two non-zero perpendicular vectors, then a vector y satisfying equations a. y = c (c scalar) and $a \times y = b$ is

A.
$$|a|^{2}(ca - (a imes b))$$

B. $|a|^{2}(ca + (a imes b))$
C. $rac{1}{|a|^{2}}(ca - (a imes b))$
D. $rac{1}{|a|^{2}}(ca + (a imes b))$

Answer: C

Watch Video Solution

91. The vectors \overrightarrow{a} and \overrightarrow{b} are not perpendicular and \overrightarrow{c} and \overrightarrow{d} are two vectors satisfying $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ and $\overrightarrow{a} \cdot \overrightarrow{d} = 0$. Then the vector \overrightarrow{d} is equal to

$$A.b + \left(\frac{b.c}{a.b}\right)c$$
$$B.c - \left(\frac{a.c}{a.b}\right)b$$
$$C.b - \left(\frac{b.c}{a.b}\right)c$$
$$D.c + \left(\frac{a.c}{a.b}\right)b$$

Answer: B

Watch Video Solution

92. If a,b,c are nonzero vectors, then $(a \times b) \times c = a(b \times c)$ iff $(a \times c) \times b =$ A. a + b B. O C. a

D. b

Answer: B

View Text Solution

93. If a,b,c are three unit vectors such that $a imes (b imes c) = rac{1}{2}b$ then the

angles between a,b and a,c are

A. 90° . 90°

 $\mathrm{B.}\,90^{\,\circ}\,.\,60^{\,\circ}$

C. 60° . 90°

D. 60° . 30°

Answer: B

Watch Video Solution

94. Let a.b and c be non-zero vectors such that $(a \times b) \times c = \frac{1}{3}|b||c|a$. If θ is the acute angle between the vectors b and c then sin θ =

A. $\frac{1}{3}$ B. $\frac{2\sqrt{2}}{3}$ C. $\frac{2}{3}$ D. $\frac{\sqrt{2}}{3}$

Answer: B

Watch Video Solution

95. If (a imes b) imes c = a imes (b imes c). Where a,b and c are any three vectors

such that $a.\ b
eq 0, b.\ c
eq 0$ then a and c are

A. perpendicular

B. parallel

C. inclined at an angle of $\pi/3$ between them

D. inclined at an angle of $\pi\,/\,6$ between them

Answer: B

96. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are unit vectors, then the vectors
 $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \left(\overrightarrow{b}\right)\right)$ is parallel to the vector.
A. \overrightarrow{a} . \overrightarrow{b}
B. \overrightarrow{a} . \overrightarrow{b}
C. $\overrightarrow{a} - \overrightarrow{b}$
D. $2\overrightarrow{a} + \overrightarrow{b}$

Answer: C

Watch Video Solution
97. $(a \times b)$. $(a \times c)$ =

A. (a.c) (b.c) - (a.b) (b.c)

B. (a.b) (b.c) - (a.b) (a.b)

C. (a.a) (b.c) - (a.b). (a.c)

D. (a.a) (b.b) - (a.b) (a.c)

Answer: C

View Text Solution

98. If a imes b = c imes d, a imes c = b imes d then

A. 0

B. |a + b + c|

C. [a b c]

D. (a.b) (c.d)

Answer: A

View Text Solution

100. If the four vectors a,b,c,d are coplanar, then (a imes b) imes (c imes d) =

В	•	а

C. b

D. 0

Answer: D

Watch Video Solution

101. If a = I + j + k, b = I + j - k, c = I - j + k, d = I - j - k then $(a \times b)$. $(c \times d)$ =

A. 0

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

102. If a = 2i + j - 3k, b = I - 2j + k, c -I + j - 4k, d = I + j + k then $(a \times b) \times (c \times d) =$

A. $5\sqrt{114}$

 $\mathsf{B.}\,\sqrt{114}$

C. $5\sqrt{134}$

D. $\sqrt{134}$

Answer: A

Watch Video Solution

103. The vector equation of a straight line passing through \bar{a} and perpendicular to \bar{b} and \bar{c} is

A.
$$r-a=(b imes c)$$

 $\mathsf{B}.\,r=a\times(b\times c)$

 $\mathsf{C}.\,r-b=t(a\times c)$

D.
$$r = b \times (a \times c)$$

Answer: A

104. The perpendicular distance of the point c from the line joining a and b is

A.
$$\frac{|b \times c + c \times a + a \times b|}{|b - a|}$$
B.
$$\frac{|b \times c - c \times a + a \times b|}{|b - a|}$$
C.
$$\frac{|b \times c + c \times a - a \times b|}{|b - a|}$$
D.
$$\frac{|b \times c - c \times a - a \times b|}{|b - a|}$$

Answer: A

Watch Video Solution

105. If a,b,c,d are four vectors then (A imes b) imes (C imes d) =

A. [a d c] a - [b c a] a

B. [a c d] b - [b c d] a

C. [a c b] c - [b c d] c

D. [a c d] b - [b a d] c

Answer: B

Watch Video Solution

106. If the vectors b, c, d are not coplanar, then the vector $(a \times b) \times (c \times d) + (a \times c) \times (d \times b) + (a \times d) \times (b \times c)$ is

A. [b c d]a

B. 2 [b c d] a

 $\mathsf{C}.-[bcd]a$

 $\mathsf{D.}-2[bcd]a$

Answer: D

View Text Solution

108. a.b' + b.c' + c.a' =

A. 0

D	1
р.	1

C. 2

D. 3

Answer: A

View Text Solution

109. [a b c] [a' b' c'] =

A. 0

B. 1

C. 2

D. 3

Answer: B

View Text Solution

110. (a + b). A' + (b + c). B' + (c + a). C' =

B. 1

A. 0

C. 2

D. 3

Answer: D

View Text Solution

111. If a,b,c are three non-coplanar vectors and if r is any vector then r =

C. (r. a') a - (r. b') b - (r. c') c

D. (a.a') a + (b. b') b + (c. c') c

Answer: A

112.
$$a' \times b' + b' \times c' + c' \times a'$$
 =

A.
$$\frac{a+b+c}{[abc]}$$

B.
$$\frac{a-b-c}{[abc]}$$

C.
$$\frac{a+b+c}{[bac]}$$

D.
$$\frac{a+b+c}{2[abc]}$$

Answer: A

View Text Solution

Exercise 2 Special Type Questions Set A

1. I : The vector 6i + 2j + k, 2i - 9j + 6k are mutually perpendicular.

II : The vectors I + 2j - , 2i + j + k are mutually perpendicular

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: A

Watch Video Solution

2. I : If the vectors a = (1, x, -2), b = (x, 3, -4) are mutually perpendicular, then

x = 2

II : If a = I + 2j + 3k, b = -I + k, c = 3i + j and a + b is perpendicular to c then

t = 5.

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: B

View Text Solution

3. I : If $|\mathsf{a} + \mathsf{b}| = |\mathsf{a} - \mathsf{b}|$ then (a,b) $= \pi/2$

II : If a,b, a+ b are unit vectors then (a,b) $\,=\,2\pi\,/\,3$

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: C

View Text Solution

4. If |a.b| =
$$|a imes b|$$
 then (a,b) $= \pi/4$

5. I : If
$$|a + b| = |a - b|$$
 then $|a \times b| = 0$
II : $(a \times b)^2 + (a, b)^2 = |a|^2 |b|^2$

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: B

View Text Solution

6. I : If (a + b) c = (a - b) c = 0 then (a imes b) imes c = 0

II : If a imes (b imes c) is a vector perpendicular to a,b,c

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: A

View Text Solution

7. I : For any vector a,
$$(a imes i)^2+(a imes j)^2+(a imes k)^2=2a^2$$
 and $(a.\,i)^2+(a.\,j)^2+(a.\,k)^2=a^2$

II : If $(2i + 4j + 2k) \times (2i - xj + 5k) = 16 I - 6j + 2xk$ then x = 2

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: A

D View Text Solution

8. Statement I : If a and b are any two vectors, then $|a imes b|^2 + |a, b| = |a|^2 |b|^2$

Statement II : If a and b any two vectors then $\left|a imes b
ight|^2 = egin{array}{cc} a. & a. & b \ b. & a & b. \ b \end{pmatrix}$. Then

A. Both statement are true and II is a correct explanation of I

B. Both statements are true, but II is not a correct explanation of I

C. I is true and II is false

D. I is false and II is true

Answer: A

9. I : If a = I + j - k, b = 2i - 3j + 2k, c = 13 I - 7j + 3k then [a b c] = 0

II : If a,b,c are mutually perpendicular unit vector then $\left[abc
ight]^2=1$

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: C

View Text Solution

10. The volume of the parallelopiped with edges 2i - 4j + 5k, I - j + k, 3i - 5j + k

2k is -8

Watch Video Solution

11. If the vectors 2i -- 3j + 4k, I + 2j - k, xi - j + 2k are coplanar then x = 8/5

12. I :
$$I imes (a imes i) + j imes (a imes j + k imes (a imes k) = 2a$$

 ${\sf II}: I imes [(a imes b) imes i) + j imes [(a imes b) imes j) + k imes [(a imes b) imes k) = 0$

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: A

13. I : If a,b,c,d are four vectors then [b c d] a + [c a d] b + [a b c] c = [a b c]d

II : The points with position vectors a,b,c,d are coplanar then

[a b d] + [b c d] + [c a d] = [a b c]

A. only I is ture

B. Only II is ture

C. both I and II are true

D. Neither I nor II are true

Answer: C

View Text Solution

Exercise 2 Special Type Questions Set B

1. The value of a.b where a = 2i - 3j -k, b = 3i + 2j - 2k

Watch Video Solution

2. Arrange the value of |a + b + c| in ascending order

(A) If a,b,c are mutually perpendicular unit vectors

(b) If a,b,c are vectors of lengths 2,3,4 respectively and if a,b,c are perpendicular to b + c, c + a, a + b respectively.

If a,b,c are vector of length 4,4,5 respectively and a,b,c are perpendicular to b + c, c + a, a + b respectively.

A. A,B,C

B. C,B,A

C. B,C,A

D. B,A,C

Answer: A

View Text Solution

3. Arrange the following angles in ascending order

(A) Angle between the vectors I + 3j + 4k and I - 3j + 2k

(B) Angle between the planes r. (2i - j + k) = 7 and r. (I + j + 2k) = 11

(C) Angle between the lines r = x(I + 2j + 2k) and r = t(3i + 2j + 6k)

A. A,B,C

B. C,B,A

C. B,C,A

D. B,A,C

Answer: B

View Text Solution

4. Arrange the magnitudes of following vectors in ascending order

(A) I imes j + j imes k + k imes i

(B) If $|\mathsf{a}|$ = 2, $|\mathsf{b}|$ = 3, (A,b) = 45° then $a \times b$

(C) $(2i - 3j + 2k) \times (3i - j + 4k)$

A. A,B,C

B. C,B,A

C. B,C,A

D. B,A,C

Answer: A

Watch Video Solution

- 5. Arrange the following in ascending order of magnitude
- (A) Area of parallelogram with adjacent sides I + 2j + 3k, 3i 2j + k
- (B) Area of parallelogram with diagonals I + 2j 3k, 3i 2j + k
- (C) Area of parallelogram with diagonals are 3i + j 2k, i 3j + 4k
- (D) Area of parallelogram whose sides are 3i + j 2k, i 3j + 4k

A. B,A,C,D

B. D,A,C,B

C. D,C,A,B

D. B,C,A,D

Answer: D


```
(C ) |a 	imes (b 	imes c)| where a = 2i + 3j - 4k, b = i j + k, c = 4i + 2j + 3k
```

(D) |(a imes b) imes c| where a = i - 2j + k, b = 2i + j - k, c = 4i + 2j + 3k

A. A,B,C,D

B. A,D,B,C

C. A,C,B,D

D. C,B,A,D

Answer: A

9. Arrange the following in the descending order of magnitude (A)

[I imes jj imes kk imes i]

(B) [I + jj + k k + i]

(C) (I imes j)(j imes k)

(D) $(K \times j)(k \times j)$

A. B,A,C,D

B. B,A,D,C

C. D,C,B,A

D. B,C,A,D

Answer: A

Watch Video Solution

Exercise 2 Special Type Questions Set C

1.

- I. The angle between the vectors 2i. +j kI 4j 2k
- II. The angle between the vectors I + 2j k2i + j + k
- III. The angle between a.b if a.b if a.b.a + b are unit vector

IV. The angle between \overrightarrow{ACBD} if A = (1.1.0)B = (1. - 1.0)C = (-1.1)C

A. a,c,c,b

B. d,c,c,b

C. c,a,b,d

D. d,c,c,a

Answer: B

View Text Solution

I. Projection of I - 2j + k on 4i - 4j + 7ka. 9II. Projection of 2i - 3j + k on 4i - 4j + 7kb. 3III. projection of 9I - 7j + k on x-axisc. 19/9IV. Projection of 2i - 3j + 6k on I + 2j + 2kd. 8/3

A. b,d,c,a

B. c,b,a,c

C. a,d,c,b

D. c,b,a,d

Answer: D

	sphere	centre
	$I.r^2-2r(3i+4j-5k)+1=0$	$a.\ i+j+k$
3.	$II.\ (r-3i+2j-5k).\ (r+i+j+3k)=0$	$b.\ 3i+4j-5k$
	$III.\ i^1+y^2+z^2-6x+2y-4x-1=0$	c.~3i+2j-5k
	$IV.\left(r-3i-2j+5k\right)^2=49$	d.~3i-j+2k
	A. b,a,d,c	
	B. d,b,c,a	
	C. c,a,d,b	
	D. a,d,b,c	

Answer: A

View Text Solution

I. Unit vector perpendicular to the plane of 2i - 6j - 3k. 4i + 3j - kII. Unit vector perpendicular to the plane determined by the points(1. - 1)III. Vector perpendicular to the plane of i - j - k. i + j + k

IV. Vector of length 5 and perpendicular to both a=2i+j-3k

A. a,c,d,b

B. b,a,d,c

C. a,d,c,b

D. d,c,b,a

Answer: D

View Text Solution

5.

 A. a,c,d,b

B. b,a,d,c

C. a,d,c,b

D. d,c,b,a

Answer: D

View Text Solution

6.

 $I. |a \times b + b \times c + c \times a|$ a. Area of ΔABC $II. ~~|~ AB imes cd + BC imes AD + CA imes BD ~~~ b.~ 2 imes {
m Area of} \Delta ABC$ $III. \left| (a-c) imes (b-d)
ight|$ $IV. \frac{1}{2}|(a-b) \times (b-c)|$

c.~4 imes Area of ΔABC d.~2 imes Area of quandrilateral A e. none

A. a.c.c.b

B. b,a,c,c

C. a,d,c,b

D. b,c,c,a

Answer: D

View Text Solution

7. `{:(I."Area of the parallelogram with diagonals" 3i + j - 2k. i - 3j + 4k, a. (sqrt(569))/(4)), (II. "Area of the triangle whose adjacent sides are" 3i + 4j "and" i - 3j + 4k, b. (2)/(sqrt(14))),(III. "Volume of parallelopiped whose edges are" 2i - 3j. i + j - k. 3i - k, c. 5 sqrt(3)),(IV. "Projection of" 2i + 3j - 2k "in the direction of" i + 2j + 3k, d. 4),(, e. 2//3)):}"

A. c,a,d,b,

B. c,a,c,b

C. a,c,d,b

D. d,a,c,b

Answer: A

Watch Video Solution

I. The pointsi + j + k. 4i + 3j and 10i + 7j - 2k are $a. a \times b = 7$ II. The vectors 5i + 5j + 7k. 7i - 8j + k and i - 20j - 5k areb. collincarIII. a = 2i + 3j + 6k. b = 3i - 6j + 2kc. non-coplanIV. The Points 2i - j + k. i - 3j = 5k and 3i - 4j - 4k ared. vertices ofe. vertices of

A. b,c,a,e

B. a,c,d,e

C. a,c,b,e

D. e,d,c,a

Answer: A

View Text Solution

A. c,c,b,d

B. c,c,d,b

C. b,c,d,a

D. b,a,c,d

Answer: A

View Text Solution

10. Observe the following list

List-I List-II A. $\begin{bmatrix} \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix}$ 1. $|\overrightarrow{a}| |\overrightarrow{b}| \cos\left(\overrightarrow{a} \ \overrightarrow{b}\right)$ B. $\left(\overrightarrow{c} \times \overrightarrow{a}\right) \times \overrightarrow{b}$ 2. $\left(\overrightarrow{a} \ \overrightarrow{c}\right) \overrightarrow{b} - \left(\overrightarrow{a} \ \overrightarrow{b}\right) \overrightarrow{c}$ C. $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ 3. $\overrightarrow{a} \ \overrightarrow{b} \times \overrightarrow{c}$ D. $\overrightarrow{a} \ \overrightarrow{b}$ 4. $|\overrightarrow{a}| |\overrightarrow{b}|$ 5. $\left(\overrightarrow{b} - \overrightarrow{c}\right) \overrightarrow{a} - \left(\overrightarrow{a} \ \overrightarrow{b}\right) \overrightarrow{c}$

Then the correct match for List-I from list II is

A. 1,2,3,4

B. 3,5,2,1

C. 3,2,5,1

D. 2,3,4,1

Answer: B

View Text Solution

11. If a = I + j +k, b = I - j + k, c = I + j - k, d = I - j - k, then observe the

following list.

The correct match of List-I to List-II:

A. C,A,B,E

B. C,A,B,E

C. A,C,B,E

D. A,C,E,D

Answer: B

12. a = 2i - 3j, b = l + j - k, c = 3i - k, Match the followingList-List-IList-i. [abc]equals $a. \frac{2}{3}$ ii. [b + cc + aa + b]b. 16 $iii. [b \times cc \times aa \times b]$ equalsc. 8iv. volume of the tetrahedron for which a.b.c are coterminus edges isd. 4

A. 1 \rightarrow d, ii \rightarrow c, iii \rightarrow b, iv \rightarrow a

B. I \rightarrow b, ii \rightarrow c, iii \rightarrow a, iv \rightarrow d

C. I \rightarrow c, ii \rightarrow d, iii \rightarrow a, iv \rightarrow b

D. I \rightarrow d, ii \rightarrow b, iii \rightarrow c, iv \rightarrow a

Answer: A

Watch Video Solution

1. A : Angle between the vectors I - 2j + k, 2i - j - k is $\frac{\pi}{3}$. R : If θ is the angle between a,b then $\cos \theta = \frac{a.b}{|a||b|}$

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

2. A : Length of projection of 2i - 3j + k along 4i - 4j + 7k is 3

R : Length of projection of b on a is $\frac{a. b}{|b|}$

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

3. A : If |a| = 13, |b| = 19, |a + b| = 24 then |a -b| = 20

R: for any vectors a,b, $\left|a+b
ight|^2+\left|a-b
ight|^2=2\Big(\left|a
ight|^7+\left|b
ight|^2\Big)$

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: C

4. A : The vector equation of the plane which is at a distance of 5 unit from origin and perpendicular to 2i - j + 2k is r. (2i - j + 2k) = 15R : The vector equation of the plane which is at distance of p from origin and perpendicular to the unit vector n is r.n =p

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

5. A : The vector equation of the plane passing through the point (2,-1,-4) and perpendicular to the vector 4i - 12j - 3k is [r - (2i - j - 4k)]. (4i - 12j - 3k) =
R : the vector equation of the plane passing through the point a and perpendicular to the vector m is (r - a) m = 0

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

6. Let $a = a_1 I + a_2 + a_3 k$.

Assertion (A) : The identity $|a imes i|^2+|a imes j|^2+|a imes k|^2=2|a|^2$ hold for a,

Reason

)

:

 $a imes I=a_3j=a_2k, a imes j=a_1k-a_3I, a imes k=a_2I=a_1j$

(R

Which of the following is correct?

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

View Text Solution

7. A : A vector perpendicular to both I + j + k and 2i + j + 3k is 2i - j - k

R : Every vector perpendicular to plane containing a,b is equal to a imes b

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: C

8. A : Area of the parallelogram whose adjacent sides are 3i + 2j + k, 3i + k is $\sqrt{10}$

R : Area of quadrilateral ABCD is $rac{1}{2}|AC imes BD|$

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: D

Watch Video Solution

9. A : The perpendicular distance from (1,4 -2) to the line joining (2,1,-2) (0,-5,1) is $3\sqrt{26}/7$

R : The perpendicular distance from a point P to the line joining the point

A. both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is not correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

10. A : If a,b,c are vectors such that [a b c] = 4 then [a imes bb imes cc imes a] = 64

 ${\sf R}:\left[a imes bb imes cc imes a
ight]=\left[abc
ight]^2$

A. A,R are true, R is correct explanation of A

B. A, R are true, R is not correct explanation of A

C. A is correct R is false

D. A is false R is true

Answer: D

Watch Video Solution

11. A : If a = I - j + k, b = I - 2j - k and c = 2i + pj + 5k are coplanar then p = -1/2

R: vectors a,b,c are coplanar if [a b c] = 0

A. A,R are true, R is correct explanation of A

B. A, R are true, R is not correct explanation of A

C. A is correct R is false

D. A is false R is true

Answer: A

Watch Video Solution

12. A : The vector equation of the plane passing through I + j + k and parallel to the vectors 2i + 3j - k, I + 2j + 3k is [r - (I + j + k) 2i + 3j - k I + 2j + 3k] = 0

R : The vector equation of the plane passing through the point a and parallel to the vectors b,c is [r - a b c] = 0

A. A,R are true, R is correct explanation of A

B. A, R are true, R is not correct explanation of A

C. A is correct R is false

D. A is false R is true

Answer: A

Watch Video Solution

13. A : The vector equation of the plane passing through the point (1,-2, 5),

(0, -5, -1), (-1,5,0) is [r - (I - 2j +5k) -I - 3j - 6k -2i + 7j -6k] = 0

R : The vector equation of the plane passing through the points a,b,c is [r

- ab - a c - a] = 0

A. A,R are true, R is correct explanation of A

B. A, R are true, R is not correct explanation of A

C. A is correct R is false

D. A is false R is true

Answer: A

Watch Video Solution

14. A : If A = (1, -2, -1) B = (4, 0, - 3), C = (1,2 - 1), d = (2, -4, -5) then the distance

between AB and CD is 4/3

R : The shortest distance between the skew lines r = a + sb, r = c + td is $\frac{[a - cbd]}{|b \times d|}$

A. A,R are true, R is correct explanation of A

B. A, R are true, R is not correct explanation of A

C. A is correct R is false

D. A is false R is true

Answer: A

O Watch Video Solution