©゙doubtnut

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

QUADRATIC EXPRESSIONS

Solved Examples

1. The roots of the equation $6 \sqrt{5} x^{2}-9 x-3 \sqrt{5}=0$ is
A. $\sqrt{5} / 2 \sqrt{5} / 5$
B. $-\sqrt{5} / 2 \sqrt{5} / 5$
C. $\sqrt{5} / 2,-\sqrt{5} / 5$
D. $-\sqrt{5} / 2,-\sqrt{5} / 5$

Answer: C

- Watch Video Solution

2. IF the product of the roots of the equation $x^{2}-3 k x+2 e^{2 \log k}-1=0$ is 17 then $\mathrm{K}=$
A. 5
B. 3
C. 2
D. 9

Watch Video Solution

3. IF the different between the roots of $x^{2}-p x+q=0$ is 2 , then the relation between p , and q is

$$
\begin{aligned}
& \text { A. } p=4(q+1)^{2} \\
& \text { B. } p^{2}=(q+1) \\
& \text { C. } p^{2}=4(q+1) \\
& \text { D. } p=4(q+1)
\end{aligned}
$$

Answer: C
4. if the equation $(3 x)^{2}+\left(27 \times 3^{1 / p}-15\right) x+4=0$ has equal roots then $p=$
A. 0
B. 2
C. $-1 / 2$
D. none

Answer: C

- Watch Video Solution

5. IF $2+\sqrt{3}$ is a root of the equation $x^{2}+p x+q=0$ then

$$
\begin{aligned}
& \text { A. } p=-6, q=13 \\
& \text { B. } p=-6, q=14 \\
& \text { C. } p=-4, q=1 \\
& \text { D. } p=-8, q=25
\end{aligned}
$$

Answer: C

- Watch Video Solution

6. The number of solutions of the equation

$$
\left|x^{2}\right|-3|x|+2=0 \text { is }
$$

A. 4
B. 1
C. 3
D. 2

Answer: A

- Watch Video Solution

7. Solve $4^{x-1}-3.2^{x-1}+2=0$
A. $\{1,2\}$
B. $\{1,-1\}$
C. $\{1,5\}$
D. $\{4,-1\}$

Watch Video Solution

8. The minimum value of $3 x^{2}+2 x+11$ is
A. 32
B. $32 / 3$
C. 2
D. 3

Answer: B

- Watch Video Solution

9. The solution set of $x^{2}-8 x+15>0$ is

$$
\begin{aligned}
& \text { A. }(-1,4) \\
& \text { B. }(-\infty,-3] \cup[7, \infty) \\
& \text { C. }(-\infty, 3) \cup,(5, \infty) \\
& \text { D. }[-4,1]
\end{aligned}
$$

Answer: C

- Watch Video Solution

10. The range of $\frac{x^{2}-2 x+3}{x^{2}-2 x-8}$ is
A. $(-\infty, 0] \cup(1, \infty)$
B. $[1 / 2,2]$
C. $(-\infty,-2 / 9] \cup(1, \infty)$

D. $(-\infty,-6] \cup[-2, \infty)$

Answer: C

- Watch Video Solution

11. IF $p, q, \in\{1,2,3.4\}$ the number of equation of the form $p x^{2}+q x+1=0$ having real roots is
A. 15
B. 9
C. 7
D. 8

- Watch Video Solution

12. The set of values of p for which roots of the equation $3 x^{2}+2 x+p(p-1)=0$ are of opposite sign is
A. $(0, \infty)$
B. $(-\infty, 0)$
C. $(0,1)$
D. $(1, \infty)$

Answer: C

- Watch Video Solution

13. IF α and β be the roots of the equation $x^{2}+p x-\frac{1}{2 p^{2}}=0$ where $p \in R$, then the minimum value of $\alpha^{4}+\beta^{4}=$
A. $2+\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. $2-\sqrt{2}$

Answer: A
14. Sum of the non real roots of $\left(x^{2}+x-2\right)\left(x^{2}+x-3\right)=12$ is
A. -1
B. 1
C. -6
D. 6

Answer: A

- Watch Video Solution

15. if $x^{2}+3 x+5=0$ and $a x^{2}+b x+c=0$ have common roots / roots and and $a, b, c \in N$, then the minimum
value of $a+b+c$ is
A. 9
B. -9
C. 3
D. -3

Answer: A

- Watch Video Solution

16. if $c>0$ and $4 a+c<2 b$ then $a x^{2}-b x+c=0$ has a root in the interval
A. $(2,4)$
B. $(0,2)$
C. $(0,1)$
D. $(-2,0)$

Answer: B

- Watch Video Solution

17. If $\mathrm{a}=\mathrm{c}=4 \mathrm{~b}$, then the roots of $a x^{2}+4 b x+c=0$ are
A. $1, \frac{c}{a}$
B. $-1, \frac{c}{a}$
C. $-1,-\frac{c}{a}$
D. $1,-\frac{c}{a}$

Answer: C

- Watch Video Solution

18.

IF
the
equation
$a x^{2}+2 b x+3 c=0$ and $3 x^{2}+8 x+15=0$ have a common root, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the length of the sides of a $\triangle A B C$, then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=$
A. 1
B. $\frac{3}{2}$
C. $\sqrt{2}$
D. 2
19. IF both the roots of equation $x^{2}-2 a x+a^{2}-1=0$ lie in the interval $(-3,4)$, then sum of the integral of a is
A. 0
B. 2
C. 4
D. 1

Answer: A

D Watch Video Solution

Exercise 1 A Quadratic Equations

1. If a, b are the roots of $x^{2}+x+1=0$ then $a^{2}+b^{2}=$
A. 1
B. 2
C. -1
D. 4

Answer: C

- Watch Video Solution

2. IF α, β are the roots of $x^{2}-x+2=0$ then $\alpha^{2} \beta+\alpha \beta^{2}=$
A. 5
B. 3
C. -2
D. 2

Answer: D

- Watch Video Solution

3. If α, β are the roots of $3 x^{2}-5 x+7=0$ then $\alpha^{3}+\beta^{3}=$
A. $90 / 7$
B. $-120 / 17$
C. $170 / 23$
```
D. -190/27
```


Answer: D

- Watch Video Solution

4. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\alpha^{2}+\beta^{2}=$
A. $\frac{\left(b^{2}-2 a c\right)}{a^{2}}$
B. $-\frac{b}{c}$
C. $\frac{\left(b^{2}-2 a c\right)}{c^{2}}$
D. $\frac{\left(b^{2}-2 a c\right)}{a c}$

Answer: A

- Watch Video Solution

5. If α, β are the roots of $a x^{2}+b x+c=0$ then $\alpha \beta^{2}+\alpha^{2} \beta+\alpha \beta=$
A. $\frac{a c-b c}{a^{2}}$
B. $\frac{b c-a c}{a^{2}}$
C. $\frac{a c-b c}{b^{2}}$
D. $\frac{b c-a c}{b^{2}}$

Answer: A
6. If α, β are the roots of $x^{2}+x+1=0$ then $\alpha / \beta+\beta / \alpha=$
A. -1
B. 1
C. 2
D. none

Answer: A

D Watch Video Solution

7. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=$ A. 1
B. -1
C. 2
D. $p / q-2$

Answer: B

- Watch Video Solution

8. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=$
A. $\frac{\left(b^{2}-2 a c\right)}{a^{2}}$
B. $-\frac{b}{c}$
C. $\frac{\left(b^{2}-2 a c\right)}{c^{2}}$
D. $\frac{\left(b^{2}-2 a c\right)}{a c}$

Answer: C

- Watch Video Solution

9. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\alpha^{3}+\beta^{3}=$
A. $\frac{3 a b c-b^{3}}{a^{3}}$
B. $-\frac{b}{c}$
C. $\frac{\left(b^{2}-2 a c\right)}{c^{2}}$
$\left(b^{2}-2 a c\right)$
D.

Answer: A

D Watch Video Solution

10. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$
A. $\frac{3 a b c-b^{3}}{a^{3}}$
B. $\frac{3 a b c-b^{3}}{a^{2} c}$
c. $\frac{b^{2}-2 a c}{c^{2}}$
D. $\frac{b^{2}-2 a c}{a c}$

Answer: B

11. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=$
A. $\frac{3 a b c-b^{3}}{a^{3}}$
B. $\frac{3 a b c-b^{3}}{a^{2} c}$
c. $\frac{3 a b c-b^{3}}{c^{3}}$
D. $\frac{b^{2}-2 a c}{a c}$

Answer: C

- Watch Video Solution

12. If α, β are the roots of $a x^{2}+b x+c=0$ then $\alpha^{5} \beta^{8}+\alpha \beta^{5}=$

$$
\begin{aligned}
& \text { A. } \frac{c^{5}\left(3 a b c-b^{3}\right)}{a^{8}} \\
& \text { B. } \frac{c^{3}\left(3 a b c-b^{3}\right)}{a^{3}} \\
& \text { C. } \frac{a^{2}\left(3 a b c-b^{3}\right)}{c^{3}} \\
& \text { D. } \frac{a^{3}\left(3 a b c-b^{3}\right)}{c^{3}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

13. IF α, β are the roots of $a x^{2}+b x+c=0$ then
$\frac{\alpha^{2}+\beta^{2}}{\alpha^{-2}+\beta^{-2}}=$
A. $\overline{a^{2}}$
B. $\frac{3 a b c-b^{3}}{a^{2} c}$
C. $\frac{3 a b c-b^{3}}{c^{3}}$
D. $\frac{b^{2}-2 a c}{a c}$

Answer: A

D Watch Video Solution

14. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\frac{\alpha^{3}+\beta^{3}}{\alpha^{-3}+\beta^{-3}}$ $=$
A. $\frac{c^{2}}{d^{2}}$
B. $\frac{c^{3}}{a^{3}}$
c. $\frac{3 a b c-b^{3}}{c^{3}}$
D. $\frac{b^{2}-2 a c}{a c}$

Answer: B

- Watch Video Solution

15. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\left(\frac{\alpha}{\beta}-\frac{\beta}{\alpha}\right)^{2}=$

$$
b^{2}\left(b^{2}-4 a c\right)
$$

A. $c^{2} a^{2}$

$$
\frac{b^{2}\left(b^{2}-4 a c\right)}{c a^{3}}
$$

B.

$$
b^{2}\left(b^{2}-4 a c\right)
$$

C. a^{4}

$$
\text { D. } \frac{b^{2}\left(b^{2}-4 a c\right)}{c^{4}}
$$

Answer: A

- Watch Video Solution

16. IF α, β are the roots of $a x^{2}+b x+c=0$ then
$\left(\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)^{2}=$
$b^{2}\left(b^{2}-4 a c\right)$
A.
$c^{2} a^{2}$

$$
b^{2}\left(b^{2}-4 a c\right)
$$

B.

$$
c a^{3}
$$

$$
b^{2}\left(b^{2}-4 a c\right)
$$

c.

$b^{2}\left(b^{2}-4 a c\right)$
 D. c^{4}

Answer: D

- Watch Video Solution

17. IF α, β are the roots of $a x^{2}+b x+c=0$ then $(a \alpha+b)^{-2}+(a \beta+b)^{-2}=$
A. $\frac{b^{2}-2 a c}{a^{4}}$
B. $\frac{b^{2}-2 a c}{a^{3} c}$
C. $\frac{b^{2}-2 a c}{a^{2} c^{2}}$
D. $\frac{b^{2}-2 a c}{c^{4}}$

Answer: C

- Watch Video Solution

18. IF α, β are the roots of $a x^{2}+b x+c=0$ then $(a \alpha+b)^{-3}+(a \beta+b)^{-3}=$
A. $a^{3}-2 a b c$
B. $b^{3}-3 a b c$
C. $\frac{c^{3}-3 a b c}{b^{3} c^{3}}$
D. $\frac{b^{3}-3 a b c}{a^{3} c^{3}}$

Answer: D
19. IF α, β are the roots of $a x^{2}+b x+c=0$ then $\left(\frac{\alpha}{a \beta+b}\right)^{3}-\left(\frac{\beta}{a \alpha+b}\right)^{3}=$
A. 0
B. 1
C. $(a+b)^{2}$
D. $(a-b)^{2}$

Answer: A

D Watch Video Solution
20. IF α, β are the roots of the equation $8 x^{2}-3 x+27=0$
then the value of $\left(\frac{\alpha^{2}}{\beta}\right)^{1 / 3}+\left(\frac{\beta^{2}}{\alpha}\right)^{1 / 3}$ is
A. $1 / 3$
B. $1 / 4$
C. $7 / 2$
D. 4

Answer: B

- Watch Video Solution

21. If α, β are the roots of $a x^{2}+b x+c=0$ then $\left(1+\alpha+\alpha^{2}\right)\left(1+\beta+\beta^{2}\right)$ is
A. zero
B. positive
C. negative
D. not determined

Answer: B

- Watch Video Solution

22. If α, β are the roots of $a x^{2}-2 b x+c=0$ then $\alpha^{3} \beta^{3}+\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}=$
A. $\frac{c^{2}(2 b+c)}{a^{3}}$
B. $\frac{b c^{2}}{a^{3}}$
C. $\frac{c^{3}}{a^{3}}$
D. $\frac{c^{2}(b+2 a c)}{a^{3}}$

Answer: A

D Watch Video Solution

23. IF α, β are real and $\alpha^{2},-\beta^{2}$ are the roots of $a^{2} x^{2}+x+1-a^{2}=0(A>1)$ then $\beta^{2}=$
A. a^{2}
B. 1
C. $1-a^{2}$
D. $1+a^{2}$

Answer: B

- Watch Video Solution

24. If α, β are the roots of $x^{2}-2 x+4=-0$ then $\alpha^{5}+\beta^{5}=$
A. 8
B. 16
C. 32
D. 64
25. If α and β are the roots of the equation
$x^{2}-2 x+4=0$, then $\alpha^{9}+\beta^{9}=$
A. -2^{8}
B. 2^{9}
C. -2^{10}
D. 2^{10}

Answer: C

- Watch Video Solution

26. Let α and β be the roots of equation $p x^{2}+q x+r=0, p \neq 0$, if $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P and $\frac{1}{\alpha}+\frac{1}{\beta}=4$ then the value of $|\alpha-\beta|$ is

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{34}}{9} \\
& \text { B. } \frac{2 \sqrt{13}}{9} \\
& \text { C. } \frac{\sqrt{61}}{9} \\
& \text { D. } \frac{2 \sqrt{17}}{9}
\end{aligned}
$$

Answer: B
27. IF α, β be the roots of $6 x^{2}-6 x+1=0$ then $\frac{1}{2}\left(a+b a+c \alpha^{2}+d \alpha^{3}\right)+\frac{1}{2}\left(a+b \beta+c \beta^{2}+d \beta^{3}\right)=$
A. $a+\beta+c+d$
B. $a+2 b+3 c+4 d$
C. $a+b / 2+c / 3+d / 4$
D. none

Answer: C

D View Text Solution

28. If α, β are the roots of $x^{2}-p(x+1)+c=0$ then
$(1+\alpha)(1+\beta)=$
A. 1
B. C
C. 1-c
D. $1+c$

Answer: D

- Watch Video Solution

29. IF α, β are the roots of $x^{2}-p(x+1)-c=0$ then $\frac{\alpha^{2}+2 \alpha+1}{\alpha^{2}+2 \alpha+c}+\frac{\beta^{2}+2 \beta+1}{\beta^{2}+2 \beta+c}=$
A. 3
B. 2
C. 1
D. 0

Answer: C

- View Text Solution

30. IF α, β are the roots of $a x^{2}+b x+c=0$ and
$s_{n}=\alpha^{n}+\beta^{n}$ then $\left|\begin{array}{ccc}3 & 1+S_{1} & 1+S_{2} \\ 1+S_{1} & 1+S_{2} & 1+S_{3} \\ 1+s_{2} & 1+s_{3} & 1+S_{4}\end{array}\right|=$
A. 0
B. $\frac{\left(b^{2}-4 a c\right)(a+b+c)^{2}}{a^{4}}$
C. $\frac{b^{2}-4 a c}{a^{4}}$
D. $\frac{(a+b+c)^{2}}{a^{4}}$

Answer: B

D View Text Solution

31. Let α and β be the roots of equation $x^{2}-6 x-2=0$. If
$a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$ then the value of $\frac{a_{10}-2 a_{s}}{2 a_{9}}$ is equal to
A. 6
B. -6
C. 3
D. -3

Answer: C

- Watch Video Solution

32. IF α, β are the roots of the equation $a x^{2}+b x+c=0$,
then the value of the determinant
$\left|\begin{array}{ccc}1 & \cos (\beta-\alpha) & \cos \alpha \\ \cos (\alpha-\beta) & 1 & \cos \beta \\ \cos \alpha & \cos \beta & 1\end{array}\right|$
A. $\sin (\alpha+\beta)$
B. $\sin \alpha \sin \beta$
C. $1+\cos (\alpha+\beta)$
D. 0

Answer: D

- Watch Video Solution

33. IF the roots of the quadratic equation $x^{2}+p x+q=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$, respectively then the value of $2+q-p$ is
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

34. IF $\tan A, \tan B$ are the roots of $x^{2}-p x+q=0$, the value of $\sin ^{2}(A+B)$ is
A. $\frac{p^{2}}{p^{2}+(1-q)^{2}}$
B. $\frac{p^{2}}{p^{2}+q^{2}}$
C. $\frac{q^{2}}{p^{2}+(1-q)^{2}}$
D. $\frac{p^{2}}{(p+q)^{2}}$

Answer: A
35. If α, β are the roots of $x^{2}+a x-b=0$ and γ, σ are the roots of $x^{2}+a x+b=0$ then $(\alpha-\gamma)(\beta-\gamma)(\alpha-\sigma)(\beta-\sigma)=$
A. b^{2}
B. $2 b^{2}$
C. $3 b^{2}$
D. $4 b^{2}$

Answer: D

36. If α, β are the roots of $x^{2}+p x-q=0$ and γ, δ are the roots of $x^{2}+p x+r=0$ then $(\alpha-\gamma)(\beta-\gamma)(\alpha-\delta)(\beta-\delta)=$
A. $2 q^{2}$
B. $2 q^{2}$
C. $(q+r)^{2}$
D. $(q-r)^{2}$

Answer: C

- Watch Video Solution

37. If α, β are the roots of $x^{2}+p x+1=0$ and γ, δ are the roots of $x^{2}+q x+1=0$ then $(\alpha-\gamma)(\beta-\gamma)(\alpha+\delta)(\beta+\delta)=$
A. $2 p^{2}$
B. $2 p^{2}$
C. $p^{2}-q^{2}$
D. $q^{2}-p^{2}$

Answer: D

- Watch Video Solution

38. If α, β are the roots of $a x^{2}+2 b x+c=0$ and $\alpha+\sigma, \beta+\sigma$ are the roots of $A x^{2}+2 B x+c=0$ then $\frac{b^{2}-a c}{B^{2}-A C}=$
A. a / A
B. A / a
C. $(a / A)^{2}$
D. $(A / a)^{2}$

Answer: C

- Watch Video Solution

39. α, β are the roots of $a x^{2}+b x+c=0$ and γ, σ are the roots of $p x^{3}+q x+r=0$ and $D_{1}: D_{2}$ be the respective discrimination of these equations .If $\alpha, \beta \gamma$ and δ are in A.P then $D_{1}: D_{2}=$
A. $a^{2}: p^{2}$
B. $b^{2}: q^{2}$
C. $c^{2}: r^{2}$

D. none

Answer: A

- Watch Video Solution

40. The ratio of the roots of the equation $a x^{2}+b x+c=0$ is same as the ratio of the roots of the equation $p x^{2}+q x+r=0$. If D_{1} and D_{2} are the discrimination of $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ respectively, then
$D_{1}: D_{2}=$
A. $a^{2}: p^{2}$
B. $b^{2}: q^{2}$
C. $c^{2}: r^{2}$

D. none

Answer: B

- Watch Video Solution

41. α, β are the roots of $a x^{2}+b x+c=0$ and γ, σ are the roots of $p x^{3}+q x+r=0$ and $D_{1}: D_{2}$ be the respective discrimination of these equations .If $\alpha, \beta \gamma$ and δ are in A.P then $D_{1}: D_{2}=$
A. $a^{2}: p^{2}$
B. $a^{2}: b^{2}$
C. $a^{2}: c^{2}$
D. $a^{2}: d^{2}$

Answer: A

- Watch Video Solution

42. Let p and q be the roots of $x^{2}-2 x+A=0$ and let r and s be the roots of $x^{2}-18+B=0$. If $p<q<r<s$ are in ordered pair $(A, B)=$
A. $(-3,77)$
B. $(77,-3)$
C. (-3,-77)
D. none of these

Answer: A
43. Let x_{1}, x_{2}, be the roots of the equation $x^{2}-3 x+p=0$ and let x_{3}, x_{4} be the roots of the equation $x^{2}-12 x+q=0$ if the numbers x_{1}, x_{2}, x_{4} (in order) form an increasing G.P then
A. $p=2, q=16$
B. $p=2, q=32$
C. $p=4, q=16$
D. $p=4, q=32$

Answer: B
44. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0$. If $\alpha, \beta, \delta, \gamma$ are in G.P then the integral values of p and q respectively, are
A. $-2,-32$
B. $-2,3$
C. $-6,3$
D. $-6,-32$

Answer: A
45. x_{1} and x_{3} are the roots of the equation $A x^{2}-4 x+1=0$ and x_{2} and $x_{4}=0$ are the roots of the requation $B x^{2}-6 x+1=0$ if $x_{1}, x_{2}, x_{3}, x_{4}$ form a H.P , then $(A, B)=$
A. $(3,3)$
B. $(8,8)$
C. $(3,8)$
D. $(8,3)$

Answer: C
46. The coefficient of x in a quadratic equation $x^{2}+p x+q=0$ was taken as 17 in place of 13 and its roots found to be -2 and -15 . The roots of the original equation
are
A. 2,15
B. 10, 3
C. $-10,-3$
D. $-2,-15$

Answer: C

- Watch Video Solution

47. The students while solving a quadratic equation in x, one copied the constant term incorreclty and got the roots 3 and 2 , The order copied the constant term and coefficient of x^{2} as -6 and 1 respectively The correct roots
are
A. $3,-2$
B. $-3,2$
C. $-6,-1$
D. $6,-1$

Answer: D

D Watch Video Solution
48. If 8 and 2 are the roots of $x^{2}+a x+\beta=0$ and 3,3 are the roots of $x^{2}+\alpha x+b=0$ then the roots of the equation $x^{2}+a x+b=0$ are
A. $1,-1$
B. $-9,2$
C. $-8,-2$
D. 9,1

Answer: D

- Watch Video Solution

49. IF x_{1} and x_{2} are the real roots of the equation $x^{2}-k x+c=0$ then the distance between the points A

$$
\left(x_{1}, 0\right) \text { and }\left(x_{2}, 0\right) \text { is }
$$

A. $\sqrt{k^{2}-c}$
B. $\sqrt{c-k^{2}}$
C. $\sqrt{k^{2}-4 c}$
D. $\sqrt{k^{3}+4 c}$

Answer: C

- Watch Video Solution

50. If one root of the equation $I x^{2}-2(1+i) x+(2-i)=0$ is
$2-I$ then the root is
A. $-i$
B. $2+i$
C. i
D. 2-i

Answer: A

- Watch Video Solution

51. If one root of $x^{2}+a x+8=0$ is 4 and the equation $x^{2}+a x+b=0$ has equal roots then the value of $\mathrm{b}=$
A. 7
B. 9
C. 1
D. 3

Answer: B

- Watch Video Solution

52. IF the roots of the equation $x^{2}-5 x+16=0$ are α, β and the roots of the equation $x^{2}+p x+q=0$ and $\alpha^{2}+\beta^{2}, \frac{\alpha \beta}{2}$, then
A. $p=1, q=-56$
B. $p=-1, q=-56$
C. $p=1, q=56$
D. $p=-1, q=56$

Answer: B

- Watch Video Solution

53. IF $x^{2}-3 x+2$ is a factor of $x^{4}-p x^{2}+q=0$ then $(p, q)=0$

$$
\begin{aligned}
& \text { A. }(-4,-5) \\
& \text { B. }(4,5) \\
& \text { C. }(-5,-4) \\
& \text { D. }(5,4)
\end{aligned}
$$

Answer: D
54. IF the product of the roots of $5 x^{2}-4 x+2+m\left(4 x^{2}-2 x-1\right)=0$ is 3 , then $m=$
A. 0
B. -1
C. 2
D. 3

Answer: B

(Watch Video Solution
55. IF $k>0$ and the product of the roots of the equation
$x^{2}-3 k x+2 e^{2} \log k-1=0$ is 7 then the sum of the roots is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

56. The value of K, so that the sum and product of the roots of $2 x^{2}+(k-3) x+3 k-5=0$ are equal is
A. 0
B. 10
C. 2
D. 9

Answer: C

- Watch Video Solution

57. IF the sum of the square of the roots of $x^{2}+p x-3=0$
is 10 then the values of $p=$
A. ${ }^{+}$
B. ± 3
C. 3
D. -3

Answer: A

- Watch Video Solution

58. α, β are the roots of $x^{2}+k x+2=0$. If $\alpha-\beta=1$ then $\mathrm{K}=$
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: C

- Watch Video Solution

59. α, β are roots of the equation $\lambda\left(x^{2}-x\right)+x+5=0$ If λ_{2} are the two values of λ for which the roots α, β are connceted by the relation $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=4$, then the value of $\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}}$ is
A. 150
B. 254
C. 180
D. 1022

Answer: D
60. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+(8+2 \sqrt{5})=0$ is
A. 2
B. 4
C. 6
D. 8

Answer: B

D Watch Video Solution

61. IF C and D are the roots of $(x-a)(x-b)-k=0$ then the roots of $(x-c)(x-d)+k=0$ are
A. b,c
B. a, b
C. a,c
D. a,d

Answer: B

D Watch Video Solution

62. IF α, β be the roots of the equation
$(x-a)(x-b)+c=0(c \neq 0)$ then the roots of the equation
$(x-c-\alpha)(x-c-\beta)=c$ are
A. a and $b+c$
B. $a+c$ and b
C. $a+c$ and $b+c$
D. $a-c$ and $b-c$

Answer: C

- View Text Solution

63. The equation whose roots are $2 \sqrt{3}-5$ and $-2 \sqrt{3}-5$ is
A. $x^{2}+10 x-13=0$
B. $x^{2}-10 x+13=0$
C. $x^{2}+10 x+13=0$
D. $x^{2}-10-13=0$

Answer: C

D Watch Video Solution

64. The equation whose roots are $3+2 I, 3-2 i$ is
A. $x^{2}-8 x+15=0$
B. $15 x^{2}-34+15=0$
C. $x^{2}-6 x+13=0$
D. $x^{2}+1=0$

Answer: C

- Watch Video Solution

65. IF α and β are the roots of $2 x^{2}+x+3=0$, then the equation whose roots are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$ is

$$
\text { A. } 2 x^{2}+x+3=0
$$

B. $2 x^{2}-x-3=0$
C. $2 x^{2}+x-3=0$
D. $2 x^{2}-x-3=0$

Answer: A

- Watch Video Solution

66. IF α, β are the roots of $x^{2}+5 x-4=0$ then the equation whose roots are $\frac{\alpha+2}{3}, \frac{\beta+2}{3}$ is
A. $9 x^{2}+3 x+10=0$
B. $9 x^{2}+3 x-10=0$
C. $9 x^{2}+x=0$
D. $2 x^{2}-3 x+10=0$

Answer: B

- Watch Video Solution

67. If α, β are the roots of $x^{2}-x+1=0$ then the quadratic equation whose roots are $\alpha^{2015}, \beta^{2015}$ is
A. $x^{2}-x+1=0$
B. $x^{2}+x+1=0$
C. $x^{2}+x-1=0$
D. $x^{2}-x-1=0$

Answer: A

- Watch Video Solution

68. IF α, β are the roots of $x^{2}-a x+b=0$, then the whose roots are $\frac{\alpha+\beta}{\alpha}, \frac{\alpha+\beta}{\beta}$ is
A. $b x^{2}+a^{2} x+a^{2}=0$
B. $b x^{2}-a^{2} x+a^{2}=0$
C. $b^{2} x^{2}-a^{2} x+a^{2}=0$
D. $a x^{2}+b^{2} x+b^{2}=0$

Answer: B

- Watch Video Solution

69. IF α, β are the roots of $a x^{2}+b x+c=0$ then the equation roots are $\alpha / \beta, \beta / \alpha$ is

$$
\begin{aligned}
& \text { A. } a c x^{2}-\left(b^{2}-2 a c\right) x+a c=0 \\
& \text { B. } a^{3} x^{2}+\left(b^{3}-3 a b c\right)+x+c^{3}=0 \\
& \text { C. } x^{2}-2 q x+\left(q^{2}-p^{2}\right)=0 \\
& \text { D. } x^{2}+2 q x+\left(q^{2}+p^{2}\right)=0
\end{aligned}
$$

Answer: A

70. IF α, β are the roots of the equation $a x^{2}+b x+c=0$ then the quadratic equation whose roots are $\alpha+\beta, \alpha \beta$ is
A. $a^{2} x^{2}+a(b-c) x+b c=0$
B. $a^{2} x^{2}+a(b-c) x-b c=0$
C. $a x^{2}+(b+c) x+b c=0$
D. $a x^{2}-(b+c)-b c=0$

Answer: B

D Watch Video Solution

71. In a $\triangle A B C$, the value of $\angle A$ is obtained from the equation $3 \cos A+2=0$. The quandratic equation, whose
roots are $\sin A$ and $\tan A$ is

$$
\begin{aligned}
& \text { A. } 3 x^{2}+\sqrt{5 x}-5=0 \\
& \text { B. } 6 x^{2}-\sqrt{5} x-5=0 \\
& \text { C. } 6 x^{2}+\sqrt{5} x-5=0 \\
& \text { D. } 6 x^{2}+\sqrt{5} x+5=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

72. The equation whose roots are the cubes of the roots of the equation $a x^{2}+b x+c=0$ is
A. $a^{3} x^{2}+\left(b^{2}-3 a b c\right) x+c^{3}=0$
B. $a^{3} x^{2}+\left(b^{2}+3 a b c\right) x+c^{2}=0$
C. $a^{3} x^{2}-\left(b^{3}+3 a b c\right) x+c^{2}=0$
D. none

Answer: A

- Watch Video Solution

73. IF α, β are the roots of $a x^{2}+b x+c=0$ and γ, δ are the roots of $l x^{2}+m x+n=0$ then the equation whose roots are $\alpha \gamma+\beta \delta, \alpha \delta+\beta \gamma$ is
A. $a^{2} t^{2} x^{2}-a b \operatorname{lm} x+b=0$
B. $a^{2} t^{2} x^{2}-a b l m x+\left(b^{2} n l+m^{2} a c-4 a c n l\right)=0$
C. $a^{3} t^{2} x^{2}-a b l m x$

D. none

Answer: B

- Watch Video Solution

74.

$a=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right), \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$
then α, β are the roots of the equation

$$
\begin{aligned}
& \text { A. } x^{2}+x+1=0 \\
& \text { B. } x^{2}+x+2=0 \\
& \text { C. } x^{2}+x+2=0
\end{aligned}
$$

D. $x^{2}+2 x+3=0$

Answer: B

- Watch Video Solution

75. Let $\alpha \neq \beta$ satisfy $\alpha^{2}+1=6 \alpha, \beta^{2}+1=6 \beta$. Then, the quadratic equation whose roots are $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$ is
A. $8 x^{2}+8 x+1=0$
B. $8 x^{2}-8 x-1=0$
C. $8 x^{2}-8 x+1=0$
D. $8 x^{2}+8 x-1=0$

Answer: C

- Watch Video Solution

76. IF $3 p^{2}=5 p+2$ and $3 q^{2}=5 q+2$ where $p \neq q$ then the equation whose roots are $3 p-2 q$ and $3 q-2 p$ is
A. $3 x^{2}-5 x-100=0$
B. $5 x^{2}+3 x+100=0$
C. $3 x^{2}-5 x+100=0$
D. $3 x^{2}+5 x-100=0$

Answer: A

77. IF α, β are the roots of the equation $x^{2}+2 a x+b=0$, then the quadratic equation with rational coefficient one of whose roots is $\alpha+\beta+\sqrt{\alpha^{2}+\beta^{2}}$ is
A. $x^{2}-4 a x+12=0$
B. $x^{2}+4 a x-2 b=0$
C. $x^{2}-4 a x-2 b=0$
D. $x^{2}+4 a x+2 b=0$

Answer: D

- Watch Video Solution

78. The quadratic equation for which the sum of the roots is 7 and the sum of the squares of the roots is 25 is
A. $x^{2}-7 x+12=0$
B. $x^{2} \pm 54 x+6=0$
C. $x^{2}-12 x+35=0$
D. $5 x^{2}+2 x+11=0$

Answer: A

D Watch Video Solution

79. The quadratic equation for which the sum of the roots is 12 and the sum of the cubes of the roots is 468 is

$$
\begin{aligned}
& \text { A. } x^{2}-7 x+12=0 \\
& \text { B. } x^{2} \pm 54 x+6=0 \\
& \text { C. } x^{2}-12 x+35=0 \\
& \text { D. } 5 x^{2}+2 x+11=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

80. IF $\alpha+\beta=-2$ and alpha ${ }^{\wedge} 3+$ beta $^{\wedge} 3=-56$, thenthe raticequationwhose $\sqrt[5]{\text { are alpha and beta ` is }}$

$$
\text { A. } x^{2}+2 x-16=0
$$

$$
\text { B. } x^{2}+2 x-15=0
$$

C. $x^{2}+2 x-12=0$
D. $x^{2}+2 x-8=0$

Answer: D

- Watch Video Solution

81. Two complex numbers α and β are such that $\alpha+\beta=2$ and $\alpha^{4}+\beta^{4}=272$, then the quadractic equation whose roots are α and β is
A. $x^{2}-2 x-16=0$
B. $x^{2}+2 x-15=0$
C. $x^{2}-2 x-8=0$
D. none of these

Answer: C

- Watch Video Solution

82. IF the arithmetic mean of the roots of a quadratic equation is $8 / 5$ and the arithmetic mean of their reciprocals is $8 / 7$ then the equation is
A. $5 x^{2}+16 x+7=0$
B. $5 x^{2}-16 x+7=0$
C. $7 x^{2}+16 x+5=0$
D. $7 x^{2}-16 x+5=0$

Answer: B

- Watch Video Solution

83. Let two numbers have arthmetic mean 9 geometric mean 4. then these numbers are the roots of the quadratic equation

$$
\text { A. } x^{2}+18 x+16=0
$$

B. $x^{2}-18 x-16=0$
C. $x^{2}+18-16=0$
D. $x^{2}-18+16=0$

Answer: D
84. The equation whose roots are the arthmatic mean and twice the H.M between the roots of the equation $x^{2}+a x-b=0$ is
A. $2 a x^{2}+\left(a^{2}-8 b\right) x+4 a b=0$
B. $2 a x^{2}+\left(a^{2}-8 b\right) x-4 a b=0$
C. $2 a x^{2}+\left(a^{2}+8 b\right) x-4 a b=0$
D. none

Answer: B

85. IF α, β are the roots of $9 x^{2}+6 x+1=0$ then the equation with the roots $1 / \alpha, 1 / \beta$ is
A. $2 x^{2}+3 x+18=0$
B. $x^{2}+6 x-9=0$
C. $x^{2}+6 x+9=0$
D. $x^{2}-6 x+9=0$

Answer: C

D Watch Video Solution

86. The equation whose roots are greater by 1 than those of $2 x^{2}-3 x+1=0$ is
A. $3 x^{2}-5 x-2=0$

$$
\begin{aligned}
& \text { B. } 2 x^{2}-7 x+6=0 \\
& \text { C. } 2 x^{2}+5 x+7=0 \\
& \text { D. } 3 x^{2}+\% x-7=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

87. IF α, β are the roots of $a x^{2}+b x+c=0$ then the equation whose roots are $2+\alpha, 2+\beta$ is
A. $a x^{2}+x(4 a-b)+4 a-2 b+C=0$
B. $a x^{2}+x(4 a-b)+4 a+2 b+c=0$
C. $a x^{2}+x(b-4 a)+4 a+2 b c=0$
D. $a x^{2}+x(b-4 a)+4 a-2 b+c=0$

Answer: D

- Watch Video Solution

88. The equation whose roots are smaller by 1 then those of $2 x^{2}-5 x+6=0$ is
A. $2 x^{2}-9 x+13=0$
B. $2 x^{2}-x+3=0$
C. $2 x^{2}+9 x+13=0$
D. $2 x^{2}+x+3=0$

Answer: B

- Watch Video Solution

89. the equation formed by decreasing each root of $a x^{2}+b x+C=0$ by 1 is $2 x^{2}+8 x+2=0$ then

$$
\text { A. } a=-b
$$

B. $b=-c$
C. $c=-a$
D. $b=a+c$

Answer: B
90. If α, β are the roots of $a^{2} x+b x+c=0$ and $\alpha+h+\beta+h$ are the roots of $p x^{2}+q x+r=0$ then $\mathrm{h}=$
A. $\left(\frac{b}{a}-\frac{q}{p}\right)$
B. $\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$
C. $-\frac{1}{2}\left(\frac{a}{b}-\frac{p}{q}\right)$
D. none

Answer: B

D Watch Video Solution
91. IF α, β are the roots of $x^{2}+b x+c=0$ and $\alpha+h, \beta+h$
are the roots of $x^{2}+q x+r=0$ then $\mathrm{h}=$
A. $b+q$
B. $b-q$
C. $\frac{1}{2}(b+q)$
D. $\frac{1}{2}(b-q)$

Answer: D

- Watch Video Solution

92. IF α and β are the roots of the equation $a x^{2}+b x+C=0$ and if $p x^{2}+q x+r=0$ has roots $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$ then $r=$
A. $a+2 b$
B. $a+b+C$
C. $a b+b c+c a$
D. $a b c$

Answer: B

- Watch Video Solution

93. The equation whose roots are numerically equal but opposite in sign of the roots of $3 x^{2}-5 x-7=0$ is
A. $3 x^{2}-5 x-2=0$
B. $2 x^{2}-7 x+6=0$
C. $2 x^{2}+5 x+7=0$
D. $3 x^{2}+5 x-7=0$

Answer: D

- Watch Video Solution

94. The equation whose roots are multipled by 3 of those of $2 x^{2}+3 x-1=0$ is
A. $2 x^{2}+9 x-9=0$
B. $2 x^{2}-7 x+6=0$
C. $2 x^{2}+5 x+7=0$
D. $3 x^{2}+5 x-7=0$
95. The condition that one root of $a x^{2}+b x+c=0$ may be n times the other root is
A. $n b^{2}=a c(n+1)$
B. $n b^{2}=a c(n+1)^{2}$
C. $n b=a c(n+1)$
D. $n b=a c(n+1)^{2}$

Answer: B

- Watch Video Solution

96. The condition that one root of $a x^{2}+b x+c=0$ may be the double the other is
A. $b^{2}=2 a c$
B. $b^{2}=2 a c$
C. $2 b^{2}=9 a c$
D. $2 b^{2}=3 a c$

Answer: C

- Watch Video Solution

97. If one root of $x^{2}+k x+12=0$ may be the triple the other , then $\mathrm{k}=$
A. ± 8
B. 3
C. $\pm 5 \sqrt{10}$
D. $2 \pm \sqrt{5}$

Answer: A

- Watch Video Solution

98. IF one root of $p x^{2}-14 x+8=0$ is six times the other then $p=$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

99. IF the roots of $a x^{2}+c x+c=0$ are in the ratio $\mathrm{p}: \mathrm{q}$ then
$\left.\sqrt{\left[\frac{p}{q}\right]}+\sqrt{\left[\frac{q}{q}\right.}\right]=$
A. $\sqrt{a / c}$
B. $\sqrt{c / a}$
C. $-\sqrt{a / c}$
D. $-\sqrt{c / a}$

Answer: D

- Watch Video Solution

100. IF one root of $x^{2}-x-k=0$ is square that of the other, then $\mathrm{k}=$.
A. $2 \pm \sqrt{3}$
B. $3 \pm \sqrt{2}$
C. $2 \pm \sqrt{5}$
D. $5 \pm \sqrt{2}$

Answer: C
101. If one root of $x^{2}+p x+1=0$ is square that of the other thenp=
A. $1,-2$
B. 3, - 1
C. $2,-\sqrt{5}$
D. $4+\sqrt{5}$

Answer: A

- Watch Video Solution

102. IF the harmonic mean between the roots of
$(5+\sqrt{2}) x^{2}-b x+(8+2 \sqrt{5})=0$ is 4 then value of b is
A. 2
B. 3
C. $4-\sqrt{5}$
D. $4+\sqrt{5}$

Answer: D

- Watch Video Solution

103. IF the harmonic mean of the roots of $\sqrt{2} x^{2}-b x+(8-2 \sqrt{5})=0$ is 4 then the value of $b=$
A. 2
B. 3
C. $4-\sqrt{5}$
D. $4+\sqrt{5}$

Answer: C

- Watch Video Solution

104. The condition that a root of $a x^{2}+b x+c=0$ may be the reciprocal of a root of $a_{1} x^{2}+b_{1} x+c_{1}=0$ is
A. $\left(a a_{1}-c c_{1}\right)^{2}\left(a b_{1}+b c_{1}\right)\left(a_{1} b+b_{1} c\right)$
B. $\left(a a_{1}-c c_{1}\right)^{2}=\left(a b_{1}-b c_{1}\right)\left(a_{1} b-b_{1} c\right)$
C. $\left(a a_{1}-b b_{1}\right)^{2}=\left(a c_{1}-b c_{1}\right)$
D. none

Answer: B

- Watch Video Solution

105. IF the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to sum of the square of their reciprocals then $\frac{b^{2}}{a c}+\frac{b c}{a^{2}}=$
A. 2
B. -2
C. 1
D. -1
106. IF the sum of the roots of the equation $x^{2}+p x+q=0$ is 3 times their difference, then

$$
\text { A. } 2 p^{2}=q
$$

B. $2 p^{2}=5 q$
C. $p^{2}=3 q$
D. $2 p^{2}=9 q$

Answer: D

- Watch Video Solution

107. If the roots of the equation $a x^{2}+b x+c=0$ be the square roots of the equation $l x^{2}+m x+n=0$ then
A. $2 a l c=l b^{2}+m a^{2}$
B. 2 alc $=l b^{2}-m a^{2}$
C. $a l c=l b^{2}+m a^{2}$
D. $a l c=l b^{2}-m a^{2}$

Answer: A

- Watch Video Solution

108. IF the ratio of the roots of $x^{2}+b x+c=0$ and
$x^{2}+q x+r=0$ are the same, then
A. $r^{2} c=q b^{2}$
B. $r^{2} b=q c^{2}$
C. $r b^{2}=c q^{2}$
D. $r c^{2}=b q^{2}$

Answer: C

- Watch Video Solution

109. If the ratio of the roots of $a(x)^{2}+b x+c=0$ is same as that of the roots of $p x^{2}+q x+r=0$ then $a / p, b / q, c / r$ are in
A. A. P
B. G. P
C. H. P
D. none

Answer: B

- Watch Video Solution

110. The value of m for which one of the roots of $x^{2}-3 x+2 m=0$ is double of one of the roots of $x^{2}-x+m=0$ is
A. 1
B. -2
C. 2
D. none

Answer: B

- Watch Video Solution

111. IF the difference of the roots of $x^{2}-b x+c=0$ is equal to the difference of the roots of $x^{2}-c x+b=0$ and $b \neq 0$, then $b+c=$
A. -1
B. -2
C. -3
D. -4

Answer: D

- Watch Video Solution

112. The condition that the roots of the equation $a x^{2}+b x+c=0$ may differ by 5 is
A. $b^{2}-25 a^{2}=4 a c$
B. $b^{2}-5 a^{2}=4 a c$
C. $b^{2}+15 a^{2}=4 a c$
D. none
113. The condition that $\sin \theta \cos \theta$ may be the roots of $a x^{2}+b x+c=0$ is
A. $a(a+2 b)=c^{2}$
B. $a(a+2 c)=b^{2}$
C. $b(b+2 c)=a^{2}$
D. $b(b+2 a)=c^{2}$

Answer: B

D Watch Video Solution
114. If $\sin \alpha$ and $\cos \alpha$ are the roots of $25 x^{2}+5 x-12=0$, then value of sin2alpha ` is
A. $12 / 25$
B. $-12 / 25$
C. - $24 / 25$
D. $4 / 5$

Answer: C

D Watch Video Solution

115. IF $\tan A$ and $\tan B$ are the roots of the quadratic
$x^{2}-p x+q=0$ then $\sin ^{2}(A+B)=$
A. $\frac{p^{2}}{p^{2}+q^{2}}$
B. $\frac{p^{2}}{(p+q)^{2}}$
C. $1-\frac{p}{(1-q)^{2}}$
D. $\frac{p^{2}}{p^{2}+(1-q)^{2}}$

Answer: D

- Watch Video Solution

116. In a triangle $P Q R$ angle $R=\pi / 2$ if $\tan (p / 2)$ and $\tan (Q / 2)$ are the roots of the equation $a x^{2}+b x+c=0(a \neq 0)$ then
A. $a+b=c$
B. $b+c=0$
C. $a+c=b$
D. $b=c$

Answer: A

- Watch Video Solution

117. In a triangle $P Q R \angle R=\frac{\pi}{4}$, if $\tan \left(\frac{p}{3}\right)$ and $\tan \left(\frac{Q}{3}\right)$ are the roots of the equation $a x^{2}+b x+c=0$ then
A. $a+b=c$
B. $b+c=0$
C. $a+c=b$
D. $b=c$

Answer: A

- Watch Video Solution

118. If one root of $x^{2}+p x+1=0$ is the cube of the other root, then $\mathrm{p}=$
A. 0
B. 1
C. $1, \pm 2$
D. $0, \pm 2$

- Watch Video Solution

119. IF one root of $a x^{2}+b x+c=0$ is equal to nth power of the other then $\left(a^{n} c\right)^{\frac{1}{n+1}}+\left(a c^{n}\right)^{\frac{1}{n+1}}$
A. 0
B. 1
C. b
D. $-b$

Answer: D
120. IF x, a, b, c are real and $\left(x-a+b^{2}\right)+(x-b+c)^{2}=0$ then a, b, c are in
A. H.P
B. G.P
C. A.P
D. none of these

Answer: C

- Watch Video Solution

121. IF the roots of $\frac{1}{x+a}+\frac{1}{x+b}=\frac{1}{c}$ are equal in magnitude and opposite in sign then the product of the
roots is

$$
\begin{aligned}
& \text { A. }-\frac{1}{2}\left(a^{2}+b^{2}\right) \\
& \text { B. } \frac{1}{2}\left(a^{2}+b^{2}\right) \\
& \text { C. }-\frac{3}{2}\left(a^{2}+b^{2}\right) \\
& \text { D. none }
\end{aligned}
$$

Answer: A

- Watch Video Solution

122. IF the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude and opposite in sign , then $p+q+r=$
A. r
B. $3 r$
C. r°
D. $2 r^{2}$

Answer: B

- Watch Video Solution

123. IF $\frac{1}{x}+\frac{1}{x+a}=\frac{1}{m}+\frac{1}{m+a}$ has roots equal in magnitude but oppposite insign, then
A. $a^{2}=m^{2}$
B. $a^{2}=2 m^{2}$
C. $2 a^{2}=m^{2}$

D. none

Answer: B

- Watch Video Solution

124.

areconsecutive $\int e \geq r s$, thenb ${ }^{\wedge} 2-\mathrm{a}^{\wedge} 2^{\wedge}=$
A. 14 C
B. 7c
C. 5 c
D. 4 c

- Watch Video Solution

125. If r is the ratio of the roots of $a x^{2}+b x+C=0$ then $(r+1)^{2}$
r
A. 1
B. $b^{2}-a c$
C. $b^{2} / a c$
D. $b^{2}-4 a c$

Answer: C

126. IF the roots of $a x^{2}+b x+c=0$ are of the form $\frac{m+1}{m}, \frac{m+2}{m+1}$ then $(a+b+c)^{2}=$
A. 0
B. 1
C. $b^{2}-4 a c$
D. $2 a b c$

Answer: C

D Watch Video Solution

127. IF $(a \alpha+b)^{-2}+(a \beta+b)^{-2}=1$, where α, β are the roots of $a x^{2}+b x+c=0$ then $a c(a c+2)=$
A. $b^{2} / 2$
B. b^{3}
C. $2 b$
D. b^{2}

Answer: D

- Watch Video Solution

128. IF the equation $x^{2}+2(k+1) x+9 k-5=0$ has only negative roots, then
A. $k \leq 0$
B. $k \geq 0$
C. $k \geq 6$
D. $k \leq 6$

Answer: C

- Watch Video Solution

129. All the values of m for which both roots of the equation $x^{2}-2 m x+m^{2}-1=0$ are greater than -2 but less
than 4, lie in the interval

$$
\text { A. }-1<m<3
$$

B. $1<m<4$
C. $-2<m<0$
D. $m>3$

Answer:

- Watch Video Solution

130. The values of a for which of a for which $2 x^{2}-2(2 a+1) x+a(a+1)=0$ may have ine root less than a and other root greater than a are given by
A. $1>a>0$
B. $-1<a<0$
C. $a>0$
D. $a>0$ or $a<-1$

Answer: D

- View Text Solution

131. The value of a for which the equation $\left(1-a^{2}\right) x^{2}+2 a x-1$ has roots belonging to $(0,1)$ is

$$
\text { A. } a>\frac{1+\sqrt{5}}{2}
$$

B. $a>2$
C. $\frac{1+\sqrt{5}}{2}<a<2$
D. $a>\sqrt{2}$

Answer: B
132. The value of a for which each one of the roots of $x^{2}-4 a x+2 a^{2}-3 a+5=0$ is greater than 2 , are
A. $a \in(1, \infty)$
B. $a=1$
C. $a \in(-\infty, 1)$
D. $a \in(9 / 2, \infty)$

Answer: D

133. The value of 'a' for which one root of the quadratric equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other is
A. $-2 / 3$
B. $1 / 3$
C. $-1 / 3$
D. $2 / 3$

Answer: D

D Watch Video Solution
134. IF both the roots of the quadratic equation $x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 , then k lies in the interval
A. $(5,6]$
B. $(6, \infty)$
C. $(-\infty, 4)$
D. $[4,5]$

Answer: C

D Watch Video Solution
135. If roots of the equation $x^{2}-b x+c=0$ be two consecutive integers, then $b^{2}-4 c$ equals
A. -2
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

136. p and q are distinct prime numbers and if the equation $x^{2}-p x+q=0$ has positive integer as its roots
then the roots the roots of the equation are
A. 2,3
B. 1,2
C. 3, 1
D. $1,-1$

Answer: B

- Watch Video Solution

137. IF both the roots of the equation
$x^{2}-6 a x+2-2 a+9 a^{2}=0$ exceed 3 , then
A. $a>\frac{9}{11}$
B. $a>\frac{11}{9}$
C. $a>\frac{11}{9}$
D. $a<\frac{11}{9}$

Answer: C

- Watch Video Solution

138. If the roots of $x^{2}+x+a=0$ exceed, a then
A. $2<a<3$
B. $a>3$
C. $-3<a<3$
D. $a<\frac{1}{-2}$

- Watch Video Solution

139. The roots of $3 x^{2}+4 x-7=0$ are
A. rational and equal
B. rational and not equal
C. irrational
D. imaginary

Answer: B
(D) Watch Video Solution
140. The roots of $5 x^{2}-3 x+2=0$ are
A. rational and equal
B. rational and not equal
C. irrational
D. imaginary

Answer: D

- Watch Video Solution

141. The roots of
$(b-c) x^{2}+(c-a) x+(a-b)=0$ are
A. real
B. real and equal
C. real and not equal
D. imaginary

Answer: A

- Watch Video Solution

142. IF ad \neq bc then the roots of

$$
\left(a^{2}+b^{2}\right) x^{2}+2 x(a c+b d)+\left(c^{2}+d^{2}\right)=0 \text { are }
$$

A. real
B. real and equal
C. real and not equal
D. imaginary

Answer: D

- Watch Video Solution

> 143. For $\quad p, q \in R, \quad$ the roots of $\left(p^{2}+q^{2}\right) x^{2}+2(p+q) x+2=0$ are
A. real and equal
B. real and unequal
C. equal complex numbers
D. unequal complex numbers
144. The roots of the equation
$2\left(a^{2}+b^{2}\right) x^{2}+2(a+b) x+1=0$ are
A. real
B. real and equal
C. real and not equal
D. imaginary

Answer: D

- Watch Video Solution

145.

$(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$ are
A. real
B. equal
C. real and not equal
D. imaginary

Answer: A

D Watch Video Solution

146.

The
roots
of
$(x-a)(x-a-1)+(x-a-1)+(x-a-2)+(x-a)(x-a-2)=0$
$a \in \mathbb{R}$ are always
A. equal
B. imaginary
C. real and distinct
D. rational and equal

Answer: C

D View Text Solution

147. IF I,m,n are rational the roots of
$(m+n) x^{2}-(l+m+n) x+l=0$ are
A. rational
B. rational and equal
C. rational and not equal
D. irrational

Answer: A

- Watch Video Solution

148. If the roots of $a^{2} x^{2}+2 b x+c^{2}=0$ are imaginary then
the roots of $\mathrm{b}\left(x^{2}+1\right)+2 a c x=0$ are
A. real and equal
B. real nad unequal
C. equal complex numbers
D. unequal complex numbers

Answer: B

- Watch Video Solution

149.

IF
the
roots
of
$\left(a^{2}+b^{2}\right) x^{2}+2(b c+a d) x+\left(c^{2}+d^{2}\right)=0$ are real and equal then
A. $a / c=b / d$
B. $a c+b d=0$
C. $a d+b c=0$
D. $a c-b d=0$

Answer: D

- Watch Video Solution

150. IF m,n,K are rational and $m=k+\frac{n}{k}$ then the roots of $x^{2}+m x+n=0$ are
A. $k, n / k$
B. $k, n / k$
C. $-k,-n / k$
D. $-k, n / k$

Answer: C
151. IF α, β are the roots of $x^{2}+p x+q=0$ and α^{4}, β^{4} are the roots of $x^{2}-r x+s=0$ then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always
A. two real roots
B. two negative roots
C. two positve roots
D. one positive root and one negative root

Answer: A

152. Let a, b, c be real numbers $a \neq 0$ if α is a roots of $a^{2} x^{2}+b x+c=0, \beta$ is a roots of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$, then the equation $a^{2} x^{2}+2 b x+2 c=0$ has a root γ has a root γ that always satisfies
A. $\gamma=(\alpha+\beta) / 2$
B. $y=\left(\alpha+\frac{\beta}{2}\right)$
C. $\gamma=\alpha$
D. $\alpha<\gamma<\beta$

Answer: D

153. If $p(x)=a x^{2}+b x+c$ and $Q(x)=-a x^{2}+d x+c$
where $a c \neq 0$ then the equation $P(x) . Q(x)=0$ has atleast
A. two real roots
B. two negative roots
C. two positve roots
D. one positive root and oine negative

Answer: A

D Watch Video Solution

154. Let $f(x)=x^{2}+a x+b$, where $a, b \in \mathbb{R}$. If $\mathrm{f}(\mathrm{x})=0$ has
all its roots imaginary, then the roots of $f(x)+f^{\prime}(x)+f(x)$
$=0$ ' are :
A. real and distinct
B. imaginary
C. equal
D. rational and equal

Answer: B

D Watch Video Solution

155. a,b,c $\in R \alpha$ is a root of $a^{2} x^{2}+b x+c=0 \beta$ is a root of $a^{2} x^{2}-b x-c=0$ and γ is a root of $a^{2} x^{2}+2 b x+2 c=0$ then

$$
\begin{aligned}
& \text { A. }\left|\begin{array}{ccc}
-\beta^{2} & \beta & 1 \\
\alpha^{2} & \alpha & 1 \\
\gamma^{2} & 2 \gamma & 2
\end{array}\right|=0 \\
& \text { B. }\left|\begin{array}{ccc}
-\beta^{2} & \beta & 1 \\
\alpha^{2} & \alpha & 1 \\
\gamma^{2} & \gamma & 2
\end{array}\right|=0 \\
& \text { C. }\left|\begin{array}{ccc}
-\beta^{2} & \beta & 1 \\
\alpha^{2} & \alpha & 1 \\
\gamma^{2} & 2 \gamma & 2
\end{array}\right|=0 \\
& \text { D. none }
\end{aligned}
$$

Answer: A
156. IF the roots of the equation $x^{2}+a^{2}=8 x+6 a$ are real , then a lies between
A. 1 and 2
B. -1 and 8
C. 2 and 8
D. -2 and 8

Answer: D

- Watch Video Solution

157. If the equation $(\cos p-1) x^{2}+\cos p x+\sin p=0$ in the varable x has real roots then p can taken any value in the
interval

$$
\begin{aligned}
& \text { A. }(0,2 \pi) \\
& \text { B. }(-\pi, 0) \\
& \text { C. }(-\pi / 2, \pi / 2) \\
& \text { D. }(0, \pi)
\end{aligned}
$$

Answer: D

- Watch Video Solution

158. If $m, \in Z$ and the equation $m x^{2}+(2 m-1) x:(m-2)=0$ has rational roos them m is of the form
A. $n(n+2), n \in z$
B. $n(n+1), n \in z$
C. $n(n-2), n \in z$
D. none

Answer: B

- Watch Video Solution

159. If $\mathrm{a} \in Z$ and the equation $(x-a)(x-10)+1=0$ has integral roots then the values of a are
A. 10,8
B. 12,10
C. 12,8
D. none

Answer: C

- Watch Video Solution

160. IF $\in R$ and the equation $-3(x-[x])+a^{2}=0$ (where [x] denotes the greatest ineteger $\leq x$) has no integral solution, then all possible values of a lie in the interval
A. $(-2,1)$
B. $(-\infty,-2) \cup(2, \infty)$
C. $(-1,0) \cup(0,1)$
D. $(1,2)$

Answer: C

- View Text Solution

161. If the roots of the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0 k>0$ are real then $\mathrm{K}=$
A. 8
B. 12
C. 16
D. 24
162. IF the roots of the equation $a x^{2}+b x+c=0$ are real and distinct , then
A. both roots are greater than $-b / 2 a$
B. both roots are less than $-b / 2 a$
C. one of the roots exceeds $-b / 2 a$
D. none

Answer: C

- Watch Video Solution

163. If the roots of $a x^{2}+b x+c=0$ are both positve, then
A. alto, Clto
B. alt 0, cgt0
C. agt 0 , Clto
D. agt0,Cgt0

Answer: D

- Watch Video Solution

164. IF the roots of $a x^{2}+b x+c=0$ are both negative and
$b<0$ then
A. alt0,Clt0
B. alt 0, cgt0
C. agt 0 , Clto
D. agt0,Cgt0

Answer: A

- Watch Video Solution

165. IF the roots of $a x^{2}+b x+c=0$ are equal in magnitude but opposite in sign then
A. alt0,clt0
B. alt0,cgt 0,bgt0
C. agt $0, b=0, \mathrm{Clto}$
D. $\mathrm{agt0}, \mathrm{~b}=0, \mathrm{cgt0}$

Answer: C

- Watch Video Solution

166. if P, q, r are positive and are in A.P the roots of the quadrativ $p x^{2}+q x+r=0$ real for
A. $\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3}$
B. $\left|\frac{p}{q}-7\right|<4 \sqrt{3}$
C. all p and r
D. no p nad r

Answer: A

- Watch Video Solution

167. IF $(1+k) \tan ^{2} x-4 \tan x-1+k=0$ has real roots $\tan x_{1}$
and $\tan x_{2}$ then
A. $K^{2} \leq 5$
B. $k^{2} \geq 6$
C. $k=3$
D. none

Answer: A
168. IF $0<a$
A. $|\alpha|=|\beta|$
B. $|\alpha|<1$
C. $|\beta|<1$
D. none

Answer: A

- View Text Solution

169. if $0<a0$ nad $c>0$ then both the roots of the equation $2 a x^{2}+3 b x+5 c=0$
A. are real and negative
B. have negative real parts
C. have positive real parts
D. none

Answer: B

- View Text Solution

170. IF $p, q, \in\{1,2,3.4\}$ the number of equation of the form $p x^{2}+q x+1=0$ having real roots is
A. 15
B. 9
C. 7
D. 8

Answer: C

- Watch Video Solution

171. If the equation $x^{2}-2 m x+7 m-12=0$ has equal roots
then $\mathrm{m}=$
A. 2 or 3
B. 3 or 4
C. 4 or 5
D. 5 or 6

Answer: B

- Watch Video Solution

172. IF the roots of $(3 m+1) x^{2}+2(m+1) x+m=0$ are equal then $m=$
A. $4 / 2,1$
B. $-1 / 2,1$
C. 2, 1/2
D. $2,-1 / 2$

Answer: B
173. IF the roots of $x^{2}-2(5+2 k) x+3(7+10 k)$ are equal then $\mathrm{k}=$
A. $4 / 2,1$
B. $-1 / 2,1$
C. 2, 1/2
D. $2,-1 / 2$

Answer: C

- Watch Video Solution

174. If the quadratic expression $x^{2}-(a-1) x+\left(a+\frac{1}{4}\right)$ will be a perfect square then $a=$
A. 0,4
B. 2, 6
C. 2,4
D. 0,6

Answer: D

- Watch Video Solution

175. IF $(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)^{\prime}=0$ has equal roots
then the relation between a, b and c is
A. $a+b+c=0$
B. $a=b=c$
C. $b^{2}=a c$
D. $a+c=2 b$

Answer: B

- Watch Video Solution

176. If $c^{2} \neq a b$ and the roots of $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+\left(b^{2}-a c\right)=0$ are equal, then show that $a^{3}+b^{3}+c^{3}=3 a b c$ or $a=0$
A. $a^{3}+b^{3}+c^{3}=3 a b c$ or $a=0$
B. $a^{2}+b^{2}+c^{2}=a b+b c+c a$
C. $a b c=a+b+C$
D. $a=b=c$

Answer: A

- Watch Video Solution

177. The roots of the equation $(a-b) x^{2}+(b-c) x+(c-a)$
$=0$ are
A. a, b,
B. b, c
C. $1, \frac{c-a}{a-b}$
D. $1, \frac{b-c}{a-b}$
178.

$a(b-c) x^{2}-b(c-a) x+c(a-b)=0$ are
A. $a b+b c+c a, 1$
B. $a+b+c, a b+b c+c a$
C. $1, \frac{c(a-b)}{a(b-c)}$
D. $1, \frac{b(c-a)}{a(b-c)}$

Answer: C
179. If $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots
then $2 / q=$
A. $\frac{1}{p}+\frac{1}{r}$
B. $\frac{1}{p}-\frac{1}{r}$
C. $p+r$
D. $p r$

Answer: A

D Watch Video Solution

180. IF the roots of $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. AP
B. GP
C. HP
D. AGP

Answer: A

- Watch Video Solution

181. IF the roots of $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal then a, b, c are in
A. A.P
B. G.P
C. H.P
D. none

Answer: C

- Watch Video Solution

182. If the roots of $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal then a, b, c are in
A. A.P
B. G.P
C. H.P
D. none

- Watch Video Solution

183. IF the sum of the roots of $a x^{2}+b x+c=0$ is equal to
the sum of the squares of the roots, then.
A. A.P
B. G.P
C. H.P
D. none

Answer: A
184. IF α, β are the roots of the equation $a x^{2}+b x+c=0$
and $\alpha<-1, \beta>1$ then $1+\frac{c}{a}+\left|\frac{b}{a}\right|$ is
A. positive
B. negative
C. non negative
D. non positive

Answer: B

- View Text Solution

185. IF $3+4 i$ is a root of the equation $x^{2}+p x+q=0$ then
A. $p=6, q=25$
B. $p=6, q=1$
C. $p=-6, w=-7$
D. $p=-6, q=25$

Answer: D

- Watch Video Solution

186. IF $3+i$ is a root of the equation $x^{2}+a x+b=0$ then
$a=$
A. 3
B. -3
C. 6
D. -6

Answer: D

- Watch Video Solution

187. IF one root of the quadratic equation $a x^{2}+b x+c=0$
is $3-4 i$ then $a+b+c=$
A. 40 a
B. 36 a
C. $-20 a$
D. $20 a$

Answer: D

- Watch Video Solution

188. IF $(1-p)$ is a root of quadratic equation $X^{2}+p x+(1-p)=0$ then its roots are
A. 0,1
B. $-1,2$
C. $0,-1$
D. $-1,1$

Answer: C
189. IF one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $x^{2}+p x+q=0$ has equal roots then the the value of q is
A. $49 / 4$
B. 4
C. 3
D. 12

Answer: A

- Watch Video Solution

190. If $x^{2}-6 x+5=0$ and $x^{2}-12 x+p=0$ have a common root, then find p .
A. 11 or 35
B. 22 or 45
C. 40
D. 10

Answer: A

- Watch Video Solution

191. If $x^{2}-h x-21=0, x^{2}-3 h x+35=0$ have a common root then $\mathrm{h}=$
A. ± 2
B. ± 4
C. ± 6
D. ± 8

Answer: B

- Watch Video Solution

192. The value of a such that
$x^{2}-11 x+a=0, x^{2}-14 x+2 a=0$ may have a common root is
A. 6
B. 12
C. 24
D. 32

Answer: C

- Watch Video Solution

193. IF the equation $x^{2}-x-p=0$ and $x^{2}+2 p x-12=0$
have a common root then that root is
A. 1
B. $p+2$
C. 2
D. can not be determined

Answer: C

- View Text Solution

194. IF $x^{2}+b x+c=0, x^{2}+c x+b=0 \quad(\mathrm{~b} \neq \mathrm{c})$ have a coomon root then $b+c=$
A. 0
B. 1
C. -1
D. 2

- Watch Video Solution

195. IF $a x^{2}+2 c x+b=0$ and $a x^{2}+2 b x+c=0(b \neq 0)$ have a common root, then $b+c=$
A. $-a / 4$
B. $a / 3$
C. $a / 2$
D. a

Answer: A

- Watch Video Solution

196. IF $x^{2}+a x+b c=0$ and $x^{2}+b x+c a=0$ have a common root, then $a+b+c=$
A. 0
B. 1
C. $a b+b c+c a$
D. 3abc

Answer: A

- Watch Video Solution

common root, then show that $a+4 b+4 c=0$
A. -2
B. -1
C. 0
D. 1

Answer: C

D Watch Video Solution

198. If $x^{2}-c x+d=0, x^{2}-a x+b=0$ have one common root and second has equal roots then $2(b+d)=$
A. 0
B. ac
C. $a+c$
D. $a-c$

Answer: B

- Watch Video Solution

199. IF $x^{2}+b x+a=0, a x^{2}+x+b=0$ have a common root and the first equation has equal roots then $2 a^{2}+b=$
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

200. IF the equations $x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \in R$ have a common root then $a: b: c$ is :
A. 1:3:2
B. $3: 1: 2$
C. 1:2:3
D. 3:2:1

Answer: C

- Watch Video Solution

201.

$x^{2}+P_{1} x+q_{1}=0, x^{2}+p_{2} x+q_{2}=0, x^{2}+p_{3} x+q_{3}=0$ has
a coomon root then $p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+4\left(q_{1}+q_{2}+q_{3}\right)=$
A. $2\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right.$
B. $\left(p_{2} p_{1}+q_{2} q_{3}+q_{3} p_{1}\right)$
C. $2\left(q_{1} p_{2}+q_{2} p_{3}+p_{3} q_{1}\right)$
D. none

Answer: A

202. The quadratic equation $x-6 x+a=0$ and
$x^{2}-c x+6=0$ have one root in common the other roots
of the first and second equations are integers in the ratio
$4: 3$ then the common root is
A. 4
B. 3
C. 2
D. 1

Answer: C
203. If $x^{2}+b x+c a=0, x^{2}+c x+a b=0$ have a common root then their other are the roots of the equation
A. $x^{2}+2 a x-b c=0$
B. $x^{2}+a x+b c=0$
C. $x^{2}+a x-b c=0$
D. none

Answer: B

D Watch Video Solution

204. IF $x^{2}+p x+q=0$ and $x^{2}+q x+p=0$ have a common root, then their other roots are the roots of
A. $x^{2}+x+p q=0$
B. $x^{2}-x-p q=0$
C. $x^{2}-x-p q=0$
D. none

Answer: A

- Watch Video Solution

205. IF $(x-2)$ is a common factor of the expression
$x^{2}+a x+b$ and $x^{2}+c x+d$ then $\frac{b-d}{c-a}=$
A. -2
B. -1
C. 1
D. 2

Answer: D

- Watch Video Solution

206. IF α, β are the roots of $a x^{2}+b x+c=0, \alpha_{1},-\beta$ the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ then α, α are the roots of the equation
A. $\left(\frac{b}{a}+\frac{b_{1}}{a_{1}}\right)^{-1} x^{2}+x\left(\frac{b_{1}}{c_{1}}+\frac{b}{c}\right)^{-1}=0$
B. $\left(\frac{b}{a}-\frac{b_{1}}{a_{1}}\right)^{-1} x^{2}-x\left(\frac{b_{1}}{c_{1}}+\frac{b}{c}\right)^{-1}=0$
C. $\left(\frac{b}{a}+\frac{b_{1}}{a_{1}}\right)^{-1} x^{2}-x\left(\frac{b_{1}}{c_{1}}+\frac{b}{c}\right)^{-1}=0$
D. none

Answer: A

D View Text Solution

207. The values of the parameter a for which the quadratic equation $(1-2 a) x^{2}-6 a x-1=0$ and $a x^{2}-x+1=0$ have at least one root in common are
A. $0,1 / 2$
B. $1 / 2,2 / 9$
C. $2 / 9$
D. $0,1 / 2,2 / 9$

Answer: C

- Watch Video Solution

208. IF $x^{2}+a x+b, x^{2}+c x+d$ has the common factor $x-1$
then $a+b-c-d=$
A. 0
B. 1
C. -1
D. none
209. If $a x^{2}+2 b x+c=0 \quad, a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have a common root , then the roots of the equation $\left(b^{2}-a c\right) x^{2}+\left(2 b b_{1}-a a_{1}-a_{1} c\right) x+\left(b_{1}^{2}-a_{1} c_{1}\right)=0$ are
A. different
B. equal
C. zero
D. none

Answer: B

210. IF $a x^{2}+2 b x+c=0$, and $p x^{2}+2 q x+r=0$
A. $b^{2}-a c$ and $q^{2}-p r$ are both perfect squares
B. $b^{2}-a c$ is perfect square and $q^{2}-p r$ is not a perfact

square

C. $q^{2}-p r$ is a pefect square and $b^{2}-a c$ is not a perfect

square

D. both $b^{2}-a c$ and $q^{2}-p r$ are not perfect squares

Answer: A

D Watch Video Solution

211. if $P, q, r, s \in R$ such that $p r=2(q+s)$ then
A. both the equation $x^{2}+p x+q=0, x^{2}+r x+s=0$ have real roots
B. one of the equation $x^{2}+p x+q=0, x^{2}+r x+s=0$ must have real roots
C. Both the equations $x^{2}+p x+q=0, x^{2}+r x+s=0$ cannot have real roots
D. none

Answer: B

- Watch Video Solution

212. IF every pair from the equation
$x^{2}+p x+q r=0, x^{2}+q x+r p=0$ and $x^{2}+r x+p q=0$ has
a common root, them the product of three common roots is
A. $p q r$
B. 2 pqr
C. $p^{2} q^{2} r^{2}$
D. none

Answer: A

- Watch Video Solution

213. IF the equation $k\left(6 x^{2}+3\right)+r z+2 x^{2}-1=0$ and $6 k\left(2 x^{2}+1\right)+p x+4 x^{2}-2=0$ have both the root common , then the value of $2 r-p$ is
A. 0
B. 1
C. 2
D. 3

Answer: A

D View Text Solution

214. The equation $a x^{2}+b x+a=0(a, b, \in R) \quad$ and $x^{3}-2 x^{2}+2 x-1=0$ have two roots common. Then $\mathrm{a}+\mathrm{b}$ must be equal to
A. 1
B. -1
C. 0
D. one of these

Answer: C

- Watch Video Solution

215. The value of 'a' for which the equation $x^{3}+a x+1=0$
and $x^{4}+a x^{2}+1=0$ have a common root is
A. -2
B. -1
C. 1
D. 2

Answer: A

- Watch Video Solution

216. IF α, β are the roots of $x^{2}+p x+q=0$ and also of $x^{2 n}+P^{n} x^{n}+q^{n}=0$ and if $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots of $x^{n}+1+(x+1)^{n}=0$ then n is
A. an odd integer
B. en even integer
C. any integer
D. none of these

Answer: B

- View Text Solution

217. IF a,b,c are in A. P and if
$(b-c)^{2}+(c-a) x+(c-a) X+(a-b)=0$
$2(c+a) x^{2}+(b+c) x=0$ have a common root then
A. a^{2}, b^{2}, c^{2} are in A.P
B. a^{2}, c^{2}, b^{2} are in A.P
C. a^{2}, c^{2}, b^{2} are in G.P
D. none of these

Answer: B
218. If $12^{4+2 x^{2}}=(24 \sqrt{3})^{3 x^{2}-2}$, then $\mathrm{x}=$
A. $\pm \sqrt{\frac{13}{12}}$
B. $\pm \sqrt{\frac{14}{5}}$
C. $\pm \sqrt{\frac{12}{13}}$
D. $\pm \sqrt{\frac{5}{14}}$

Answer: B

- Watch Video Solution

219. for the equation $|x|^{2}+|x|-6=0$ the roots are
A. One and only one real number
B. real with sum one
C. real with sum zero
D. real with porduct zero

Answer: C

- Watch Video Solution

220. The number of real solution $x^{2}-7|x|+12=0$ is
A. 4
B. 3
C. 2
D. 10

Answer: A

- Watch Video Solution

221. The number of real roots of $\left|x^{2}\right|-5|x|+6=0$ is
A. 2
B. 3
C. 4
D. 1

Answer: C
222. If $\left|x^{2}\right|+|x|-2=0$ then $\mathrm{x}=$
A. ± 1
B. ± 3
C. ± 11
D. ± 15

Answer: A

- Watch Video Solution

223. The product and sum of the roots of the equation
$\left|x^{2}\right|-5|x|-24=0$ are respectively
A. $-64,0$
B. $-24,5$
C. $5,-24$
D. 0,72

Answer: A

- Watch Video Solution

224. The real roots of the equation
$\left|x^{2}+4 x+3\right|+2 x+5=0$ are
A. $4,-1+\sqrt{3}$
B. $-4,-1-\sqrt{3}$
C. $\pm 41 \pm \sqrt{3}$
D. $-2,-4-1 \sqrt{3}$

Answer: B

- Watch Video Solution

225. The number of real solutions of the equation $|x|^{2}-5|x|+6=0$ is
A. 4
B. 1
C. 3
D. 2

Answer: A

- Watch Video Solution

226. The solutions of $\left|x^{2}-2 x+2\right|=3 x-2$ are
A. $4,-1$
B. $-4,-1$
C. $-4,1$
D. 4,1

Answer: D

- Watch Video Solution

227. IF $|x-2|+2|x-9|=7$ then $x=$
A. any real number between 0.7
B. any real number between 2.9
C. any real number between 2.7
D. any real number between 0.9

Answer: B

- Watch Video Solution

228. IF $|x-2|+2|x-3|=7$ then $x=$
A. 2 or $1 / 3$
B. 3 or $1 / 7$
C. 2 or $1 / 5$
D. none

Answer: D

- Watch Video Solution

229. If $|x+1|-|x|+3|x-1|-2|x-2|=x+2$, then $x=$
A. $x=2$ or $x \leq 2$
B. $x=-5$ or $x>5$
C. $x=-2$ or $x \geq 2$
D. none of these

View Text Solution

230. The number of real roots of $(7+4 \sqrt{3})^{|x|-8}=14$ is
A. 0
B. 2
C. 4
D. none of these

Answer: D

- View Text Solution

231. The sum of all real values of x satisfying the equation $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ is
A. 3
B. -4
C. 6
D. 5

Answer: A

- Watch Video Solution

232. The product of real roots of the equation $|x|^{6 / 5}-26|x|^{3 / 5}-27=0$ is
A. -3^{10}
B. -3^{12}
C. $-3^{12 / 5}$
D. $-3^{21 / 5}$

Answer: A

- Watch Video Solution

233. IF α is a root of the equation $4 x^{2}+2 x-1=0$ then $4 \alpha^{3}-3 \alpha$ is
A. a root
B. not a root
C. may be a root
D. none

Answer: A

- Watch Video Solution

234. The value of the continued fraction $1+\frac{1}{1+\frac{1}{1+\ldots}}$ is
A. $\frac{\sqrt{5}-1}{2}$
$\sqrt{5}+1$
B. 2
C. $\frac{\sqrt{5}-1}{2}$
D. $\frac{\sqrt{5}+1}{3}$

Answer: B

- Watch Video Solution

235. IF $20^{3-2 x^{2}=}(40 \sqrt{5})^{3 x^{2}-2}$, then $x=$
A. $\pm \sqrt{\frac{13}{12}}$
B. $\pm \sqrt{12 / 13}$
C. $\pm \sqrt{4 / 5}$
D. $\pm \sqrt{5 / 4}$

Answer: B
236. If $x+\sqrt{x}=6 / 25$ then $x=$
A. $1 / 5$
B. $1 / 25$
C. $1 / 625$
D. $1 / 125$

Answer: B

D Watch Video Solution
237. IF $\sqrt{x+1}-\operatorname{sqt}(x-1)=1$ then $\mathrm{x}=$
A. $7 / 11$
B. $2 / 3$
C. $5 / 4$
D. $-(3 / 2)$

Answer: C

- Watch Video Solution

238. The solution set of $\sqrt{x+1}+\sqrt{2 x-5}=3$ is
A. $\{2\}$
B. $\{3\}$
C. $\{4\}$
D. $\{5\}$
239. If $\sqrt{x+2}=\sqrt{3 x-10}$, then $x=$
A. -6
B. 6
C. 3
D. -3

Answer: B
(D) Watch Video Solution
240. The solution set of $\sqrt{x+20}+\sqrt{x+4}=4 \sqrt{x-1}$ is
A. $\{2\}$
B. $\{3\}$
C. $\{4\}$
D. $\{5\}$

Answer: D

D View Text Solution

241. IF $\sqrt{3 x-5}=0$ then $\mathrm{x}=$
A. 2
B. -2
C. $\frac{5}{3}$

D. none

Answer: C

- Watch Video Solution

242. IF $x^{2}-4 x-12 \sqrt{x^{2}-4 x+19}+51=0$ then $\mathrm{x}=$
A. 1 or 3 or -5 or 9
B. 2 or -3 or 5 or 7
C. -3 or 1 or -7
D. none

Answer: A
243. IF $\sqrt{x^{2}+4 a+5}+\sqrt{x^{2}+4 b+5}=2(a-b)$ then $\mathrm{x}=$

$$
\begin{aligned}
& \text { A. } \frac{(a-b)^{2}-5}{2(a+b)} \\
& \text { B. } \frac{a^{2}-b^{2}}{2(a+b)} \\
& \text { C. } \frac{(a+b)^{2}}{(a+b)-5}
\end{aligned}
$$

D. none

Answer: A

- View Text Solution

244. the solution set of $x^{2}+x-2=0$ is
245. IF $2 x^{1 / 3}+2 x^{-1 / 3}=5$ then $\mathrm{x}=$
A. 3 or $1 / 9$
B. 5 or $1 / 5$
C. 2 or $1 / 5$
D. 8 or $1 / 8$

Answer: D

D Watch Video Solution

246. IF $(a+x)^{2 / 3}+(a-x)^{2 / 3}=4\left(a^{2}-x^{2}\right)^{1 / 3}$ then $x=$
A. $\pm \frac{3 a}{4 \sqrt{4}}$
B. $\pm \frac{4 a}{3 \sqrt{3}}$
C. $\pm \frac{5 a}{3 \sqrt{3}}$
D. $\pm \frac{5 a}{6 \sqrt{6}}$

Answer: C

- View Text Solution

247. The number of rational roots of
$(2 x+3)(2 x+5)(x-1)(x-2)=30$ is
A. 4
B. 3
C. 2
D. 5

Answer: C

- Watch Video Solution

248. The solution set of $(x-1)(x-3)(x-5)(x-7)=9$ is
A. $\{-4,4,4 \pm \sqrt{10}\}$
B. $\{4,4,4 \pm \sqrt{10}\}$
C. $\{-4,-4,4 \pm \sqrt{10}\}$
D. none

View Text Solution

249. The roots of $\frac{1}{(x-1)_{1}} /(x-2)=\frac{1}{x-3}$ are
A. $3 \pm \sqrt{2}$
B. $2 \pm \sqrt{3}$
C. $6 \pm \sqrt{8}$
D. $8 \pm \sqrt{6}$

Answer: A

D View Text Solution

250. The equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ has
A. no root
B. one root
C. two root
D. infinitely many roots

Answer: A

- Watch Video Solution

251. If $\frac{x}{b}+\frac{b}{x}=\frac{a}{b}+\frac{b}{a}$ then $\mathrm{x}=$
A. a^{2} or b^{2} / a^{3}
B. a or b^{2} / a
C. a^{2} or b / a
D. a or b^{2} / a^{2}

Answer: B

- View Text Solution

252. A root of the equation $\frac{a+c}{x+a}+\frac{b+c}{x+b}=\frac{2(a+b+c)}{x+a+b}$ is
A. a
B. b
C. c
D. $a+b+c$

Answer: C

253. The solution set of $\left(x+\frac{1}{x}\right)^{2}-\frac{3}{2}\left(x-\frac{1}{x}\right)=4$ when $x \neq 0$ is
A. $\{1 / 2,1,1,2\}$
B. $\{-1 / 2,-1 / 2,-1,1,2\}$
C. $\{1 / 2,-1,1,2\}$
D. $\{-1 / 2,1,1,2\}$

Answer: B

- Watch Video Solution

254. Solve $2\left(x+\frac{1}{x}\right)^{2}-7\left(x+\frac{1}{x}\right)+5=0$, when $x \neq 0$
A. $\left\{2 \pm \frac{1}{2}, \frac{1 \pm i \sqrt{3}}{2}\right\}$
B. $\left\{2,-\frac{1}{2}, \frac{1+I \sqrt{3}}{2}\right\}$
C. $\left\{-2, \frac{1}{2}, \frac{1 \pm i \sqrt{3}}{2}\right\}$
D. none

Answer: A
(D) Watch Video Solution
255. Solve $\left(x^{2}+\frac{1}{x^{2}}\right)-5\left(x+\frac{1}{x}\right)+6=0$, when $x \neq 0$
A. $\left\{2 \pm \frac{\sqrt{3}}{2}\right\}$
B. $\left\{2,-\frac{1}{2}, \frac{1+I \sqrt{3}}{2}\right\}$
C. $\left\{-2 \pm \sqrt{3}, \frac{1+I \sqrt{3}}{2}\right\}$
D. none

Answer: A

- Watch Video Solution

A. $\sqrt{2 / 3}$
B. $\sqrt{1 / 3}$
C. $\sqrt{\frac{2}{5}}$
D. $\sqrt{3 / 5}$

Answer: D

- Watch Video Solution

257. IF $\frac{x+\sqrt{12 a-x}}{x-\sqrt{12 a-x}}=\frac{\sqrt{a}+1}{(\sqrt{a}-1)}$, then $\mathrm{x}=$
A. $2 a^{2}$
B. $4 a$
C. $3 a$
D. $3 a^{2}$

Answer: C

- Watch Video Solution

258. IF $\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}=2 \frac{1}{6}$ then $\mathbf{x}=$
A. 4 / 11 or $7 / 11$
B. 3/11 or $5 / 11$
C. $4 / 13$ or $9 / 13$
D. none

Answer: C

259. $\sqrt{\frac{x}{x-3}}+\sqrt{\frac{x-3}{x}}=\frac{5}{2}$, when $x \neq 0$ and $x \neq 3$
A. $\{1,2\}$
B. $\{1,-1\}$
C. $\{1,5\}$
D. $\{4,-1\}$

Answer: D

- Watch Video Solution

260. $\sqrt{\frac{3 x}{x+1}}+\sqrt{\frac{x+1}{3 x}}=2$, when $x \neq 0$ and $x \neq-1$
A. $\{1 / 2\}$
B. $\{1\}$
C. $\{2\}$
D. $\{3\}$

Answer: A

- Watch Video Solution

261. If $2^{x}+27\left(2^{-x}\right)=12$ then $x=$
A. $\log _{2} 3$ or $2 \log _{2} 3$
B. $\log _{2} 5$ or $2 \log _{2} 3$
C. $\log _{2} 7$ or $\log _{2} 5$
D. none

Answer: A

D Watch Video Solution

262. If $3^{2 x}-3^{x+1}-3^{x-1}+1=0$ then $\mathrm{x}=$
A. 0
B. ± 7
C. ± 1
D. ± 3

Answer: C

- Watch Video Solution

263. Solve $7^{1+x}+7^{1-x}=50$ for real x.
A. $\{1,1\}$
B. $\{1,-1\}$
C. $\{-1,1\}$
D. none

Answer: B

- Watch Video Solution

264. IF $\quad e^{\left(\cos ^{2} x+\cos ^{4}+\cos ^{6} x+\ldots\right) \log 3} \quad$ satissfies
$y^{2}-10 y+9=0$ and $(0<x<\pi / 2)$ then $\cot ^{2} x=$
A. 0
B. 1
C. $1 / 2$
D. 9

Answer: A

- Watch Video Solution

265. The equation $x^{(3 / 4)}\left(\log _{2} x\right)^{2}+\log _{2} x-5 / 4=\sqrt{2}$ has
A. exactly two real roots
B. no real root
C. one irrational root
D. one of these

Answer: C

- Watch Video Solution

266. The number of real of the equation
$\frac{2 x-3}{x-1}+1=\frac{6 x^{2}-x-6}{x-1}$ is
A. 0
B. 1
C. 2
D. none

Answer: B
267. The equation $e^{\sin x}-e^{-\sin x}-4=0$ has
A. 0
B. 1
C. 4
D. ∞

Answer: A

- Watch Video Solution

268. The number of solutions of the system of equation given below is :
A. ∞
B. 2
C. 4
D. 8

Answer: D

- View Text Solution

269. The number of solution of the equation $9 x^{2}-18|x|+5=0$ belonging to the domin of $\log _{e}\{(x+1)(x+2)\}$ is
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

270. The number of solutions of the equation

$$
5^{x}+5^{-x}=\log _{10} 25, x \in R \text { is }
$$

A. 0
B. 1
C. 2
D. infinitely many

Answer: A

- Watch Video Solution

271. IF the equation $a x+b y=1, c x^{2}+d y^{2}=1$ have only one solution then $\frac{a^{2}}{c}+\frac{b^{2}}{d}=$
A. 1
B. -1
C. 0
D. 2
272. If $a+b+c=0$ then the quadratic equation $3 a x^{2}+2 b x+c=0$ has at least one root in
A. [1, 2]
B. $[0,1]$
C. [-1, 1]
D. $[1,3]$

Answer: B
(D) Watch Video Solution
273. If $2 a+3 b+6 c=0$ then the equation $a x^{2}+b x+c=0$ has atlest one root in
A. $(0,1)$
B. $(1,1)$
C. $[-1,1]$
D. $[1,2]$

Answer: A

- Watch Video Solution

274. Let $P(x)$ be a polynomial with integral coefficients. If there exists two intefers a and b such that $p(a)-p(b)=1$
then
A. both a and b must be even
B. both a and b must be odd
C. a and b are two consecutive intergers
D. none of these

Answer: C

D View Text Solution

275. IF $0<a$
A. real and distinct roots out of which one lies between c and d
B. real and distinct roots out of which one lies between a and b
C. real and distinct roots out of which one lies between b and c
D. non-real roots

Answer: A

- View Text Solution

276. α and β are the roots of the equation $x^{2}+p x+p^{3}=0,(p \neq 0)$. If the point (α, β) lies on the curve $x=y^{2}$, then the roots of the given equaion are
A. $4,-2$
B. 4,2
C. $1,-1$
D. 1,1

Answer: A

- Watch Video Solution

277. Find all number which exceed their square root by 12
A. 8
B. 16
C. 24
D. 32

Answer: B

- Watch Video Solution

278. The two consecutive positive odd integers such that the sum of their squares is 290 are
A. 5,7
B. 9, 11
C. 11,13
D. 15,17
279. Find two consecutive positive even integers, the sum of whose squares is 340 .
A. 10,20
B. 12,14
C. 14,18
D. 16,20

Answer: B
280. The number having two digits such that it is 4 times
the sum and three times the product of its two digits are
A. 8
B. 16
C. 24
D. 32

Answer: C

- Watch Video Solution

281. A number of two digit s whose product is 30 . If the digits are interchanged the resulting number will exceed
the previous by 9 . the number is
A. 56
B. 54
C. 38
D. 28

Answer: A

- Watch Video Solution

282. The sum of the ages of a father and a son is 45 years .

Five years ago the product of their ages was four times the father's age at that time . Their present ages are
A. 32,8
B. 28,7
C. 36,9
D. 40,10

Answer: C

- Watch Video Solution

283. The cost of a piece of cable wire is Rs. $35 /-$, If the length of the piece of wire is 4 meters more and each meter costs, Rs. 1/- less, the cost would remain unchanged. What is the length of the wire ?
A. 10 metres
B. 12 metes
C. 15 metres
D. 20 metres

Answer: A

- Watch Video Solution

284. One fourth of a herd of goats was seen in the forest.

Twice the square root of the number in the herd had gone
up the hill and the remaining 15 goats were on the bank of the river. Find the total number of goats.
A. 26
B. 28
C. 34
D. 36

Answer: D

- Watch Video Solution

285. In the interior of a forest there are some apes. Of their total number square of $\frac{1}{9}$ th are playing at one place
. The remaining are on the hills. The total number of apes
is
A. 27 or 54
B. 16 or 32
C. 28 or 56

Answer: A

- View Text Solution

286. In a cricket match Anil took one wicket less than twice the number of wickets taken by Ravi. If the product of the number of wickets taken by them is 15 , find the number of wickets taken by each of them.
A. 5,3
B. 3,5
C. 2,6
D. 7,9

Answer: A

- Watch Video Solution

287. Some points on a plane are marked and they are connected pair wise by line segments. IF the total number of line segments formed is 10 then the number of marked points on the plane is
A. 2
B. 3
C. 4
D. 5
288. The sides of a right angled triangle containing the right angle are 5 xcm and $(3 \mathrm{x}-1) \mathrm{cm}$. If the area of the triangle is $60 \mathrm{sq} . \mathrm{Cm}$ the length of the sides of the triangles are
A. $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$
B. $6 \mathrm{~cm}, 12 \mathrm{~cm}, 18 \mathrm{~cm}$
C. $10 \mathrm{~cm}, 18 \mathrm{~cm}, 20 \mathrm{~cm}$
D. $9 \mathrm{~cm}, 116,24 \mathrm{~cm}$

Answer: A

Exercise 1 B Quadratic Expressions

1. If $x<3$ or $x>4$ then the value of $x^{2}-7 x+12$ is
A. zero
B. positive
C. negative
D. not determined

Answer: B

- Watch Video Solution

2. IF $x \in R$ then the value of $x^{2}-6 x+10$ is
A. zero
B. positive
C. negative
D. not determined

Answer: B

- Watch Video Solution

3. IF $-1 / 2<x<3$ then the value of ${ }^{`} 2 x^{\wedge} 2-5 x-3$ is
A. zero
B. positive
C. negative
D. not determined

Answer: C

- Watch Video Solution

4. if $x \neq 3 / 2$ then the value of $4 x^{2}-12 x+9$ is
A. zero
B. positive
C. negative
D. not determined

- Watch Video Solution

5. IF $x \in R$ then the value of $4 x-x^{2}-6$ is
A. zero
B. positive
C. negative
D. not determined

Answer: C

- Watch Video Solution

6. IF $4<x<8$ then the value of $-7 x^{2}+8 x-9$ is
A. zero
B. positive
C. negative
D. not determined

Answer: C

- Watch Video Solution

7. If $x \in R$ then the value of $-7 x^{2}+9 x-9$ is
A. zero
B. positive
C. negative
D. not determined

Answer: C

- Watch Video Solution

8. if $a>0$ and $b^{2}-4 a c=0$, then the curve $y=a x^{2}+b x+c$
A. Cuts the x - axis
B. touches the x - axis lies below it
C. lies entirely above the x - axis
D. touches the x - axis and lies above it
9. $x^{2}-2 x+10$ has minimum at $x=$
A. 2
B. -1
C. 1
D. -2

Answer: C

(D) Watch Video Solution
10. $3 x-5 x^{2}+12$ has maximum at $x=$
A. $2 / 5$
B. $-1 / 5$
C. $3 / 10$
D. $-3 / 10$

Answer: C

- Watch Video Solution

11. if $2 x-7-5 x^{2}$ has maximum value at $x=a$ then $\mathrm{a}=$
A. $-1 / 5$
B. $1 / 5$
C. $34 / 5$
D. $-34 / 5$

Answer: B

- Watch Video Solution

12. the minimum value of $x^{2}-8 x+17, \forall x \in R$ is
A. 17
B. -1
C. 1
D. 2

Answer: C

13. The maximum value of $10 x-5 x^{2}-1$ is
A. -1
B. $-1 / 5$
C. 2
D. 4

Answer: D

D Watch Video Solution

14. the maximum value of $(x-a)(b-x)$ is
A. $\left(a^{2}-b\right)^{2} / 4$
B. $(a-b)^{2}$
C. a
D. b

Answer: A

- Watch Video Solution

15. The maximum value of $a^{2}-a b x-b^{2} x^{2}$ is
A. $5 a^{2} / 4$
B. $a^{2} / 2$
C. a
D. $-a$

Answer: A

- Watch Video Solution

16. the minimum value of $\left(x-\frac{5}{3}\right)^{2}+\frac{7}{2}$ is
A. 1
B. 7
C. $7 / 5$
D. $7 / 2$

Answer: D
17. the maximum value of $\frac{7}{5}-\left(x-\frac{2}{3}\right)^{2}$ is
A. $11 / 3$
B. 7/5
C. 7
D. 5

Answer: B

- Watch Video Solution

18. the maximum value of $c+2 b x-x^{2}$ is
A. $b^{2} c$
B. $b^{2}-c$
C. $c-b^{2}$
D. $b^{2}+c$

Answer: D

- Watch Video Solution

19. the minimum value of the quadratic expression $x^{2}+2 b x+c$ is
A. $c b^{2}$
B. $c^{2} b$
C. $c+b^{2}$
D. $c-b^{2}$

Answer: D

- Watch Video Solution

20. the expression $2 x^{2}+4 x+7$ has minimum value m at $x=\alpha$. The ordered pair (α, m) is
A. $(1,5)$
B. $(1,-5)$
C. (-1, -5)
D. $(-1,5)$

Answer: D

- Watch Video Solution

21. The extreme value of $x^{2}-5 x+6$ is
A. $1 / 4$
B. $-1 / 4$
C. $1 / 2$
D. $-1 / 2$

Answer: B

- Watch Video Solution

22. Find the changes in the sign of the following expressions and find their extreme values.
$15+4 x-3 x^{2}$
A. $49 / 3$
B. $-49 / 3$
C. $47 / 3$
D. $-47 / 3$

Answer: A

- Watch Video Solution

23. If $a_{1}, a_{2}, \ldots a_{n}$ are in H.P. then
$a_{1} \cdot a_{2}+a_{2} \cdot a_{3}+a_{3} \cdot a_{4}+\ldots+a_{n-1} \cdot a_{n}=$

> A. $a_{1}+a_{2}+\ldots+a_{n}$
> B. $\left(a_{1}+a_{2}+a_{3}+\ldots+a_{n}\right)$
> C. $n\left(a_{1}+a_{2}+\ldots+a_{n}\right)$
> D. none

Answer: D

- Watch Video Solution

24. IF a, b, c are positive then the least value of $(a+b+c)(1 / a+1 / b+1 / c)$ is
A. 4
B. 3
C. 7
D. 9

Answer: D

- Watch Video Solution

25. If a, b, c are distinct positive numbers then the

3expression $(b+c-a)(c+a-b)(a+b-c)-a b c$ is
A. positive
B. negative
C. nonpositive
D. nonnegative

Answer: C

D View Text Solution

26. IF $a^{2}+b^{2}+c^{2}=1$ then the range of $a b+b c+c a$ is
A. $[1 / 2,2]$
B. $[-1 / 2]$
C. $[-1 / 2,1]$
D. $[1,3 / 2]$

Answer: C

- Watch Video Solution

27. In triangle $A B C$, range of $\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}$ is (a,b,c are sides of triangle)
A. $[1,2)$
B. $(-\infty, 1] \cup[2, \infty)$
C. zero
D. none

Answer: A

- Watch Video Solution

28. The solution set of $-x^{2}+3 x+4>0$ is
A. $(-1,4)$

$$
\begin{aligned}
& \text { B. }(-\infty,-3] \cup[7, \infty) \\
& \text { C. }(-\infty, 3) \cup(5, \infty) \\
& \text { D. }[-4,1]
\end{aligned}
$$

Answer: A

- Watch Video Solution

29. the solution set of $x^{2}-4 x-21 \geq 0$ is
A. $(-1,4)$
B. $(-\infty,-3] \cup[7, \infty)$
C. $(-\infty, 3) \cup(5, \infty)$
D. $[-4,1]$

Answer: B

- Watch Video Solution

30. the solution set of $1 \leq x^{2}-2 x$ is

$$
\text { A. }(-\infty, 1-\sqrt{2}] \cup[1+\sqrt{2}, \infty)
$$

B. $(-\infty,-3) \cup(1+\sqrt{2}, \infty)$
C. $(-1,1 / 2)$
D. $[-1,1 / 2]$

Answer: A
31. the solution set of $x^{2}>4 x+5$ is
A. $(-\infty 1 \sqrt{2}] \cup[1+\sqrt{2}, \infty)$
B. R
C. ($-1,1 / 2$)
D. $[-1,1 / 2]$

Answer: B

- Watch Video Solution

32. The solution set of $2 x^{2}-4 x+5>0$ is
A. $[-1 / 2,3]$
B. R
C. $(-2,1 / 2)$
D. ϕ

Answer: D

- Watch Video Solution

33. the solution set of $x^{2}-2 x+2<0$ is
A. $[-1 / 2,3]$
B. R
C. $(-2,1 / 2)$
D. ϕ
34. the set of all solutions of the inequation $x^{2}-2 x+5 \leq 0$ in R is
A. $R-(-\infty,-5)$
B. $R-(5, \infty)$
C. ϕ
D. $R-(-\infty,-4)$

Answer: C
(D) Watch Video Solution
35. The set of solutions of $|x|^{2}-5|x|+4<0$ is
A. $(-4,-1)$
B. $(1,4)$
C. $(-4,-1) \cup(1,4)$
D. $(-4,4)$

Answer: C

D Watch Video Solution
36. if the expression $4 x-5 x^{2}+1$ is positive if x lies in
A. $(-1 / 5,1)$
B. $(1,1)$
C. ϕ
D. R

Answer: A

- Watch Video Solution

37. the expression $-7 x^{2}+8 x-9$ is positive if x lies in
A. $(-\infty, 1) \cup(2, \infty)$
B. $(-\infty, 2) \cup(3, \infty)$
C. ϕ
D. R

Answer: C

- Watch Video Solution

38. the expression $x^{2}-5 x-6$ is negative is x lies in
A. ($-1,6$)
B. $(2,5)$
C. (-3, 1/2)
D. R

Answer: A

- Watch Video Solution

39. The greatest positive integral value of x for which 200$x(10+x)$ is positive is
A. 11
B. 10
C. 9
D. none

Answer: C

- Watch Video Solution

40. The least integral value of x for which $33-x(2+3 x) g t 0^{`}$ is
A. -11
B. -3
C. -2
D. -1

Answer: B

- Watch Video Solution

41. The integer k for which the inequality
$x^{2}-2(4 k-1) x+15 k^{2}-2 k-7>0$ is valid for any x , is
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

42. IF the difference between the roots the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$ then the set of possible values of a is
A. $(-3,3)$
B. $(-3, \infty)$
C. $(3, \infty)$
D. $(-\infty,-3)$

Answer: A

- Watch Video Solution

43. IF $x^{2}+6 x-27>0-x^{2}+3 x+4>0$ then x lies in the interval
A. $(3,4)$
B. $[3,4]$
C. $(-\infty, 3] \cup[4, \infty)$
D. $(-9,4)$
44. The set of values of x for which the inequalities
$x^{2}-3 x-10<0,10 x-x^{2}-16>0$ hold simultancously, is
A. $(-2,5)$
B. $(2,8)$
C. $(-2,8)$
D. $(2,5)$

Answer: B
45. The set of values of x for which the inequalities $x^{2}-2 x+3>0,2 x^{2}+4 x+3>0$ hold simultancously , is
A. $(-4,1)$
B. $(-4,-3] \cup[-2,1)$
C. $(-4,-3) \cup(-2,1)$
D. R

Answer: D

D Watch Video Solution

46. IF $x^{2}-2 x+3>0,2 x^{2}+4 x+3>0$ then x lies in the interval
A. $(1,2)$
B. R
C. $(2,5)$
D. ϕ

Answer: B

- Watch Video Solution

47. the greatest negative integer satifying $x^{2}-4 x-77<0$ and and $x^{\wedge} 2$ gt4 is
A. 1
B. 2
C. 3
D. -3

Answer: D

- Watch Video Solution

48. If $x>0$ then the least value of $x+\frac{1}{x}$ is
A. 2
B. -2
C. 1
D. 0
49. the least value of $\cos ^{2} x+\sec ^{2} x$ is
A. 0
B. -2
C. 2
D. -1

Answer: C

- Watch Video Solution

50. The range of $\frac{x^{2}+2 x+1}{x^{2}+2 x-1}$ is

$$
\text { A. }(-\infty, 0] \cup(1, \infty)
$$

B. $[1 / 2,2]$
C. $(-\infty,-2 / 9] \cup(1, \infty)$
D. $(-\infty,-6) \cup(-2, \infty)$

Answer: A

- Watch Video Solution

51. The range of $\frac{x^{2}-2 x+9}{x^{2}+2 x+9}$ is
A. $(-\infty, 0] \cup(1, \infty)$
B. $[1 / 2,2]$
C. $(-\infty,-2 / 9] \cup(1, \infty)$

$$
\text { D. }(-\infty,-6) \cup(-2, \infty)
$$

Answer: B

- Watch Video Solution

52. The range of $\frac{x^{2}-2 x+3}{x^{2}-2 x-8}$ is
A. $[-9 / 2,1 / 2]$
B. $(-\infty, 1] \cup[2, \infty)$
C. $(-\infty,-9] \cup[-1, \infty)$
D. R

Answer: C
53. The range of $\frac{x^{2}-2 x+3}{x^{2}-2 x-8}$ is
A. $[-9 / 2,1 / 2]$
B. $(-\infty, 1] \cup[2, \infty)$
C. $(-\infty,-9] \cup[-1, \infty)$
D. R

Answer: D

- Watch Video Solution

54. IF x is real then the value of $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ lies in the interval
A. $\left[\frac{1}{3}, 3\right]$
B. $\left[\frac{1}{5}, 5\right]$
C. $\left[\frac{1}{6}, 6\right]$
D. $\left[\frac{1}{7}, 7\right]$

Answer: D

(Watch Video Solution
55. Show that none of the values of the function $x^{2}+34 x-71$
$\frac{x^{2}+2 x-7}{}$ over R lies between 5 and 9 .
A. does not lie
B. lies
C. none
D. cannot be determined

Answer: A

- Watch Video Solution

56. IF x is real, then $\frac{x^{2}-b c}{2 x-b-c}$ has ___ values between b and c
A. no real
B. real
C. none
D. cannot be determined

Answer: A

- Watch Video Solution

57. If x is real then $y=\frac{2 x^{2}+6 x+5}{x^{2}+3 x+2} \quad$ between -2 and +2
A. lies
B. does not lie
C. none
D. cannot be determined

Answer: B

- Watch Video Solution

58. If x is real, then the minimum value of $y=\frac{x^{2}-x+1}{x^{2}+x+1}$ is
A. $1 / 3$
B. 3
C. 1/2
D. 1

Answer: A
59. the (relative) minimum value of $\frac{x^{2}-3 x+2}{x^{2}+3 x+2}$ is
A. $-1 / 11$
B. $-17+12 \sqrt{2}$
C. $-17-12 \sqrt{2}$
D. 0

Answer: B

- View Text Solution

60. For $x \in R$, the least value of $\frac{x^{2}-6 x+5}{x^{2}+2 x+1}$ is
A. -1
B. $-\frac{1}{2}$
C. $-\frac{1}{4}$
D. $-\frac{1}{3}$

Answer: D

- Watch Video Solution

61. If $x \in R$, then the range of $\frac{x}{x^{2}-5 x+9}$ is
A. $-1 / 11$
B. -1
C. 1/11
D. 1

Answer: D

- Watch Video Solution

62. If x is real, then the maximum value of $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ is
A. 2
B. 4
C. 6
D. 8

Answer: B
63. the limits of $\frac{6 x^{2}-18 x+21}{6 x^{2}-18 x+17}$ are
A. $1,15 / 7$
B. 1,15
C. $2,3 / 5$
D. 1, $7 / 15$

Answer: A

D View Text Solution

64. If x is real, then the range of $\frac{x^{2}+2 x+1}{x^{2}+2 x+7}$ is
A. 0,1
B. 1, 2
C. 0,2
D. 2,3

Answer: A

- Watch Video Solution

65. IF $\frac{x-a}{x^{2}-3 x+2}$ takens all real values for $\mathrm{x} \in R$, then
A. $a=2$
B. $a<2$
C. $1<a<2$
D. $1 \leq a \leq 2$

Answer: D

- View Text Solution

66. IF $x \in R$ then $\frac{x^{2}+2 x+a}{x^{2}+4 x+3 a}$ can take all real values if
A. $a \in(0,2)$
B. $a \in[0,1]$
C. $a \in[-1,1]$
D. none

Answer: B
67. If $Y=\tan x \cot 3 x, x \in R$, then
A. $\frac{1}{3}<y<1$
B. $\frac{1}{3} \leq y \leq 1$
C. $\frac{1}{3} \leq y \leq 3$
D. none

Answer: D

D Watch Video Solution

68. IF $x \in R$ then $\frac{2 a(x-1) \sin ^{2} \alpha}{x^{2}-\sin \alpha}$ connot lie between
A. $a \sin ^{2} \alpha, a \cos ^{2} \alpha$
B. $a \sin ^{2}(\alpha / 2) a, \cos ^{2}(\alpha / 2)$
C. $2 a \sin ^{2} \alpha, 2 a \cos ^{2} \alpha$
D. $2 a \sin ^{2}\left(\alpha / 2,2 a \cos ^{2}(\alpha / 2)\right.$

Answer: D

- View Text Solution

69. If $a \neq b$ then the expression
$x^{2}-(a+b) x+\left(a^{2}-a b+b^{2}\right)$ __ negative values for any real value of x
A. does not take
B. take
C. none
D. cannot be determined

Answer: A

- View Text Solution

70. If α, β are the roots of $x^{2}-(a-2) x-(a+1)=0$ where a is a variable then the least value of $\alpha^{2}+\beta^{2}$ is
A. 2
B. 3
C. 5

Answer: C

- Watch Video Solution

71. IF the sum of the squares of the roots of the equation $x^{2}-(\sin \alpha-2) x-(1+\sin \alpha)=0$ is least , then $\alpha=$
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. $\pi / 6$
72. The value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assume the least value is
A. 0
B. 1
C. 2
D. 3

Answer: B
73. IF the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the experssion $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is
A. less than $4 a b$
B. greater than - 4ab
C. less than $-4 a b$
D. greater than 4 ab

Answer: B

74. The smallest value of of the constant $m>0$ for which
$f(x)=9 m x-1+\frac{1}{x} \geq 0$ for all $x>0$, is
A. $\frac{1}{9}$
B. $\frac{1}{16}$
C. $\frac{1}{36}$
D. $\frac{1}{81}$

Answer: C

D Watch Video Solution

75. The real values of a for which $y=\sqrt{\frac{(x+1)(x-3)}{x-2}}$ takes real values are

$$
\text { A. }-1 \leq x<2 \text { or } x \geq 3
$$

B. $1<x<2$ or $x>2$
C. $x<2$ or $x>3$
D. $x>2$

Answer: A

- Watch Video Solution

76. IF $x>-c$ then the minimum value of $\frac{(a+x)(b+x)}{c+x}$ is
A. $\sqrt{a-c}+\sqrt{b-c}$
B. $\sqrt{a-c}-\sqrt{b-c}$
C. $(\sqrt{a-c}+\sqrt{b-c})^{2}$
D. $(\sqrt{a-c}-\sqrt{b-c})^{2}$

Answer: C

- Watch Video Solution

77. IF $x>-c$ then the minimum value of $\frac{(a+x)(b+x)}{c+x}$ is
A. $\sqrt{a-c}+\sqrt{b-c}$
B. $\sqrt{a-c}-\sqrt{b-C}$
C. $(\sqrt{a-c}+\sqrt{b-c})^{2}$
D. $(\sqrt{a-c}-\sqrt{b-c})^{2}$

Answer: D

78. For real x, the function $\frac{(x-a)(x-b)}{x-c}$ will assume all real values provided
A. $a<b<c$
B. $b<c<a$
C. $c<a<b$
D. none of these

Answer: B

- Watch Video Solution

79. The range of values of x which satisfy $5 x+2<3 x+8$ and $\frac{x+2}{x-1}<4$ are
A. '(-oo, 1) U(2,3)'
B. $(0, \infty)$
C. $(-\infty, 2)$
D. $(1,3)$

Answer: A

D Watch Video Solution

80. The range of values of x for which the inequality
$\frac{x-1}{4 x+5}<\frac{x-3}{4 x-3}$ holds is
A. $(-4 / 3,5 / 8)$

$$
\text { B. }(-4 / 3,1 / 2)
$$

C. $(-5 / 4,3 / 4)$
D. none

Answer: C

- Watch Video Solution

81. The values of x for which $\frac{x-1}{3 x+4}<\frac{x-3}{3 x-2}$ holds, lie in
A. $(-\infty,-5 / 4)$
B. $(-4 / 3,2 / 3)$
C. $(3 / 4, \infty)$

$$
\text { D. }(-\infty,-5 / 4 \cup(3 / 4, \infty)
$$

Answer: B

- Watch Video Solution

82. $\left\{x \in R: \frac{14 x}{x+1}-\frac{9 x-30}{x-4}<0\right\}$ is equal to
A. $(-1,4)$
B. $(1,4) \cup(5,7)$
C. $(1,7)$
D. $(-1,1) \cup(4,6)$

Answer: D
83. IF the inequation $\sqrt{3 x-8}<-2$ then
A. ϕ
B. $[1,2]$
C. $[12, \infty)$
D. $(1,12]$

Answer: A

D Watch Video Solution
84. if the inequation $\sqrt{x+5<-x}$ then
A. 5Itxlarr1
B. $-5<x<1$
C. $-5<x<-1$
D. none

Answer: C

D View Text Solution

85. If the inequation $\sqrt{x^{2}-18 x+72}<x-1$ then
A. ϕ
B. $[1,2)$
C. $[12, \infty)$
D. $(1,2]$

Answer: C

- Watch Video Solution

86. IF $\sqrt{9 x^{2}+6 x+1}<(2-x)$ then
A. $x \in\left(+\frac{3}{2}, \frac{1}{4}\right)$
B. $x \in\left(-\frac{3}{2}, \frac{1}{4}\right)$
C. $x \in\left[-\frac{3}{2}, \frac{1}{4}\right)$
D. $x<\frac{1}{4}$

Answer: B
87. If the inequation $\sqrt{(x+2)(x-5)}>8-x$ then x lies in
A. $\left(\frac{74}{36}, \infty\right)$
B. $\left[\frac{74}{13}, \infty\right)$
C. $\left(-\frac{74}{13}, \infty\right)$
D. $\left[-\frac{74}{13}, \infty\right)$

Answer: A

- View Text Solution

$$
\sqrt{6+x-x^{2}} \quad \sqrt{\left(8-2 x-x^{2}\right)}
$$

$$
\text { 88. If the inequation } \frac{}{x+10} \leq \frac{1}{2 x+9} \text { then }
$$

A. $2 \leq x \leq-1$
B. $-2 \leq x \leq-1$
C. $2 \leq x \leq, x=3$
D. none

Answer: B

D View Text Solution

89. if the inequation $\frac{\sqrt{8-2 x-x^{2}}}{x+10} \leq \frac{\sqrt{\left(8-2 x-x^{2}\right)}}{2 x+9}$, then x
lies in

A. $[-4,1] \cup\{2\}$
 B. $(-4,1] \cup\{2\}$
 C. $[-4,1) \cup\{2\}$
 D. none

Answer: A

- View Text Solution

90. if $x^{2}+k y^{2}+x-y$ is resolvable into two linear factors then $\mathrm{k}=$
A. -1
B. 1
C. 2
D. 0

Answer: A

- Watch Video Solution

91. If $x y+2 x-3 y-k$ is resolvable into two linear factors then $\mathrm{k}=$
A. -1
B. 4
C. 6
D. -5

Answer: C

- Watch Video Solution

92. IF $x^{2}-y^{2}+4 x-6 y+k$ is resolvable into two linear factors then $k=$
A. -1
B. 4
C. 6
D. -5

Answer: D
93. IF $x^{2}+4 x y+4 y^{2}+4 x+c y+3$ can be written as a product of two linear factors, then $\mathrm{c}=$
A. 2
B. 4
C. 6
D. 8

Answer: D

D Watch Video Solution

94. IF $12 x^{2}-m x y+3 y^{2}-5 y^{2}-2$ can be resolvarble into two
linear factors then $\mathrm{m}=$
A. ± 6
B. ± 3
C. ± 5
D. ± 7

Answer: D

- View Text Solution

95. IF $12^{2}-10 x y+2 y^{2}+11 x-5 y+k$ is resolvable into two linear factors factors then $k=$
A. 2
B. 1
C. 0
D. 4

Answer: A

- View Text Solution

96. IF $3 x^{2}+8 x y-k y^{2}+29 x-3 y+18$ is resolvable into two
linear factors then $k=$
A. 2
B. 1
C. 3
D. 4

Answer: C

- View Text Solution

97. IF $m x^{2}+7 x y-3 y^{2}+4 x+7 y+2$ is resolvable into two
linear factors then $m=o f$ twp linear factors then the
factors are
A. 7
B. 4
C. 2
D. -5

Answer: C
98. IF $4 x^{2}+4 x y-k y^{2}-12-2 y+8$ can be written as the produ of two linear factors then the factors are
A. $(2 x+3 y+4)(3 x+5 y+2)$
B. $(3 y+x+9)(y-3 x-2)$
C. $(2 x+3 y-4)(2 x-y-2)$
D. $(x-y+4),(x-2 y+5)$

Answer: C

- View Text Solution

99. IF $3 x^{2}+8 x y+5 y^{2}+14 x+22 y+8$ is resolvable into two
linear factors then the factors are
A. $(2 x+3 y+4)(3 x+5 y+2)$
B. $(3 y+x+9)(y-3 x-2)$
C. $(2 x+3 y-4)(2 x-y-2)$
D. $(x-y+4),(x-2 y+5)$

Answer: A

- View Text Solution

100. Examine $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18$ is re-solvable into two linear factors.

$$
\begin{aligned}
& \text { A. }(2 x+3 y+4)(3 x+5 y+2) \\
& \text { B. }(3 y+x+9)(y-3 x-2) \\
& \text { C. }(2 x+3 y-4)(2 x-y-2) \\
& \text { D. }(x-y+4),(x-2 y+5)
\end{aligned}
$$

Answer: B

- Watch Video Solution

$$
\text { A. } a^{3}+b^{3}+c^{3}=3 a b c
$$

B. $a^{3}+b^{3}+c^{3}=a b c$
C. $a^{2}+b^{2}+c^{2} a b+b c+c a$
D. $a^{3}+b^{3}+c^{3}=27 a b c$

Answer: A

- View Text Solution

102. The condition for $3 x^{2}+2 p x y+2 y^{2}+2 a x-4 y+1$ can
be resolved into two linear factors is
A. $p^{2}+4 a p+a^{2}+6=0$
B. $p^{2}+4 a p+a^{2}=6$
C. $p^{2}+4 a p+2 a^{2}+6=0$
D. $p^{2}+4 a p+2 a^{2}=6$

Answer: C

- Watch Video Solution

103. If $x^{2}+4 y^{2}-8 x+12=0$ is satified by real values of x nad y then y must lies between
A. 2,6
B. 2,5
C. $-1,1$
D. $-2,1$

- Watch Video Solution

104. If $x^{2}+4 y^{2}-8 x+12=0$ is satified by real values of x nad y then y must lies between
A. 2,6
B. 2, 5
C. $-1,1$
D. $-2,1$

Answer: C
105. Let $f(x)$ be a polynomial for which the remainders when divided by $x-1, x-2, x-3$ respectively are $3,7,13$ then the remainder of $f(x)$ when divided by $(x-1)(x-2)(x-3)$ is
A. $f(x)$
B. $x^{2}+X+1$
C. $x^{2}+1$
D. none

Answer: B
106. Let two numbers have arthmetic mean 9 geometric mean 4. then these numbers are the roots of the quadratic equation
A. $x^{2}+18 x+16=0$
B. $x^{2}-18 x-16=0$
C. $x^{2}+18 x-16=0$
D. $x^{2}-18 x+16=0$

Answer: D

- Watch Video Solution

1. I: If $(a \alpha+b)^{2}+(a \beta=b)^{-2}=1$ where α, β are the roots of $a x^{2}+b x+c=0$ then $a c(a c+2)=b^{2}$

II : the value of ' a ' for which one root of the quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the quadratic equation
A. Only I is true
B. Only II is true
C. both I and II are true
D. niether I nor II true

Answer: A

2. I: If $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots then $\mathrm{p}, \mathrm{q}, \mathrm{r}$ in A.P

II: if the sum of the roots of $a x^{2}+b x+c=0$ has equal to the sum of the squares of their reciprocals then $b c^{2}, c a^{2},+b x+c=0$ is equal to the sum of the squares of their reciproocals then $b c^{2}, c a^{2}, a b^{2}$ are in A.P
A. Only I is true
B. Only II is true
C. both I and II are true
D. niether I nor II true

Answer: B

3. I) The maximum value of $c+2 b x-x^{2}$ is $c+b^{2}$
II) The minimum value of $x^{2}+2 b x+c$ is $c-b^{2}$

Which of the above statements is true?
A. Only I is true
B. Only II is true
C. both I and II are true
D. niether I nor II true

Answer: A
4. $E_{1}, a+b+c=0$ if 1 is a root of $a x^{2}+b x+c=0$.
$E_{2}: b^{2}-a^{2}=2 a c$ if $\sin \theta \cos \theta$ are the of $a x^{2}+b x+c=0$ which of the following is true?
A. E_{1} is true E_{2} is true
B. E_{1} is true E_{2} is false
C. E_{1} is false,E_{2} is ture
D. E_{1} is false E_{2} is false

Answer: A

D View Text Solution

1. a,b,c $\in R \alpha$ is a root of $a^{2} x^{2}+b x+c=0 \beta$ is a root of $a^{2} x^{2}-b x-c=0$ and y is a root of $a^{2} x^{2}+2 b x+2 c=0$ then
A. A,B,C,D
B. B,D,C,A
C. A,C,B,D
D. D, B, A, C

Answer: B

- Watch Video Solution

2. if A, B, C, D are the sum of the roots of the roots of $2 x^{2}+x+3=0, x^{2}-x+2=0,3 x^{2}-2 x+1=0, x^{2}-x-x+1=0$
then the ascendinf order of A, B, C, D is
A. A,B,C,D
B. B,D,C,A
C. A,C,B,D
D. C, D, A, B

Answer: C

- Watch Video Solution

3. IF A, B, C, are the minimum value of $x^{2}-8 x+17,2 x^{2}+4 x-5,3 x^{2}-7 x+1$ then the ascending order of A, B, C is
A. A, B, C
B. B, C, A
C. C, A, B
D. A, C, B

Answer: B

- Watch Video Solution

4. IF A, B, C are the maximum value of $2 x+5-x^{2}, x-1-2 x^{2}, 5 x+2-3 x^{2}$ then the descending order of A, B, C is
A. A, B, C
B. B,C,A
C. C, A, B
D. A, C, B

Answer: D

- Watch Video Solution

Exercise 2 Special Type Questionos Set 3

1. IF α, β are the roots of $a x^{2}+b x+c=0$ then the match the following
I. $\alpha \beta^{2}+\alpha^{2} \beta+\alpha \beta=$
a) $\frac{b^{2}-2 a c}{c^{2}}$
II. $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=$
b) $\frac{3 a b c-b^{3}}{a^{2} c}$
III. $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=$
c) $\frac{c^{3}}{a^{3}}$
IV. $\frac{\alpha^{3}+\beta^{3}}{\alpha^{-3}+\beta^{-3}}=$
d) $\frac{a c-b c}{a^{2}}$
A. c,d,a,b
B. d,c,b,a
C. d,a,b,c
D. c,b,a,c

Answer: C

2. Match the following

If α, β are the roots of $x^{2}+5 x-4=0$ then the equation
Whose roots are $\frac{\alpha+2}{3}, \frac{\beta+2}{3}$ is
II. If α, β are the roots of $2 x^{2}+x+3=0$ then the equation whose roots are $\frac{1-\alpha}{1+\alpha}, \frac{1-\beta}{1+\beta}$ is
III. If α, β are the roots of $x^{2}-2 x+3=0$ then the equation whose roots are $\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}$ is
IV. If α, β are the roots of $2 x^{2}+3 x-4=0$ then the equation d) $2 x^{2}+x+3=0$ whose roots are $2 \alpha+\frac{3}{\beta}, 2 \beta+\frac{3}{\alpha}$ is
a) $4 x^{2}+3 x-2=0$
b) $3 x^{2}-2 x+1=0$
c) $9 x^{2}+3 x-10=0$
A. a, c, d, b
B. d,c,b,a
C. b,c,d,a
D. $\mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{c}$

Answer: D

- View Text Solution

3. match the following .

Inequation
I. $x^{2}-7 x+12 \geq 0$
II. $x^{2}+3 x-4 \leq 0$

III $2 x^{2}+3 x<2$
IV. $x^{2}-2 x+2<0$

Solution set
a) \varnothing
b) $(-2,1 / 2)$
e) $[-4,4]$
d) $(-\infty, 3] \cup[4, \infty)$
A. a,c,d,b
B. d,c,b,a
C. b,c,d,a
D. $\mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{c}$

Answer: B

D Watch Video Solution
4. Let α and β be the roots of the quadratic equation $a x^{2}+b x+c=0$. Observe the lists given below:

$$
\begin{aligned}
& \text { List -I } \\
& \text { i) } \alpha=\beta \Rightarrow \\
& \text { ii) } \alpha=2 \beta \Rightarrow \\
& \text { iii) } \alpha=3 \beta \Rightarrow \\
& \text { iv) } \alpha=\beta^{2} \Rightarrow
\end{aligned}
$$

List-II

A) $\left(a c^{2}\right)^{1 / 3}+\left(a^{2} c\right)^{1 / 3}+b=0$
B) $2 b^{2}=9 a c$
C) $b^{2}=6 a c$
D) $3 b^{2}=16 a c$
E) $b^{2}=4 a c$
F) $\left(a c^{2}\right) 1 / 3+\left(a^{2} c\right)^{1 / 3}=b$

Let correct match of List -I from List -II is

I ii iii iv
A.
$E \quad B \quad D \quad F$
I ii iii iv
B.
$E \quad B \quad A \quad D$
I ii iii iv
C.
$E \quad D \quad B \quad F$
I ii iii iv
D. $E \quad B \quad D \quad A$

Answer: D

Exercise 2 Special Type Questionos Set 4

1. A: The quadratic equation having roots $3 \pm 2 I$ is
$x^{2}-6 x+13=0$

R : the quadratic equation having roots α, β is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
A. Both A are R are ture R is the correct explanation of

A

B. Both A are R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

2. A: the quadratic equation whose roots are the reciprocals of the roots of $3 x^{2}-7 x+2=0$ is $3 x^{2}+7 x+2=0$
R : the quadratic equation whose roots are the reciprocals of the roots of the quadratic equation $f(x)$ is $f(1 / x)=0$
A. Both A are R are ture R is the correct explanation of

A

B. Both A are R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

3. A : $x^{2}+x+1>0$ for all $x \in R$

R : if the roots of $a x^{2}+b x+c=0$ are imaginary then for $x \in R, a x^{2}+b x+c$ and a have the same sign.
A. Both A are R are ture R is the correct explanation Of

A
B. Both A are R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- View Text Solution

4. A: $x^{2}+x-12 \leq 0 \Rightarrow x \in[-4,3]$
$\mathrm{R}:$ if α, β are the roots of $a x^{2}+b x+c=0, \alpha<\beta$ then $\alpha<x<\beta \Leftrightarrow a x^{2}+b x+c$ and a have opposite signs .
A. Both A are R are ture R is the correct explanation Of

A
B. Both A are R are true but R is not correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- View Text Solution

