

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

QUADRATIC EXPRESSIONS

Solved Examples

- **1.** The roots of the equation $6\sqrt{5}x^2 9x 3\sqrt{5} = 0$ is
 - A. $\sqrt{5}/2\sqrt{5}/5$
 - $\mathsf{B.} \sqrt{5}/2\sqrt{5}/5$
 - C. $\sqrt{5}/2$, $\sqrt{5}/5$

D.
$$-\sqrt{5}/2$$
, $-\sqrt{5}/5$

Answer: C

2. IF the product of the roots of the equation $x^2 - 3kx + 2e^{2\log k} - 1 = 0$ is 17 then K=

A. 5

B. 3

C. 2

D. 9

Answer: B

3. IF the different between the roots of $x^2 - px + q = 0$ is 2,

then the relation between \boldsymbol{p} , and \boldsymbol{q} is

A.
$$p = 4(q + 1)^2$$

B.
$$p^2 = (q + 1)$$

$$C. p^2 = 4(q + 1)$$

D.
$$p = 4(q + 1)$$

Answer: C

Watch Video Solution

4. if the equation $(3x)^2 + (27 \times 3^{1/p} - 15)x + 4 = 0$ has

equal roots then p=

A. 0

B. 2

C. - 1/2

D. none

Answer: C

5. IF $2 + \sqrt{3}$ is a root of the equation $x^2 + px + q = 0$ then

D.
$$p = -8, q = 25$$

Answer: C

A. 4

B. 1

C. 3

D. 2

Answer: A

Watch Video Solution

7. Solve $4^{x-1} - 3 \cdot 2^{x-1} + 2 = 0$

A. {1, 2}

B. {1, -1}

C. {1, 5}

D. {4, -1}

Answer: A

8. The minimum value of $3x^2 + 2x + 11$ is

A. 32

B. 32/3

C. 2

D. 3

Answer: B

9. The solution set of
$$x^2 - 8x + 15 > 0$$
 is

A. (-1, 4)B. $(-\infty, -3] \cup [7, \infty)$ C. $(-\infty, 3) \cup , (5, \infty)$

Answer: C

D.[-4,1]

Watch Video Solution

10. The range of
$$\frac{x^2 - 2x + 3}{x^2 - 2x - 8}$$
 is

A. (- ∞ , 0] U (1, ∞)

B. [1/2, 2]

C.(-∞, -2/9] U (1,∞)

Answer: C

Watch Video Solution

11. IF p,q, \in { 1,2,3.4} the number of equation of the form

 $px^2 + qx + 1 = 0$ having real roots is

A. 15

B. 9

C. 7

D. 8

Answer: C

12. The set of values of p for which roots of the equation $2^{2} + 2^{2} + 3^{2} +$

 $3x^2 + 2x + p(p - 1) = 0$ are of opposite sign is

A. (0, ∞)

B. (- ∞, 0)

C. (0, 1)

D. (1, ∞)

Answer: C

13. IF α and β be the roots of the equation $x^2 + px - \frac{1}{2p^2} = 0$ where $p \in R$, then the minimum value of $\alpha^4 + \beta^4 =$

A. 2 + $\sqrt{2}$

B.2

C. $2\sqrt{2}$

D. 2 -
$$\sqrt{2}$$

Answer: A

14. Sum of the non real roots of
$$(X^2 + x - 2)(x^2 + x - 3) = 12$$
 is
A. -1
B. 1
C. -6
D. 6

Answer: A

15. if $x^2 + 3x + 5 = 0$ and $ax^2 + bx + c = 0$ have common roots / roots and and a,b,c $\in N$, then the minimum

value of a + b + c is

A. 9

B. - 9

C. 3

D. - 3

Answer: A

16. if c > 0 and 4a + c < 2b then $ax^2 - bx + c = 0$ has a root

in the interval

B. (0, 2)

C. (0, 1)

D.(-2,0)

Answer: B

Watch Video Solution

17. If a=c=4b , then the roots of
$$ax^2 + 4bx + c = 0$$
 are

A. 1,
$$\frac{c}{a}$$

B. -1, $\frac{c}{a}$
C. -1, $-\frac{c}{a}$
D. 1, $-\frac{c}{a}$

Answer: C

A. 1

 $C.\sqrt{2}$

D. 2

Answer: D

19. IF both the roots of equation $x^2 - 2ax + a^2 - 1 = 0$ lie in

the interval (-3,4), then sum of the integral of a is

A. 0

B. 2

C. 4

D. 1

Answer: A

1. If a, b are the roots of $x^2 + x + 1 = 0$ then $a^2 + b^2 = 0$

A. 1

B. 2

C. - 1

D. 4

Answer: C

Watch Video Solution

2. IF α , β are the roots of $x^2 - x + 2 = 0$ then $\alpha^2 \beta + \alpha \beta^2 =$

A. 5

B.3

C. - 2

D. 2

Answer: D

Watch Video Solution

3. If α , β are the roots of $3x^2 - 5x + 7 = 0$ then $\alpha^3 + \beta^3 =$

A. 90/7

B. - 120/17

C. 170/23

D. - 190/27

Answer: D

4. IF
$$\alpha$$
, β are the roots of $ax^2 + bx + c = 0$ then $\alpha^2 + \beta^2 =$

A.
$$\frac{\left(b^2 - 2ac\right)}{a^2}$$

B.
$$-\frac{b}{c}$$

C.
$$\frac{\left(b^2 - 2ac\right)}{c^2}$$

D.
$$\frac{\left(b^2 - 2ac\right)}{ac}$$

Answer: A

5. If α , β are the roots of $ax^2 + bx + c = 0$ then $\alpha\beta^2 + \alpha^2\beta + \alpha\beta =$

A.
$$\frac{ac - bc}{a^2}$$

B.
$$\frac{bc - ac}{a^2}$$

C.
$$\frac{ac - bc}{b^2}$$

D.
$$\frac{bc - ac}{b^2}$$

Answer: A

6. If α , β are the roots of $x^2 + x + 1 = 0$ then $\alpha/\beta + \beta/\alpha =$

A. - 1

B.1

C. 2

D. none

Answer: A

7. IF
$$\alpha$$
, β are the roots of $ax^2 + bx + c = 0$ then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} =$

B. - 1

C. 2

D. *p*/*q* - 2

Answer: B

Watch Video Solution

8. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} =$

A.
$$\frac{\left(b^2 - 2ac\right)}{a^2}$$

B.
$$-\frac{b}{c}$$

C.
$$\frac{\left(b^2 - 2ac\right)}{c^2}$$

D.
$$\frac{\left(b^2 - 2ac\right)}{ac}$$

Answer: C

9. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\alpha^3 + \beta^3 =$

A.
$$\frac{3abc - b^{3}}{a^{3}}$$

B.
$$-\frac{b}{c}$$

C.
$$\frac{\left(b^{2} - 2ac\right)}{c^{2}}$$

D.
$$\frac{\left(b^{2} - 2ac\right)}{ac}$$

Answer: A

10. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$

A.
$$\frac{3abc - b^{3}}{a^{3}}$$
B.
$$\frac{3abc - b^{3}}{a^{2}c}$$
C.
$$\frac{b^{2} - 2ac}{c^{2}}$$
D.
$$\frac{b^{2} - 2ac}{ac}$$

Answer: B

11. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\frac{1}{\alpha^3} + \frac{1}{\beta^3} =$

A.
$$\frac{3abc - b^3}{a^3}$$

B.
$$\frac{3abc - b^3}{a^2c}$$

C.
$$\frac{3abc - b^3}{c^3}$$

D.
$$\frac{b^2 - 2ac}{ac}$$

Answer: C

Watch Video Solution

Answer: A

13. IF α, β are the roots of $ax^2 + bx + c = 0$ then $\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} =$

A.
$$\frac{c^2}{a^2}$$

B.
$$\frac{3abc - b^3}{a^2c}$$

C.
$$\frac{3abc - b^3}{c^3}$$

D.
$$\frac{b^2 - 2ac}{ac}$$

Answer: A

14. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}}$

A.
$$\frac{c^2}{d^2}$$
B.
$$\frac{c^3}{a^3}$$

=

C.
$$\frac{3abc - b^3}{c^3}$$

D.
$$\frac{b^2 - 2ac}{ac}$$

Answer: B

15. IF α , β are the roots of $ax^2 + bx + c = 0$ then $\left(\frac{\alpha}{\beta} - \frac{\beta}{\alpha}\right)^2 =$

A.
$$\frac{b^2(b^2 - 4ac)}{c^2a^2}$$

B.
$$\frac{b^2(b^2 - 4ac)}{ca^3}$$

C.
$$\frac{b^2(b^2 - 4ac)}{a^4}$$

D.
$$\frac{b^2(b^2 - 4ac)}{c^4}$$

Answer: A

$$\left(\frac{1}{\alpha^2} - \frac{1}{\beta^2}\right)^2 =$$

A.
$$\frac{b^2(b^2 - 4ac)}{c^2 a^2}$$

B.
$$\frac{b^2(b^2 - 4ac)}{ca^3}$$

C.
$$\frac{b^2(b^2 - 4ac)}{a^4}$$

D.
$$\frac{b^2(b^2 - 4ac)}{c^4}$$

Answer: D

D Watch Video Solution

17. IF
$$\alpha$$
, β are the roots of $ax^2 + bx + c = 0$ then
 $(a\alpha + b)^{-2} + (a\beta + b)^{-2} =$

A.
$$\frac{b^2 - 2ac}{a^4}$$

B.
$$\frac{b^2 - 2ac}{a^3c}$$

C.
$$\frac{b^2 - 2ac}{a^2c^2}$$

D.
$$\frac{b^2 - 2ac}{c^4}$$

Answer: C

18. IF α , β are the roots of $ax^2 + bx + c = 0$ then $(a\alpha + b)^{-3} + (a\beta + b)^{-3} =$

A. *a*³ - 2*abc*

C.
$$\frac{c^3 - 3abc}{b^3c^3}$$

D.
$$\frac{b^3 - 3abc}{a^3c^3}$$

Answer: D

19. IF α , β are the roots of $ax^2 + bx + c = 0$ then

$$\left(\frac{\alpha}{a\beta+b}\right)^3 - \left(\frac{\beta}{a\alpha+b}\right)^3 =$$

B. 1

- $C.(a+b)^2$
- D. $(a b)^2$

Answer: A

20. IF α , , β are the roots of the equation $8x^2 - 3x + 27 = 0$

then the value of
$$\left(\frac{\alpha^2}{\beta}\right)^{1/3} + \left(\frac{\beta^2}{\alpha}\right)^{1/3}$$
 is

A. 1/3

B.1/4

C. 7/2

D. 4

Answer: B

21. If α , β are the roots of $ax^2 + bx + c = 0$ then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2)$ is

A. zero

B. positive

C. negative

D. not determined

Answer: B

22. If α , β are the roots of $ax^2 - 2bx + c = 0$ then $\alpha^3\beta^3 + \alpha^2\beta^3 + \alpha^3\beta^2 =$

Answer: A

23. IF α , β are real and α^2 , $-\beta^2$ are the roots of $a^2x^2 + x + 1 - a^2 = 0$ (A > 1) then $\beta^2 =$

A. a^2

B. 1

C. 1 - *a*²

D. 1 + a^2

Answer: B

Vatch Video Solution

24. If α , β are the roots of $x^2 - 2x + 4 = -0$ then $\alpha^5 + \beta^5 =$

A. 8

B. 16

C. 32

D. 64

Answer: C

25. If α and β are the roots of the equation $x^2 - 2x + 4 = 0$, then $\alpha^9 + \beta^9 =$

A. - 2⁸

B. 2⁹

C. - 2¹⁰

D. 2¹⁰

Answer: C

26. Let α and β be the roots of equation $px^2 + qx + r = 0, p \neq 0$, if p,q, r are in A.P and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$ then the value of $|\alpha - \beta|$ is

A.
$$\frac{\sqrt{34}}{9}$$

B.
$$\frac{2\sqrt{13}}{9}$$

C.
$$\frac{\sqrt{61}}{9}$$

D.
$$\frac{2\sqrt{17}}{9}$$

Answer: B

27. IF
$$\alpha, \beta$$
 be the roots of $6x^2 - 6x + 1 = 0$ then

$$\frac{1}{2}\left(a + ba + c\alpha^2 + d\alpha^3\right) + \frac{1}{2}\left(a + b\beta + c\beta^2 + d\beta^3\right) =$$

A. $a + \beta + c + d$

B. a + 2b + 3c + 4d

C. a + b/2 + c/3 + d/4

D. none

Answer: C

28. If α , β are the roots of $x^2 - p(x+1) + c = 0$ then $(1 + \alpha)(1 + \beta) =$

A. 1

B.c

C. 1 - *c*

D. 1 + *c*

Answer: D

Watch Video Solution

29. IF α , β are the roots of $x^2 - p(x+1) - c = 0$ then $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + c} =$

A. 3

B. 2

C. 1

D. 0

Answer: C

View Text Solution

30. IF α , β are the roots of $ax^2 + bx + c = 0$ and

$$s_n = \alpha^n + \beta^n \text{ then } \begin{vmatrix} 3 & 1 + S_1 & 1 + S_2 \\ 1 + S_1 & 1 + S_2 & 1 + S_3 \\ 1 + s_2 & 1 + s_3 & 1 + S_4 \end{vmatrix} =$$

A. 0

B.
$$\frac{(b^2 - 4ac)(a + b + c)^2}{a^4}$$

C.
$$\frac{b^2 - 4ac}{a^4}$$

D.
$$\frac{(a+b+c)^2}{a^4}$$

Answer: B

31. Let α and β be the roots of equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$ then the value of $\frac{a_{10} - 2a_s}{2a_9}$ is equal

to

A. 6

B. - 6

C. 3

D. - 3

Answer: C

32. IF
$$\alpha$$
, β are the roots of the equation $ax^2 + bx + c = 0$,

then the value of the determinant

1	$\cos(\beta - \alpha)$	cosα	
$\cos(\alpha - \beta)$	1	cosβ	
cosα	cosβ	1	

A. $sin(\alpha + \beta)$

B. $\sin\alpha\sin\beta$

C. 1 + cos(α + β)

D. 0

Answer: D

33. IF the roots of the quadratic equation $x^2 + px + q = 0$ are tan30 ° and tan15 °, respectively then the value of 2 + q - p is

A. 0

B. 1

C. 2

D. 3

Answer: D

34. IF tan*A*, tan*B* are the roots of $x^2 - px + q = 0$, the value of $\sin^2(A + B)$ is

A.
$$\frac{p^{2}}{p^{2} + (1 - q)^{2}}$$
B.
$$\frac{p^{2}}{p^{2} + q^{2}}$$
C.
$$\frac{q^{2}}{p^{2} + (1 - q)^{2}}$$
D.
$$\frac{p^{2}}{(p + q)^{2}}$$

Answer: A

35. If α , β are the roots of $x^2 + ax - b = 0$ and γ , σ are the roots of $x^2 + ax + b = 0$ then $(\alpha - \gamma)(\beta - \gamma)(\alpha - \sigma)(\beta - \sigma) =$

A. b^2

B. $2b^2$

C. 3*b*²

D. 4*b*²

Answer: D

36. If α , β are the roots of $x^2 + px - q = 0$ and γ , δ are the roots of $x^2 + px + r = 0$ then $(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) =$

A. 2q²

B. $2q^2$

C. $(q + r)^2$

D. $(q - r)^2$

Answer: C

37. If α , β are the roots of $x^2 + px + 1 = 0$ and γ , δ are the roots of $x^2 + qx + 1 = 0$ then $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta) =$

A. $2p^2$

B. $2p^{2}$

 $C. p^2 - q^2$

D.
$$q^2 - p^2$$

Answer: D

38. If α , β are the roots of $ax^2 + 2bx + c = 0$ and $\alpha + \sigma$, $\beta + \sigma$

are the roots of
$$Ax^2 + 2Bx + c = 0$$
 then $\frac{b^2 - ac}{B^2 - AC} =$

A. *a*/*A*

B.A/a

C. $(a/A)^2$

D. $(A/a)^2$

Answer: C

Watch Video Solution

39. α , β are the roots of $ax^2 + bx + c = 0$ and γ , σ are the roots of $px^3 + qx + r = 0$ and $D_1: D_2$ be the respective discrimination of these equations .If α , $\beta\gamma$ and δ are in A.P then $D_1: D_2=$

A. $a^2: p^2$ B. $b^2: q^2$ C. $c^2: r^2$ D. none

Answer: A

40. The ratio of the roots of the equation $ax^2 + bx + c = 0$ is same as the ratio of the roots of the equation $px^2 + qx + r = 0$. If D_1 and D_2 are the discrimination of $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively, then $D_1: D_2 =$

B. $b^2: q^2$

A. $a^2: p^2$

D. none

Answer: B

Watch Video Solution

41. α , β are the roots of $ax^2 + bx + c = 0$ and γ , σ are the roots of $px^3 + qx + r = 0$ and $D_1: D_2$ be the respective discrimination of these equations .If α , $\beta\gamma$ and δ are in A.P then $D_1: D_2=$

A. $a^2: p^2$ B. $a^2: b^2$ C. $a^2: c^2$ D. $a^2: d^2$

Answer: A

42. Let p and q be the roots of $x^2 - 2x + A = 0$ and let r and s be the roots of $x^2 - 18 + B = 0$. If p < q < r < s are in ordered pair (A, B) =

A.(-3,77)

B. (77, - 3)

C.(-3,-77)

D. none of these

Answer: A

43. Let x_1, x_2 , be the roots of the equation $x^2 - 3x + p = 0$ and let x_3, x_4 be the roots of the equation $x^2 - 12x + q = 0$ if the numbers x_1, x_2, x_4 (in order) form an increasing G.P then

A. p = 2, q = 16B. p = 2, q = 32C. p = 4, q = 16D. p = 4, q = 32

Answer: B

Watch Video Solution

44. Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ be the roots of $x^2 - 4x + q = 0$. If α , β , δ , γ are in G.P then the integral values of p and q respectively, are

A. -2, -32

B.-2, 3

C. - 6, 3

D.-6, -32

Answer: A

45. x_1 and x_3 are the roots of the equation $Ax^2 - 4x + 1 = 0$ and x_2 and $x_4 = 0$ are the roots of the requation $Bx^2 - 6x + 1 = 0$ if x_1, x_2, x_3, x_4 form a H.P, then (A,B) =

A. (3, 3)

B. (8, 8)

C. (3, 8)

D. (8, 3)

Answer: C

Watch Video Solution

46. The coefficient of x in a quadratic equation $x^2 + px + q = 0$ was taken as 17 in place of 13 and its roots found to be -2 and -15. The roots of the original equation are

A. 2, 15

B. 10, 3

C. - 10, - 3

D.-2, -15

Answer: C

Watch Video Solution

47. The students while solving a quadratic equation in x, one copied the constant term incorrecity and got the roots 3 and 2 , The order copied the constant term and coefficient of x^2 as -6 and 1 respectively The correct roots are

A. 3, - 2 B. - 3, 2 C. - 6, - 1 D. 6, - 1

Answer: D

48. If 8 and 2 are the roots of $x^2 + ax + \beta = 0$ and 3, 3 are the roots of $x^2 + \alpha x + b = 0$ then the roots of the equation $x^2 + ax + b = 0$ are

A. 1, - 1

B.-9, 2

C.-8, -2

D. 9, 1

Answer: D

49. IF x_1 and x_2 are the real roots of the equation $x^2 - kx + c = 0$ then the distance between the points A

$$(x_1, 0)$$
 and $(x_2, 0)$ is
A. $\sqrt{k^2 - c}$
B. $\sqrt{c - k^2}$
C. $\sqrt{k^2 - 4c}$
D. $\sqrt{k^3 + 4c}$

Answer: C

50. If one root of the equation $Ix^2 - 2(1 + i)x + (2 - i) = 0$ is

2-I then the root is

B. 2 + *i*

C. i

D. 2 - *i*

Answer: A

Watch Video Solution

51. If one root of $x^2 + ax + 8 = 0$ is 4 and the equation $x^2 + ax + b = 0$ has equal roots then the value of b=

A. 7

B. 9

C. 1

Answer: B

Watch Video Solution

52. IF the roots of the equation $x^2 - 5x + 16 = 0$ are α, β and the roots of the equation $x^2 + px + q = 0$ and $\alpha^2 + \beta^2, \frac{\alpha\beta}{2}$, then A. p = 1, q = -56B. p = -1, q = -56C. p = 1, q = 56D. p = -1, q = 56

Answer: B

Answer: D

54. IF the product of the roots of

$$5x^2 - 4x + 2 + m(4x^2 - 2x - 1) = 0$$
 is 3, then m=
A. 0
B. -1
C. 2
D. 3
Answer: B
Watch Video Solution

55. IF k > 0 and the product of the roots of the equation $x^2 - 3kx + 2e^2\log k$ -1=0 is 7 then the sum of the roots is A. 2

B.4

C. 6

D. 8

Answer: C

Watch Video Solution

56. The value of K , so that the sum and product of the roots of $2x^2 + (k - 3)x + 3k - 5 = 0$ are equal is

A. 0

B. 10

C. 2

D. 9

Answer: C

Watch Video Solution

57. IF the sum of the square of the roots of $x^2 + px - 3 = 0$

is 10 then the values of p=

- **A.** +₂
- $B.\pm 3$
- **C**. 3

Answer: A

 $\mathsf{C.}\pm 3$

 $D.\pm 4$

Answer: C

59. α , β are roots of the equation $\lambda (x^2 - x) + x + 5 = 0$ If λ_2 are the two values of λ for which the roots α , β are connceted by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4$, then the value of $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1}$ is

A. 150

B. 254

C. 180

D. 1022

Answer: D

60. The harmonic mean of the roots of the equation $(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5})=0$ is A. 2 B.4 C. 6 D. 8

Answer: B

Watch Video Solution

61. IF C and D are the roots of (x - a)(x - b) - k = 0 then the

roots of (x - c)(x - d) + k = 0 are

A. b,c

B.a,b

C. a,c

D. a,d

Answer: B

62. IF α, β be the roots of the equation $(x - a)(x - b) + c = 0 (c \neq 0)$ then the roots of the equation $(x - c - \alpha)(x - c - \beta) = c$ are

A. a and b+c

B. a+c and b

C. a+c and b+c

D. a-c and b-c

Answer: C

O View Text Solution

63. The equation whose roots are $2\sqrt{3}$ - 5 and -2 $\sqrt{3}$ - 5 is

A.
$$x^2 + 10x - 13 = 0$$

B.
$$x^2 - 10x + 13 = 0$$

$$C. x^2 + 10x + 13 = 0$$

D.
$$x^2 - 10 - 13 = 0$$

Answer: C

64. The equation whose roots are 3 + 2I, 3 - 2i is

A.
$$x^2 - 8x + 15 = 0$$

B.
$$15x^2 - 34 + 15 = 0$$

C.
$$x^2 - 6x + 13 = 0$$

D.
$$x^2 + 1 = 0$$

Answer: C

> Watch Video Solution

65. IF α and β are the roots of $2x^2 + x + 3 = 0$, then the

equation whose roots are
$$\frac{1-\alpha}{1+\alpha}$$
 and $\frac{1-\beta}{1+\beta}$ is

A.
$$2x^2 + x + 3 = 0$$

B.
$$2x^2 - x - 3 = 0$$

$$C. \, 2x^2 + x - 3 = 0$$

D.
$$2x^2 - x - 3 = 0$$

Answer: A

Watch Video Solution

66. IF α , β are the roots of $x^2 + 5x - 4 = 0$ then the equation whose roots are $\frac{\alpha + 2}{3}$, $\frac{\beta + 2}{3}$ is

$$A. 9x^2 + 3x + 10 = 0$$

$$B.\,9x^2 + 3x - 10 = 0$$

C.
$$9x^2 + x = 0$$

D.
$$2x^2 - 3x + 10 = 0$$

Answer: B

67. If α , β are the roots of $x^2 - x + 1 = 0$ then the quadratic equation whose roots are α^{2015} , β^{2015} is

A.
$$x^2 - x + 1 = 0$$

B. $x^2 + x + 1 = 0$

C.
$$x^2 + x - 1 = 0$$

D.
$$x^2 - x - 1 = 0$$

Answer: A

O Watch Video Solution

68. IF α , β are the roots of x^2 - ax + b = 0, then the whose

roots are
$$\frac{\alpha+\beta}{\alpha}$$
, $\frac{\alpha+\beta}{\beta}$ is

A.
$$bx^2 + a^2x + a^2 = 0$$

B.
$$bx^2 - a^2x + a^2 = 0$$

$$C. b^2 x^2 - a^2 x + a^2 = 0$$

D.
$$ax^2 + b^2x + b^2 = 0$$

Answer: B

69. IF α , β are the roots of $ax^2 + bx + c = 0$ then the equation roots are α/β , β/α is

A.
$$acx^{2} - (b^{2} - 2ac)x + ac = 0$$

B. $a^{3}x^{2} + (b^{3} - 3abc) + x + c^{3} = 0$
C. $x^{2} - 2qx + (q^{2} - p^{2}) = 0$
D. $x^{2} + 2qx + (q^{2} + p^{2}) = 0$

Answer: A

70. IF α , β are the roots of the equation $ax^2 + bx + c = 0$ then the quadratic equation whose roots are $\alpha + \beta$, $\alpha\beta$ is

A.
$$a^2x^2 + a(b - c)x + bc = 0$$

B. $a^2x^2 + a(b - c)x - bc = 0$

$$C. ax^2 + (b + c)x + bc = 0$$

D.
$$ax^2 - (b + c) - bc = 0$$

Answer: B

71. In a $\triangle ABC$, the value of $\angle A$ is obtained from the equation $3\cos A + 2 = 0$. The quandratic equation , whose

roots are sinA and tanA is

A.
$$3x^2 + \sqrt{5x} - 5 = 0$$

B. $6x^2 - \sqrt{5x} - 5 = 0$
C. $6x^2 + \sqrt{5x} - 5 = 0$

D.
$$6x^2 + \sqrt{5}x + 5 = 0$$

Answer: C

Watch Video Solution

72. The equation whose roots are the cubes of the roots of the equation $ax^2 + bx + c = 0$ is

A.
$$a^3x^2 + (b^2 - 3abc)x + c^3 = 0$$

B.
$$a^{3}x^{2} + (b^{2} + 3abc)x + c^{2} = 0$$

C. $a^{3}x^{2} - (b^{3} + 3abc)x + c^{2} = 0$

D. none

Answer: A

 $\wedge a^2 t^2 y^2$ ablm y + b = 0

73. IF α , β are the roots of $ax^2 + bx + c = 0$ and γ , δ are the roots of $lx^2 + mx + n = 0$ then the equation whose roots are $\alpha\gamma + \beta\delta$, $\alpha\delta + \beta\gamma$ is

B.
$$a^{2}t^{2}x^{2} - ablmx + (b^{2}nl + m^{2}ac - 4acnl) = 0$$

 $\mathsf{C}.\,a^3t^2x^2 - ablmx$

D. none

Answer: B

Watch Video Solution

74.

$$a = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right), \alpha = a + a^2 + a^4 \text{ and } \beta = a^3 + a^5 + a^6$$

then α , β are the roots of the equation

A.
$$x^2 + x + 1 = 0$$

B. $x^2 + x + 2 = 0$
C. $x^2 + x + 2 = 0$

D.
$$x^2 + 2x + 3 = 0$$

Answer: B

Watch Video Solution

75. Let
$$\alpha \neq \beta$$
 satisfy $\alpha^2 + 1 = 6\alpha$, $\beta^2 + 1 = 6\beta$. Then, the

quadratic equation whose roots are
$$\frac{\alpha}{\alpha+1}$$
, $\frac{\beta}{\beta+1}$ is

A.
$$8x^2 + 8x + 1 = 0$$

B.
$$8x^2 - 8x - 1 = 0$$

$$C.\,8x^2 - 8x + 1 = 0$$

D.
$$8x^2 + 8x - 1 = 0$$

Answer: C

76. IF $3p^2 = 5p + 2$ and $3q^2 = 5q + 2$ where $p \neq q$ then the

equation whose roots are 3p - 2q and 3q - 2p is

A.
$$3x^2 - 5x - 100 = 0$$

B. $5x^2 + 3x + 100 = 0$
C. $3x^2 - 5x + 100 = 0$

$$D. \, 3x^2 + 5x - 100 = 0$$

Answer: A

Watch Video Solution

77. IF α , β are the roots of the equation $x^2 + 2ax + b = 0$, then the quadratic equation with rational coefficient one of whose roots is $\alpha + \beta + \sqrt{\alpha^2 + \beta^2}$ is

A.
$$x^2 - 4ax + 12 = 0$$

B.
$$x^2 + 4ax - 2b = 0$$

$$C. x^2 - 4ax - 2b = 0$$

D.
$$x^2 + 4ax + 2b = 0$$

Answer: D

Watch Video Solution

78. The quadratic equation for which the sum of the roots

is 7 and the sum of the squares of the roots is 25 is

A.
$$x^2 - 7x + 12 = 0$$

B.
$$x^2 \pm 54x + 6 = 0$$

$$C. x^2 - 12x + 35 = 0$$

D.
$$5x^2 + 2x + 11 = 0$$

Answer: A

79. The quadratic equation for which the sum of the roots

is 12 and the sum of the cubes of the roots is 468 is

A.
$$x^2 - 7x + 12 = 0$$

B.
$$x^2 \pm 54x + 6 = 0$$

$$C. x^2 - 12x + 35 = 0$$

$$\mathsf{D.}\,5x^2 + 2x + 11 = 0$$

Answer: C

80. IF $\alpha + \beta = 2$ and alpha ^3 + beta ^3 = 56 , *thenthe raticequationwhose* $\sqrt[s]{are}$ alpha and beta `is

A.
$$x^2 + 2x - 16 = 0$$

B.
$$x^2 + 2x - 15 = 0$$

$$C. x^2 + 2x - 12 = 0$$

D.
$$x^2 + 2x - 8 = 0$$

Answer: D

Watch Video Solution

81. Two complex numbers α and β are such that $\alpha + \beta = 2$ and $\alpha^4 + \beta^4 = 272$, then the quadractic equation whose roots are α and β is

A.
$$x^2 - 2x - 16 = 0$$

B.
$$x^2 + 2x - 15 = 0$$

C. $x^2 - 2x - 8 = 0$

D. none of these

Answer: C

82. IF the arithmetic mean of the roots of a quadratic equation is 8/5 and the arithmetic mean of their reciprocals is 8/7 then the equation is

A.
$$5x^2 + 16x + 7 = 0$$

B.
$$5x^2 - 16x + 7 = 0$$

$$C. 7x^2 + 16x + 5 = 0$$

D.
$$7x^2 - 16x + 5 = 0$$

Answer: B

83. Let two numbers have arthmetic mean 9 geometric mean 4. then these numbers are the roots of the quadratic equation

A.
$$x^2 + 18x + 16 = 0$$

B.
$$x^2 - 18x - 16 = 0$$

$$C. x^2 + 18 - 16 = 0$$

D.
$$x^2 - 18 + 16 = 0$$

Answer: D

Watch Video Solution

84. The equation whose roots are the arthmatic mean and twice the H.M between the roots of the equation $x^2 + ax - b = 0$ is

A.
$$2ax^{2} + (a^{2} - 8b)x + 4ab = 0$$

B. $2ax^{2} + (a^{2} - 8b)x - 4ab = 0$
C. $2ax^{2} + (a^{2} + 8b)x - 4ab = 0$

D. none

Answer: B

85. IF α , β are the roots of $9x^2 + 6x + 1 = 0$ then the equation with the roots $1/\alpha$, $1/\beta$ is

$$A. 2x^2 + 3x + 18 = 0$$

B. $x^2 + 6x - 9 = 0$

$$C. x^2 + 6x + 9 = 0$$

D.
$$x^2 - 6x + 9 = 0$$

Answer: C

86. The equation whose roots are greater by 1 than those

of $2x^2 - 3x + 1 = 0$ is

A.
$$3x^2 - 5x - 2 = 0$$

B.
$$2x^2 - 7x + 6 = 0$$

$$C. 2x^2 + 5x + 7 = 0$$

D.
$$3x^2 + \% x - 7 = 0$$

Answer: B

87. IF α , β are the roots of $ax^2 + bx + c = 0$ then the equation whose roots are $2 + \alpha$, $2 + \beta$ is

A.
$$ax^2 + x(4a - b) + 4a - 2b + C = 0$$

B.
$$ax^2 + x(4a - b) + 4a + 2b + c = 0$$

$$C. ax^2 + x(b - 4a) + 4a + 2bc = 0$$

D.
$$ax^2 + x(b - 4a) + 4a - 2b + c = 0$$

Answer: D

Watch Video Solution

88. The equation whose roots are smaller by 1 then those of $2x^2 - 5x + 6 = 0$ is A. $2x^2 - 9x + 13 = 0$

- B. $2x^2 x + 3 = 0$
- $C. 2x^2 + 9x + 13 = 0$

D. $2x^2 + x + 3 = 0$

Answer: B

89. the equation formed by decreasing each root of $ax^2 + bx + C = 0$ by 1 is $2x^2 + 8x + 2 = 0$ then

A. a = -b

B. b = -c

C. c = -a

D. *b* = *a* + *c*

Answer: B

90. If α , β are the roots of $a^2x + bx + c = 0$ and $\alpha + h + \beta + h$ are the roots of $px^2 + qx + r = 0$ then h=

A.
$$\left(\frac{b}{a} - \frac{q}{p}\right)$$

B. $\frac{1}{2}\left(\frac{b}{a} - \frac{q}{p}\right)$
C. $-\frac{1}{2}\left(\frac{a}{b} - \frac{p}{q}\right)$

Answer: B

> Watch Video Solution

91. IF α , β are the roots of $x^2 + bx + c = 0$ and $\alpha + h$, $\beta + h$

are the roots of $x^2 + qx + r = 0$ then h=

A. *b* + *q*

Rh a

D.
$$\frac{1}{2}(b+q)$$

D. $\frac{1}{2}(b-q)$

Answer: D

92. IF α and β are the roots of the equation $ax^2 + bx + C = 0$ and if $px^2 + qx + r = 0$ has roots $\frac{1-\alpha}{\alpha}$ and $\frac{1-\beta}{\beta}$ then r=

A. *a* + 2*b*

B. a + b + C

C.ab + bc + ca

D. abc

Answer: B

93. The equation whose roots are numerically equal but opposite in sign of the roots of $3x^2 - 5x - 7 = 0$ is

A.
$$3x^2 - 5x - 2 = 0$$

B.
$$2x^2 - 7x + 6 = 0$$

 $C. 2x^2 + 5x + 7 = 0$

D.
$$3x^2 + 5x - 7 = 0$$

Answer: D

Watch Video Solution

94. The equation whose roots are multipled by 3 of those

of $2x^2 + 3x - 1 = 0$ is

A.
$$2x^2 + 9x - 9 = 0$$

B. $2x^2 - 7x + 6 = 0$

 $C. 2x^2 + 5x + 7 = 0$

D. $3x^2 + 5x - 7 = 0$

Answer: A

95. The condition that one root of $ax^2 + bx + c = 0$ may be

n times the other root is

$$A. nb^2 = ac(n+1)$$

$$\mathsf{B}.\,nb^2 = ac(n+1)^2$$

$$\mathsf{C.}\, nb = ac(n+1)$$

D.
$$nb = ac(n + 1)^2$$

Answer: B

Watch Video Solution

96. The condition that one root of $ax^2 + bx + c = 0$ may be

the double the other is

A.
$$b^2 = 2ac$$

B. $b^2 = 2ac$

C. $2b^2 = 9ac$

D. $2b^2 = 3ac$

Answer: C

97. If one root of $x^2 + kx + 12 = 0$ may be the triple the other , then k=

A. ± 8

B.3

 $C.\pm 5\sqrt{10}$

D. 2 $\pm \sqrt{5}$

Answer: A

Watch Video Solution

98. IF one root of $px^2 - 14x + 8 = 0$ is six times the other

then p =

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

99. IF the roots of $ax^2 + cx + c = 0$ are in the ratio p:q then

 $\sqrt{\left[\frac{p}{q}\right]} + \sqrt{\left[\frac{q}{p}\right]} =$

A. $\sqrt{a/c}$

B. $\sqrt{c/a}$

C. - $\sqrt{a/c}$

D. - $\sqrt{c/a}$

Answer: D

- **B.** $3 \pm \sqrt{2}$
- C. 2 $\pm \sqrt{5}$
- D. 5 ± $\sqrt{2}$

Answer: C

101. If one root of $x^2 + px + 1 = 0$ is square that of the other thenp=

A. 1, - 2

B.3, -1

C. 2, $-\sqrt{5}$

D. 4 + $\sqrt{5}$

Answer: A

102. IF the harmonic mean between the roots of $(5 + \sqrt{2})x^2 - bx + (8 + 2\sqrt{5}) = 0$ is 4 then value of b is

A. 2

B. 3

C. 4 - $\sqrt{5}$

D. 4 + $\sqrt{5}$

Answer: D

103. IF the harmonic mean of the roots of $\sqrt{2}x^2 - bx + (8 - 2\sqrt{5}) = 0$ is 4 then the value of b=

A. 2

B. 3

C. 4 - $\sqrt{5}$

D. 4 + $\sqrt{5}$

Answer: C

Watch Video Solution

104. The condition that a root of $ax^2 + bx + c = 0$ may be the reciprocal of a root of $a_1x^2 + b_1x + c_1 = 0$ is

A.
$$(aa_1 - cc_1)^2 (ab_1 + bc_1) (a_1b + b_1c)$$

B. $(aa_1 - cc_1)^2 = (ab_1 - bc_1) (a_1b - b_1c)$
C. $(aa_1 - bb_1)^2 = (ac_1 - bc_1)$

D. none

Answer: B

105. IF the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to sum of the square of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2} =$

A. 2

B. - 2

C. 1

D. - 1

Answer: A

106. IF the sum of the roots of the equation $x^2 + px + q = 0$ is 3 times their difference, then

A.
$$2p^2 = q$$

B. $2p^2 = 5q$
C. $p^2 = 3q$
D. $2p^2 = 9q$

Answer: D

Watch Video Solution

107. If the roots of the equation $ax^2 + bx + c = 0$ be the square roots of the equation $lx^2 + mx + n = 0$ then

$$A. 2alc = lb^2 + ma^2$$

 $B. 2alc = lb^2 - ma^2$

 $C. alc = lb^2 + ma^2$

 $\mathsf{D.} alc = lb^2 - ma^2$

Answer: A

108. IF the ratio of the roots of $x^2 + bx + c = 0$ and $x^2 + qx + r = 0$ are the same , then

A.
$$r^2c = qb^2$$

B. $r^2b = qc^2$
C. $rb^2 = cq^2$
D. $rc^2 = bq^2$

Answer: C

109. If the ratio of the roots of $a(x)^2 + bx + c = 0$ is same as that of the roots of $px^2 + qx + r = 0$ then a/p, b/q, c/rare in

A. A. P

B. *G*. *P*

C. H. P

D. none

Answer: B

Watch Video Solution

110. The value of m for which one of the roots of $x^2 - 3x + 2m = 0$ is double of one of the roots of $x^2 - x + m = 0$ is

A. 1

B. - 2

C. 2

D. none

Answer: B

Watch Video Solution

111. IF the difference of the roots of $x^2 - bx + c = 0$ is equal to the difference of the roots of $x^2 - cx + b = 0$ and $b \neq 0$, then b+c=

A. - 1

B. - 2

C. - 3

D. - 4

Answer: D

112. The condition that the roots of the equation $ax^2 + bx + c = 0$ may differ by 5 is

A.
$$b^2 - 25a^2 = 4ac$$

B.
$$b^2 - 5a^2 = 4ac$$

$$C. b^2 + 15a^2 = 4ac$$

D. none

Answer: A

113. The condition that sin $\theta \cos \theta$ may be the roots of $ax^2 + bx + c = 0$ is

A.
$$a(a + 2b) = c^2$$

B.
$$a(a + 2c) = b^2$$

$$\mathsf{C.}\,b(b+2c)=a^2$$

D.
$$b(b + 2a) = c^2$$

Answer: B

Watch Video Solution

114. If $\sin \alpha$ and $\cos \alpha$ are the roots of $25x^2 + 5x - 12 = 0$, then value of $\sin 2a lpha$ is

A. 12/25

B. - 12/25

C. - 24/25

D. 4/5

Answer: C

Watch Video Solution

115. IF tan*A* and tan*B* are the roots of the quadratic $x^2 - px + q = 0$ then $\sin^2(A + B) =$

Answer: D

116. In a triangle PQR angle $R = \pi/2$ if tan(p/2) and tan(Q/2) are the roots of the equation $ax^2 + bx + c = 0 (a \neq 0)$ then

A. a+b=c

B. b + c = 0

C. a+c=b

D. b=c

Answer: A

Watch Video Solution

117. In a triangle
$$PQR \angle R = \frac{\pi}{4}$$
, if $\tan\left(\frac{p}{3}\right)$ and $\tan\left(\frac{Q}{3}\right)$ are

the roots of the equation $ax^2 + bx + c = 0$ then

A. a+b=c

B. b+c=0

C. a+c=b

D. b=c

Answer: A

118. If one root of $x^2 + px + 1 = 0$ is the cube of the other

root, then p=

A. 0

B. 1

C. 1, ± 2

D. 0, ± 2

Answer: D

119. IF one root of $ax^2 + bx + c = 0$ is equal to nth power

of the other then
$$(a^n c)^{\frac{1}{n+1}} + (ac^n)^{\frac{1}{n+1}}$$

A. 0

B. 1

C. b

D. - *b*

Answer: D

Watch Video Solution

120. IF x,a,b,c are real and $(x - a + b^2) + (x - b + c)^2 = 0$ then a,b,c are in

A. H.P

B. G.P

C. A.P

D. none of these

Answer: C

121. IF the roots of $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ are equal in magnitude and opposite in sign then the product of the

roots is

A.
$$-\frac{1}{2}\left(a^{2}+b^{2}\right)$$

B. $\frac{1}{2}\left(a^{2}+b^{2}\right)$
C. $-\frac{3}{2}\left(a^{2}+b^{2}\right)$

D. none

Answer: A

B. 3r

C. r °

D. 2*r*²

Answer: B

Watch Video Solution

123. IF
$$\frac{1}{x} + \frac{1}{x+a} = \frac{1}{m} + \frac{1}{m+a}$$
 has roots equal in

magnitude but oppposite insign , then

A. $a^2 = m^2$ B. $a^2 = 2m^2$ C. $2a^2 = m^2$ D. none

Answer: B

Answer: D

125. If r is the ratio of the roots of $ax^2 + bx + C = 0$ then $\frac{(r+1)^2}{r} =$ A. 1 B. b^2 - ac C_{b}^{2}/ac D. $b^2 - 4ac$

Answer: C

126. IF the roots of $ax^2 + bx + c = 0$ are of the form $\frac{m+1}{m}$, $\frac{m+2}{m+1}$ then $(a+b+c)^2 =$

A. 0

B. 1

C. b^2 - 4*ac*

D. 2*abc*

Answer: C

Watch Video Solution

127. IF $(a\alpha + b)^{-2} + (a\beta + b)^{-2} = 1$, where α, β are the roots of $ax^2 + bx + c = 0$ then ac(ac + 2) =

A. $b^2/2$

 $B.b^3$

C. 2*b*

 $D. b^2$

Answer: D

128. IF the equation $x^2 + 2(k+1)x + 9k - 5 = 0$ has only

negative roots , then

A. $k \leq 0$

B. $k \ge 0$

C. *k* ≥ 6

D. *k* ≤ 6

Answer: C

Vatch Video Solution

129. All the values of m for which both roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are greater than -2 but less than 4, lie in the interval

A. - 1 < *m* < 3

B. 1 < *m* < 4

C. - 2 < *m* < 0

D. *m* > 3

Answer:

130. The values of a for which of a for which $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ may have ine root less than a and other root greater than a are given by

B. - 1 < *a* < 0

C. *a* > 0

D. a > 0 or a < -1

Answer: D

131. The value of a for which the equation $(1 - a^2)x^2 + 2ax - 1$ has roots belonging to (0,1) is A. $a > \frac{1 + \sqrt{5}}{2}$ B. a > 2C. $\frac{1 + \sqrt{5}}{2} < a < 2$ D. $a > \sqrt{2}$

Answer: B

132. The value of a for which each one of the roots of $x^2 - 4ax + 2a^2 - 3a + 5 = 0$ is greater than 2, are

A. $a \in (1, \infty)$

B. *a* = 1

- $\mathsf{C}.\,a\in(\,\text{-}\,\infty,\,1)$
- D. $a \in (9/2, \infty)$

Answer: D

Watch Video Solution

133. The value of 'a' for which one root of the quadratric equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other is

A. - 2/3

B. 1/3

C. - 1/3

D. 2/3

Answer: D

134. IF both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, then k lies in the interval

A. (5, 6]

B. (6, ∞)

C.(-∞,4)

D.[4,5]

Answer: C

135. If roots of the equation $x^2 - bx + c = 0$ be two consecutive integers , then $b^2 - 4c$ equals

A. - 2

B.3

C. 2

D. 1

Answer: D

136. p and q are distinct prime numbers and if the equation $x^2 - px + q = 0$ has positive integer as its roots

then the roots the roots of the equation are

A. 2, 3

B. 1, 2

C. 3, 1

D.1, -1

Answer: B

137. IF both the roots of the equation
$$x^2 - 6ax + 2 - 2a + 9a^2 = 0$$
 exceed 3, then

A.
$$a > \frac{9}{11}$$

B.
$$a > \frac{11}{9}$$

C. $a > \frac{11}{9}$
D. $a < \frac{11}{9}$

Answer: C

138. If the roots of
$$x^2 + x + a = 0$$
 exceed , a then

A.
$$2 < a < 3$$

B. $a > 3$
C. $-3 < a < 3$
D. $a < \frac{1}{-2}$

Answer: D

139. The roots of $3x^2 + 4x - 7 = 0$ are

A. rational and equal

B. rational and not equal

C. irrational

D. imaginary

Answer: B

140. The roots of $5x^2 - 3x + 2 = 0$ are

A. rational and equal

B. rational and not equal

C. irrational

D. imaginary

Answer: D

B. real and equal

C. real and not equal

D. imaginary

Answer: A

Watch Video Solution

142. IF ad
$$\neq$$
 bc then the roots of $(a^2 + b^2)x^2 + 2x(ac + bd) + (c^2 + d^2) = 0$ are

A. real

B. real and equal

C. real and not equal

D. imaginary

Answer: D

Watch Video Solution

143. For
$$p, q \in R$$
, the roots of $(p^2 + q^2)x^2 + 2(p + q)x + 2 = 0$ are

A. real and equal

B. real and unequal

C. equal complex numbers

D. unequal complex numbers

Answer: D

A. real

B. real and equal

C. real and not equal

D. imaginary

Answer: D

Watch Video Solution

145. The roots (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are

of

A. real

B. equal

C. real and not equal

D. imaginary

Answer: A

Watch Video Solution

146. The roots of (x - a)(x - a - 1) + (x - a - 1) + (x - a - 2) + (x - a)(x - a - 2) = 0

- $a \in \mathbb{R}$ are always
 - A. equal
 - B. imaginary
 - C. real and distinct
 - D. rational and equal

Answer: C

147. IF l,m,n are rational the roots of $(m + n)x^2 - (l + m + n)x + l = 0$ are

A. rational

B. rational and equal

C. rational and not equal

D. irrational

Answer: A

Watch Video Solution

148. If the roots of $a^2x^2 + 2bx + c^2 = 0$ are imaginary then

the roots of
$$b(x^2 + 1) + 2acx = 0$$
 are

A. real and equal

B. real nad unequal

C. equal complex numbers

D. unequal complex numbers

Answer: B

Watch Video Solution

149. IF the roots of
$$(a^2 + b^2)x^2 + 2(bc + ad)x + (c^2 + d^2) = 0$$
 are real and

equal then

A. a/c = b/d

B.ac + bd = 0

C. ad+bc=0

 $\mathsf{D}.\,ac\,\mathsf{-}\,bd\,=\,0$

Answer: D

- B. *k*, *n*/*k*
- C.-*k*, -*n*/*k*
- D. *k*, *n*/*k*

Answer: C

151. IF α , β are the roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$ then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always

A. two real roots

B. two negative roots

C. two positve roots

D. one positive root and one negative root

Answer: A

152. Let a, b, c be real numbers $a \neq 0$ if α is a roots of $a^2x^2 + bx + c = 0, \beta$ is a roots of $a^2x^2 - bx - c = 0$ and $0 < \alpha < \beta$, then the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ has a root γ that always satisfies

A.
$$\gamma = (\alpha + \beta)/2$$

B. $\gamma = \left(\alpha + \frac{\beta}{2}\right)$
C. $\gamma = \alpha$
D. $\alpha < \gamma < \beta$

Answer: D

153. If $p(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$

where $ac \neq 0$ then the equation P(x). Q(x) = 0 has at least

A. two real roots

B. two negative roots

C. two positve roots

D. one positive root and oine negative

Answer: A

Watch Video Solution

154. Let $f(x) = x^2 + ax + b$, where a, $b \in \mathbb{R}$. If f(x) = 0 has all its roots imaginary, then the roots of f(x) + f'(x) + f(x)

=0` are :

A. real and distinct

B. imaginary

C. equal

D. rational and equal

Answer: B

Watch Video Solution

155. a,b,c $\in R\alpha$ is a root of $a^2x^2 + bx + c = 0\beta$ is a root of $a^2x^2 - bx - c = 0$ and γ is a root of $a^2x^2 + 2bx + 2c = 0$ then

A.
$$\begin{vmatrix} -\beta^{2} & \beta & 1 \\ \alpha^{2} & \alpha & 1 \\ \gamma^{2} & 2\gamma & 2 \end{vmatrix} = 0$$

B.
$$\begin{vmatrix} -\beta^{2} & \beta & 1 \\ \alpha^{2} & \alpha & 1 \\ \gamma^{2} & \gamma & 2 \end{vmatrix} = 0$$

C.
$$\begin{vmatrix} -\beta^{2} & \beta & 1 \\ \alpha^{2} & \alpha & 1 \\ \gamma^{2} & 2\gamma & 2 \end{vmatrix} = 0$$

D. none

Answer: A

156. IF the roots of the equation $x^2 + a^2 = 8x + 6a$ are real

, then a lies between

A. 1 and 2

B.-1 and 8

C. 2 and 8

D.-2 and 8

Answer: D

Watch Video Solution

157. If the equation $(\cos p - 1)x^2 + \cos px + \sin p = 0$ in the varable x has real roots then p can taken any value in the

interval

A. (0, 2π)

B. (- *π*, 0)

C. (- $\pi/2, \pi/2$)

D. (0, π)

Answer: D

A. n(n + 2), $n \in z$

B. $n(n + 1), n \in z$

C. $n(n - 2), n \in z$

D. none

Answer: B

Watch Video Solution

159. If a $\in Z$ and the equation (x - a)(x - 10) + 1 = 0 has

integral roots then the values of a are

A. 10, 8

B. 12, 10

C. 12, 8

D. none

Answer: C

Watch Video Solution

160. IF $\in R$ and the equation $-3(x - [x]) + a^2 = 0$ (where [x] denotes the greatest ineteger $\leq x$) has no integral solution, then all possible values of a lie in the interval

A. (-2, 1)B. $(-\infty, -2) \cup (2, \infty)$ C. $(-1, 0) \cup (0, 1)$

D. (1, 2)

Answer: C

161. If the roots of the equation $x^2 + kx + 64 = 0$ and $x^2 - 8x + k = 0k > 0$ are real then K=

A. 8

B. 12

C. 16

D. 24

Answer: C

162. IF the roots of the equation $ax^2 + bx + c = 0$ are real and distinct , then

A. both roots are greater than -b/2a

B. both roots are less than -b/2a

C. one of the roots exceeds -b/2a

D. none

Answer: C

163. If the roots of $ax^2 + bx + c = 0$ are both positive, then

A. alt0,Clt0

B. alt 0, cgt0

C. agt 0 ,Clt0

D. agt0,Cgt0

Answer: D

164. IF the roots of $ax^2 + bx + c = 0$ are both negative and

b < 0 then

A. alt0,Clt0

B. alt 0, cgt0

C. agt 0,Clt0

D. agt0,Cgt0

Answer: A

Watch Video Solution

165. IF the roots of $ax^2 + bx + c = 0$ are equal in magnitude but opposite in sign then

A. alt0,clt0

B. alt0,cgt 0,bgt0

C. agt 0, b=0,Clt0

D. agt0,b=0,cgt0

Answer: C

Watch Video Solution

166. if P , q, r are positive and are in A.P the roots of the quadrativ $px^2 + qx + r = 0$ real for

A.
$$\left| \frac{p}{r} - 7 \right| \ge 4\sqrt{3}$$

B. $\left| \frac{p}{q} - 7 \right| < 4\sqrt{3}$

C. all p and r

D. no p nad r

Answer: A

167. IF $(1 + k)\tan^2 x - 4\tan x - 1 + k = 0$ has real roots $\tan x_1$ and $\tan x_2$ then

A. $K^2 \le 5$ B. $k^2 \ge 6$ C. k = 3

D. none

Answer: A

168. IF 0 < a

A. $|\alpha| = |\beta|$

B. $|\alpha| < 1$

C. $|\beta| < 1$

D. none

Answer: A

View Text Solution

169. if 0 < a < b > 0 nad c > 0 then both the roots of the equation $2ax^2 + 3bx + 5c = 0$

A. are real and negative

B. have negative real parts

C. have positive real parts

D. none

Answer: B

View Text Solution

170. IF p,q, \in { 1,2,3.4} the number of equation of the form $px^2 + qx + 1 = 0$ having real roots is

A. 15

B. 9

C. 7

D. 8

Answer: C

Watch Video Solution

171. If the equation $x^2 - 2mx + 7m - 12 = 0$ has equal roots

then m=

A. 2 or 3

B. 3 or 4

C. 4 or 5

D. 5 or 6

Answer: B Watch Video Solution

172. IF the roots of $(3m + 1)x^2 + 2(m + 1)x + m = 0$ are equal then m=

A. 4/2,1

B. - 1/2, 1

C. 2, 1/2

D.2, -1/2

Answer: B

173. IF the roots of $x^2 - 2(5 + 2k)x + 3(7 + 10k)$ are equal then k=

A. 4/2,1

B. - 1/2, 1

C. 2, 1/2

D.2, -1/2

Answer: C

Watch Video Solution

174. If the quadratic expression $x^2 - (a - 1)x + \left(a + \frac{1}{4}\right)$ will

be a perfect square then a=

A. 0, 4

B. 2, 6

C. 2, 4

D. 0, 6

Answer: D

Watch Video Solution

175. IF $(x - a)(x-b) + (x-b) (x-c) + (x-a)(x-c)^{-1} = 0$ has equal roots

then the relation between a , b and c is

A. a+b+c=0

B. a=b=c

C. $b^2 = ac$

D. a + c = 2b

Answer: B

Watch Video Solution

176. If
$$c^2 \neq ab$$
 and the roots of $(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0$ are equal, then show that $a^3 + b^3 + c^3 = 3abc$ or $a = 0$

A.
$$a^3 + b^3 + c^3 = 3abc$$
 or $a = 0$

B. $a^2 + b^2 + c^2 = ab + bc + ca$

C. abc = a + b + C

D.
$$a = b = c$$

Answer: A

Watch Video Solution

177. The roots of the equation $(a - b)x^2 + (b - c)x + (c - a)$

=0 are

A. *a*, *b*, B. *b*, *c* C. 1, $\frac{c - a}{a - b}$ D. 1, $\frac{b - c}{a - b}$

Answer: C

B. a + b + c, ab + bc + ca

C. 1,
$$\frac{c(a - b)}{a(b - c)}$$

D. 1, $\frac{b(c - a)}{a(b - c)}$

Answer: C

179. If $p(q - r)x^2 + q(r - p)x + r(p - q) = 0$ has equal roots then 2/q =

A.
$$\frac{1}{p} + \frac{1}{r}$$

B. $\frac{1}{p} - \frac{1}{r}$

C. *p* + *r*

D. pr

Answer: A

180. IF the roots of $(b - c)x^2 + (c - a)x + (a - b) = 0$ are equal then a, b,c are in

A. AP

B. GP

C. HP

D. AGP

Answer: A

Watch Video Solution

181. IF the roots of $a(b - c)x^2 + b(c - a)x + c(a - b)=0$ are

equal then a, b, c are in

A. A.P

B. G.P

C. H.P

D. none

Answer: C

Watch Video Solution

182. If the roots of
$$(a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0$$

are equal then a, b, c are in

A. A.P

B. G.P

C. H.P

D. none

C. H.P

D. none

Answer: A

184. IF α , β are the roots of the equation $ax^2 + bx + c = 0$

and
$$\alpha < -1$$
, $\beta > 1$ then $1 + \frac{c}{a} + \left| \frac{b}{a} \right|$ is

A. positive

B. negative

C. non negative

D. non positive

Answer: B

185. IF 3 + 4i is a root of the equation $x^2 + px + q = 0$ then

A. p=6,q=25

B. p=6,q=1

C. p=-6,w=-7

D. p=-6,q=25

Answer: D

Watch Video Solution

186. IF 3 + i is a root of the equation $x^2 + ax + b = 0$ then

a=

A. 3

B. - 3

C. 6

D. - 6

Answer: D

Watch Video Solution

187. IF one root of the quadratic equation $ax^2 + bx + c = 0$

is 3 - 4*i* then a + b + c =

A. 40a

B. 36a

C. - 20a

D. 20a

Answer: D

188. IF (1 - p) is a root of quadratic equation $X^2 + px + (1 - p) = 0$ then its roots are

A. 0, 1

B. - 1, 2

C. 0, - 1

D. - 1, 1

Answer: C

189. IF one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots then the the value of q is

A. 49/4

B.4

C. 3

D. 12

Answer: A

190. If $x^2 - 6x + 5 = 0$ and $x^2 - 12x + p = 0$ have a common

root, then find p.

A. 11 or 35

B. 22 or 45

C. 40

D. 10

Answer: A

Watch Video Solution

191. If $x^2 - hx - 21 = 0$, $x^2 - 3hx + 35 = 0$ have a common root then h=

A. ±2

 $B.\pm 4$

 $C.\pm 6$

 $\text{D.}\pm8$

Answer: B

B. 12

C. 24

D. 32

Answer: C

Watch Video Solution

193. IF the equation $x^2 - x - p = 0$ and $x^2 + 2px - 12 = 0$

have a common root then that root is

A. 1

B. p+2

C. 2

D. can not be determined

Answer: C

194. IF
$$x^2 + bx + c = 0$$
, $x^2 + cx + b = 0$ (b \neq c) have a

coomon root then b+c=

A. 0

B. 1

C. - 1

D. 2

Answer: C

195. IF $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$ ($b \neq 0$) have

a common root , then b+c=

A. -*a*/4

B. *a*/3

C. *a*/2

D. a

Answer: A

196. IF $x^2 + ax + bc = 0$ and $x^2 + bx + ca = 0$ have a common root, then a + b + c=

A. 0

B. 1

C.ab + bc + ca

D. 3abc

Answer: A

Watch Video Solution

197. If the quadratic equations $ax^2 + 2bx + c = 0$ and $ax^2 + 2cx + b = 0$, $(b \neq c)$ have a

common root, then show that a + 4b + 4c = 0

A. - 2

B. - 1

C. 0

D. 1

Answer: C

Watch Video Solution

198. If $x^2 - cx + d = 0$, $x^2 - ax + b = 0$ have one common

root and second has equal roots then 2(b + d) =

B.ac

C. a+c

D. a-c

Answer: B

Watch Video Solution

199. IF $x^2 + bx + a = 0$, $ax^2 + x + b = 0$ have a common root

and the first equation has equal roots then $2a^2 + b =$

A. 0

B. 1

C. - 1

Answer: A

Watch Video Solution

```
200. IF the equations x^2 + 2x + 3 = 0 and ax^2 + bx + c = 0, a, b, c \in R have a common root then a:b:c is :
A. 1:3:2
B. 3:1:2
C. 1:2:3
D. 3:2:1
```

Answer: C

Watch Video Solution

201.

IF

$$x^{2} + P_{1}x + q_{1} = 0, x^{2} + p_{2}x + q_{2} = 0, x^{2} + p_{3}x + q_{3} = 0$$
 has
a coomon root then $p_{1}^{2} + p_{2}^{2} + P_{3}^{2} + 4(q_{1} + q_{2} + q_{3}) =$

A.
$$2(p_1p_2 + p_2p_3 + p_3p_1)$$

B. $(p_2p_1 + q_2q_3 + q_3p_1)$
C. $2(q_1p_2 + q_2p_3 + p_3q_1)$

D. none

Answer: A

202. The quadratic equation x - 6x + a = 0 and $x^2 - cx + 6 = 0$ have one root in common the other roots of the first and second equations are integers in the ratio 4 : 3 then the common root is

A. 4

B. 3

C. 2

D. 1

Answer: C

203. If $x^2 + bx + ca = 0$, $x^2 + cx + ab = 0$ have a common

root then their other are the roots of the equation

A.
$$x^2 + 2ax - bc = 0$$

$$\mathbf{B.} x^2 + ax + bc = 0$$

$$C. x^2 + ax - bc = 0$$

D. none

Answer: B

Watch Video Solution

204. IF $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a common root, then their other roots are the roots of

$$A. x^2 + x + pq = 0$$

$$\mathsf{B}.\,x^2 - x - pq = 0$$

C. $x^2 - x - pq = 0$

D. none

Answer: A

Watch Video Solution

205. IF (x - 2) is a common factor of the expression $x^{2} + ax + b$ and $x^{2} + cx + d$ then $\frac{b - d}{c - a} =$ A. -2

B. - 1

C. 1

D. 2

Answer: D

Watch Video Solution

206. IF α , β are the roots of $ax^2 + bx + c = 0$, α_1 , $-\beta$ the roots of $a_1x^2 + b_1x + c_1 = 0$ then α , α are the roots of the equation

A.
$$\left(\frac{b}{a} + \frac{b_1}{a_1}\right)^{-1} x^2 + x \left(\frac{b_1}{c_1} + \frac{b}{c}\right)^{-1} = 0$$

B. $\left(\frac{b}{a} - \frac{b_1}{a_1}\right)^{-1} x^2 - x \left(\frac{b_1}{c_1} + \frac{b}{c}\right)^{-1} = 0$

C.
$$\left(\frac{b}{a} + \frac{b_1}{a_1}\right)^{-1} x^2 - x \left(\frac{b_1}{c_1} + \frac{b}{c}\right)^{-1} = 0$$

D. none

Answer: A

207. The values of the parameter a for which the quadratic equation $(1 - 2a)x^2 - 6ax - 1 = 0$ and $ax^2 - x + 1 = 0$ have at

least one root in common are

A. 0, 1/2

B. 1/2, 2/9

C. 2/9

D. 0, 1/2, 2/9

Answer: C

Watch Video Solution

208. IF
$$x^2 + ax + b$$
, $x^2 + cx + d$ has the common factor x-1

then *a* + *b* - *c* - *d* =

A. 0

B. 1

C. - 1

D. none

Answer: A

209. If
$$ax^2 + 2bx + c = 0$$
, $a_1x^2 + 2b_1x + c_1 = 0$ have a common root, then the roots of the equation $(b^2 - ac)x^2 + (2bb_1 - aa_1 - a_1c)x + (b_1^2 - a_1c_1) = 0$ are

A. different

B. equal

C. zero

D. none

Answer: B

View Text Solution

210. IF $ax^2 + 2bx + c = 0$, and $px^2 + 2qx + r = 0$

A. b^2 - ac and q^2 - pr are both perfect squares

B. b^2 - ac is perfect square and q^2 - pr is not a perfact

square

C. $q^2 - pr$ is a pefect square and $b^2 - ac$ is not a perfect

square

D. both b^2 - ac and q^2 - pr are not perfect squares

Answer: A

211. if P,q, r, s \in R such that pr = 2(q + s) then

A. both the equation $x^2 + px + q = 0$, $x^2 + rx + s = 0$

have real roots

B. one of the equation $x^2 + px + q = 0$, $x^2 + rx + s = 0$

must have real roots

C. Both the equations $x^2 + px + q = 0$, $x^2 + rx + s = 0$

cannot have real roots

D. none

Answer: B

212. IF every pair from the equation $x^{2} + px + qr = 0, x^{2} + qx + rp = 0$ and $x^{2} + rx + pq = 0$ has a common root, them the product of three common roots is

A. pqr

B. 2pqr

 $\mathsf{C}.\,p^2q^2r^2$

D. none

Answer: A

213. IF the equation $k(6x^2 + 3) + rz + 2x^2 - 1 = 0$ and $6k(2x^2 + 1) + px + 4x^2 - 2 = 0$ have both the root common , then the value of 2r - p is

A. 0

B. 1

C. 2

D. 3

Answer: A

View Text Solution

214. The equation $ax^2 + bx + a = 0(a, b, \in R)$ and $x^3 - 2x^2 + 2x - 1 = 0$ have two roots common. Then a+ b must be equal to

B. - 1

C. 0

D. one of these

Answer: C

Watch Video Solution

215. The value of 'a' for which the equation $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root is

A. - 2

B. - 1

C. 1

Answer: A

Watch Video Solution

216. IF
$$\alpha$$
, β are the roots of $x^2 + px + q = 0$ and also of $x^{2n} + P^n x^n + q^n = 0$ and if $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roots of $x^n + 1 + (x + 1)^n = 0$ then n is

A. an odd integer

B. en even integer

C. any integer

D. none of these

Answer: B

View Text Solution

217. IF a,b,c are in A. P and if
$$(b - c)^2 + (c - a)x + (c - a)x + (a - b) = 0$$
 and
 $2(c + a)x^2 + (b + c)x = 0$ have a common root then
A. a^2 , b^2 , c^2 are in A.P

B. a^2 , c^2 , b^2 are in A.P

C. a^2 , , c^2 , b^2 are in G.P

D. none of these

Answer: B

218. If
$$12^{4+2x^2} = (24\sqrt{3})^{3x^2-2}$$
, then x =

A.
$$\pm \sqrt{\frac{13}{12}}$$

B. $\pm \sqrt{\frac{14}{5}}$
C. $\pm \sqrt{\frac{12}{13}}$
D. $\pm \sqrt{\frac{5}{14}}$

Answer: B

219. for the equation $|x|^2 + |x| - 6 = 0$ the roots are

A. One and only one real number

- B. real with sum one
- C. real with sum zero
- D. real with porduct zero

Answer: C

Watch Video Solution

220. The number of real solution $x^2 - 7|x| + 12 = 0$ is

A. 4

B. 3

C. 2

D. 10

Answer: A

Answer: C

Watch Video Solution

222. If
$$|x^2| + |x| - 2 = 0$$
 then x=

A. ± 1

 $B.\pm 3$

 $\mathsf{C.}\pm11$

D. ±15

Answer: A

223. The product and sum of the roots of the equation $|x^2| - 5|x| - 24 = 0$ are respectively

A.-64,0

B. - 24, 5

C. 5, - 24

D. 0, 72

Answer: A

224. The real roots of the equation
$$|x^2 + 4x + 3| + 2x + 5 = 0$$
 are
A. 4, $-1 + \sqrt{3}$
B. -4 , $-1 - \sqrt{3}$

 $\mathsf{C.} \pm 41 \pm \sqrt{3}$

D. - 2, - 4 -
$$1\sqrt{3}$$

Answer: B

Watch Video Solution

225. The number of real solutions of the equation $|x|^2 - 5 |x| + 6 = 0$ is A. 4 B. 1

C. 3

D. 2

Answer: A

226. The solutions of
$$|x^2 - 2x + 2| = 3x - 2$$
 are

A.4, -1

- **B**. 4, 1
- C.-4, 1

D. 4, 1

Answer: D

227. IF |x - 2| + 2|x - 9| = 7 then x=

A. any real number between 0.7

B. any real number between 2.9

C. any real number between 2.7

D. any real number between 0.9

Answer: B

228. IF
$$|x - 2| + 2|x - 3| = 7$$
 then x=

A.2 or 1/3

B. 3 or 1/7

C.2 or 1/5

D. none

Answer: D

Watch Video Solution

229. If |x + 1| - |x| + 3|x - 1| - 2|x - 2| = x + 2, then x=

A. x = 2 or $x \le 2$

B. x = -5 or x > 5

C. x = -2 or $x \ge 2$

D. none of these

Answer: C

230. The number of real roots of $(7 + 4\sqrt{3})^{|x|-8} = 14$ is

A. 0

B. 2

C. 4

D. none of these

Answer: D

231. The sum of all real values of x satisfying the equation

$$(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1$$
 is

A. 3

B. - 4

C. 6

D. 5

Answer: A

232. The product of real roots of the equation $|x|^{6/5} - 26|x|^{3/5} - 27 = 0$ is

A. - 3¹⁰

B. - 3¹²

C. - 3^{12/5}

D. - 3^{21/5}

Answer: A

Watch Video Solution

233. IF α is a root of the equation $4x^2 + 2x - 1 = 0$ then $4\alpha^3 - 3\alpha$ is

A. a root

B. not a root

C. may be a root

D. none

Answer: A

Watch Video Solution

A.
$$\frac{\sqrt{5} - 1}{2}$$

B.
$$\frac{\sqrt{5} + 1}{2}$$

C.
$$\frac{\sqrt{5} - 1}{2}$$

D.
$$\frac{\sqrt{5} + 1}{3}$$

Answer: B

Answer: B

236. If $x + \sqrt{x} = 6/25$ then x=

A. 1/5

B. 1/25

C. 1/625

D. 1/125

Answer: B

Watch Video Solution

237. IF $\sqrt{x+1}$ - *sqt*(*x* - 1) = 1 then x=

A. 7/11

B.2/3

C. 5/4

D.-(3/2)

Answer: C

Watch Video Solution

238. The solution set of $\sqrt{x+1} + \sqrt{2x-5} = 3$ is

A. {2}

B. {3}

C. {4}

D. {5}

Answer: B

239. If
$$\sqrt{x+2} = \sqrt{3x-10}$$
, then x=

A. - 6

B.6

C. 3

D. - 3

Answer: B

240. The solution set of $\sqrt{x+20} + \sqrt{x+4} = 4\sqrt{x-1}$ is

A. {2}

B. {3}

C. {4}

D. {5}

Answer: D

View Text Solution

241. IF $\sqrt{3x - 5} = 0$ then x=

A. 2

B. - 2

c. $\frac{5}{3}$

D. none

Answer: C

Watch Video Solution

242. IF
$$x^2 - 4x - 12\sqrt{x^2 - 4x + 19} + 51 = 0$$
 then x=

A.1 or 3 or - 5 or 9

B.2 or - 3 or 5 or 7

C. -3 or 1 or -7

D. none

Answer: A

243. IF
$$\sqrt{x^2 + 4a + 5} + \sqrt{x^2 + 4b + 5} = 2(a - b)$$
 then x=

A.
$$\frac{(a - b)^2 - 5}{2(a + b)}$$

B. $\frac{a^2 - b^2}{2(a + b)}$
C. $\frac{(a + b)^2}{(a + b) - 5}$

D. none

Answer: A

244. the solution set of $x^2 + x - 2 = 0$ is

Watch Video Solution

245. IF $2x^{1/3} + 2x^{-1/3}$ =5 then x=

A.3 or 1/9

B.5 or 1/5

C.2 or 1/5

D.8 or 1/8

Answer: D

246. IF
$$(a + x)^{2/3} + (a - x)^{2/3} = 4(a^2 - x^2)^{1/3}$$
 then x=

A.
$$\pm \frac{3a}{4\sqrt{4}}$$

B. $\pm \frac{4a}{3\sqrt{3}}$
C. $\pm \frac{5a}{3\sqrt{3}}$
D. $\pm \frac{5a}{6\sqrt{6}}$

Answer: C

View Text Solution

B. 3

C. 2

D. 5

Answer: C

Watch Video Solution

248. The solution set of (x - 1)(X - 3)(x - 5)(x - 7) = 9 is

A.
$$\left\{ -4, 4, 4 \pm \sqrt{10} \right\}$$

B. $\left\{ 4, 4, 4 \pm \sqrt{10} \right\}$

C.
$$\left\{ -4, -4, 4 \pm \sqrt{10} \right\}$$

D. none

Answer: B

249. The roots of
$$\frac{1}{(x-1)_1}/(x-2) = \frac{1}{x-3}$$
 are
A. $3 \pm \sqrt{2}$
B. $2 \pm \sqrt{3}$
C. $6 \pm \sqrt{8}$
D. $8 \pm \sqrt{6}$

Answer: A

250. The equation
$$x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$$
 has

A. no root

B. one root

C. two root

D. infinitely many roots

Answer: A

251. If
$$\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$$
 then x=
A. a^2 or b^2/a^3
B. a or b^2/a
C. a^2 or b/a

D. *a* or
$$b^2/a^2$$

Answer: B

252. A root of the equation
$$\frac{a+c}{x+a} + \frac{b+c}{x+b} = \frac{2(a+b+c)}{x+a+b}$$
 is

A. a

B.b

C. c

D. a+b+c

Answer: C

253. The solution set of
$$\left(x + \frac{1}{x}\right)^2 - \frac{3}{2}\left(x - \frac{1}{x}\right) = 4$$
 when

 $x \neq 0$ is

A. {1/2,1,1,2}

B. {-1/2,-1/2,-1,1,2}

C. { 1/2 ,-1,1,2}

D. {-1/2,1,1,2}

Answer: B

254. Solve
$$2\left(x+\frac{1}{x}\right)^2 - 7\left(x+\frac{1}{x}\right) + 5 = 0$$
, when $x \neq 0$

A.
$$\left\{2 \pm \frac{1}{2}, \frac{1 \pm i\sqrt{3}}{2}\right\}$$

B. $\left\{2, -\frac{1}{2}, \frac{1 + I\sqrt{3}}{2}\right\}$
C. $\left\{-2, \frac{1}{2}, \frac{1 \pm i\sqrt{3}}{2}\right\}$

Answer: A

255. Solve
$$\left(x^2 + \frac{1}{x^2}\right) - 5\left(x + \frac{1}{x}\right) + 6 = 0$$
, when $x \neq 0$

A.
$$\left\{2 \pm \frac{\sqrt{3}}{2}\right\}$$

B.
$$\left\{2, -\frac{1}{2}, \frac{1+I\sqrt{3}}{2}\right\}$$

C.
$$\left\{-2 \pm \sqrt{3}, \frac{1+I\sqrt{3}}{2}\right\}$$

Answer: A

256. If
$$\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} = 3$$
 then x=

A. $\sqrt{2/3}$ B. $\sqrt{1/3}$

C.
$$\sqrt{\frac{2}{5}}$$

D. $\sqrt{3/5}$

Answer: D

Watch Video Solution

257. IF
$$\frac{x + \sqrt{12a - x}}{x - \sqrt{12a - x}} = \frac{\sqrt{a} + 1}{(\sqrt{a} - 1)}$$
, then x=

A. 2*a*²

B. 4a

С. За

D. 3*a*²

Answer: C

D. none

Answer: C

259.
$$\sqrt{\frac{x}{x-3}} + \sqrt{\frac{x-3}{x}} = \frac{5}{2}$$
, when $x \neq 0$ and $x \neq 3$

A. {1, 2}

- **B.** {1, -1}
- C. {1, 5}
- D. {4, -1}

Answer: D

260.
$$\sqrt{\frac{3x}{x+1}} + \sqrt{\frac{x+1}{3x}} = 2$$
, when $x \neq 0$ and $x \neq -1$

A. {1/2}

B. {1}

C. {2}

D. {3}

Answer: A

Watch Video Solution

261. If
$$2^x + 27(2^{-x}) = 12$$
 then x=

A. $\log_2 3$ or $2\log_2 3$

 $B.\log_2 5$ or $2\log_2 3$

 $C. \log_2 7$ or $\log_2 5$

D. none

Answer: A

Watch Video Solution

263. Solve $7^{1+x} + 7^{1-x} = 50$ for real x.

A. {1, 1}

B. {1, -1}

C. { - 1, 1}

D. none

Answer: B

264. IF
$$e^{(\cos^2 x + \cos^4 + \cos^6 x + \dots)\log^3}$$
 s

satissfies

 y^2 - 10y + 9 = 0 and (0 < x < $\pi/2$) then $\cot^2 x$ =

B. 1

C. 1/2

D. 9

Answer: A

Watch Video Solution

265. The equation
$$x^{(3/4)} \left(\log_2 x \right)^2 + \log_2 x - 5/4 = \sqrt{2}$$
 has

A. exactly two real roots

B. no real root

C. one irrational root

D. one of these

Answer: C

Answer: B

267. The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has

A. 0

B. 1

C. 4

D. ∞

Answer: A

Watch Video Solution

268. The number of solutions of the system of equation

given below is :

A. ∞

B. 2

C. 4

D. 8

Answer: D

View Text Solution

269. The number of solution of the equation $9x^2 - 18|x| + 5 = 0$ belonging to the domin of $\log_e\{(x + 1)(x + 2)\}$ is B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

270. The number of solutions of the equation $5^{x} + 5^{-x} = \log_{10}25, x \in R$ is

A. 0

B. 1

C. 2

D. infinitely many

Answer: A

271. IF the equation ax+by=1, $cx^2 + dy^2 = 1$ have only one

solution then
$$\frac{a^2}{c} + \frac{b^2}{d} =$$

A. 1

B. - 1

C. 0

D. 2

Answer: A

Answer: B

Watch Video Solution

273. If 2a + 3b + 6c = 0 then the equation $ax^2 + bx + c = 0$

has atlest one root in

A. (0, 1)

B. (1, 1)

C.[-1,1]

D.[1,2]

Answer: A

Watch Video Solution

274. Let P(x) be a polynomial with integral coefficients . If

there exists two intefers a and b such that p(a) - p(b) = 1

then

A. both a and b must be even

B. both a and b must be odd

C. a and b are two consecutive intergers

D. none of these

Answer: C

View Text Solution

275. IF 0< a

A. real and distinct roots out of which one lies

between c and d

B. real and distinct roots out of which one lies

between a and b

C. real and distinct roots out of which one lies

between b and c

D. non - real roots

Answer: A

View Text Solution

276. α and β are the roots of the equation $x^2 + px + p^3 = 0$, $(p \neq 0)$. If the point (α, β) lies on the curve $x = y^2$, then the roots of the given equaion are **A.** 4, - 2

B. 4, 2

C. 1, - 1

D. 1, 1

Answer: A

Watch Video Solution

277. Find all number which exceed their square root by 12

A. 8

B. 16

C. 24

D. 32

Answer: B

278. The two consecutive positive odd integers such that

the sum of their squares is 290 are

A. 5, 7

B. 9, 11

C. 11, 13

D. 15, 17

Answer: C

279. Find two consecutive positive even integers, the sum

of whose squares is 340.

A. 10, 20

B. 12, 14

C. 14, 18

D. 16, 20

Answer: B

Watch Video Solution

280. The number having two digits such that it is 4 times the sum and three times the product of its two digits are

A. 8

B. 16

C. 24

D. 32

Answer: C

281. A number of two digit s whose product is 30 . If the digits are interchanged the resulting number will exceed

the previous by 9. the number is

A. 56

B. 54

C. 38

D. 28

Answer: A

282. The sum of the ages of a father and a son is 45 years .Five years ago the product of their ages was four times the father's age at that time . Their present ages are

A. 32, 8

B. 28, 7

C. 36, 9

D. 40, 10

Answer: C

Watch Video Solution

283. The cost of a piece of cable wire is Rs. 35/-, If the length of the piece of wire is 4 meters more and each meter costs, Rs. 1/- less, the cost would remain unchanged. What is the length of the wire ?

A. 10 metres

B. 12 metes

C. 15 metres

D. 20 metres

Answer: A

284. One fourth of a herd of goats was seen in the forest. Twice the square root of the number in the herd had gone up the hill and the remaining 15 goats were on the bank of the river. Find the total number of goats.

A. 26

B. 28

C. 34

D. 36

Answer: D

Watch Video Solution

285. In the interior of a forest there are some apes . Of their total number square of $\frac{1}{9}$ th are playing at one place . The remaining are on the hills . The total number of apes is

A. 27 or 54

B. 16 or 32

C. 28 or 56

D. 185 or 36

Answer: A

286. In a cricket match Anil took one wicket less than twice the number of wickets taken by Ravi. If the product of the number of wickets taken by them is 15, find the number of wickets taken by each of them.

A. 5, 3 B. 3, 5 C. 2, 6

D.7,9

Answer: A

287. Some points on a plane are marked and they are connected pair wise by line segments . IF the total number of line segments formed is 10 then the number of marked points on the plane is

A. 2

B. 3

C. 4

D. 5

Answer: D

288. The sides of a right angled triangle containing the right angle are 5x cm and (3x-1) cm. If the area of the triangle is 60 sq. Cm the length of the sides of the triangles are

A. 8 cm , 15 cm , 17 cm

B. 6cm , 12 cm , 18 cm

C. 10 cm , 18 cm , 20 cm

D. 9 cm , 116 , 24 cm

Answer: A

Exercise 1 B Quadratic Expressions

1. If x < 3 or x > 4 then the value of $x^2 - 7x + 12$ is

A. zero

B. positive

C. negative

D. not determined

Answer: B

2. IF $x \in R$ then the value of $x^2 - 6x + 10$ is

A. zero

B. positive

C. negative

D. not determined

Answer: B

Watch Video Solution

3. IF -1/2 < x < 3 then the value of $2x^2 - 5x - 3$ is

A. zero

B. positive

C. negative

D. not determined

Answer: C

4. if $x \neq 3/2$ then the value of $4x^2 - 12x + 9$ is

A. zero

B. positive

C. negative

D. not determined

Answer: C

6. IF 4 < x < 8 then the value of $-7x^2 + 8x - 9$ is

A. zero

B. positive

C. negative

D. not determined

Answer: C

7. If $x \in R$ then the value of $-7x^2 + 9x - 9$ is

A. zero

B. positive

C. negative

D. not determined

Answer: C

Watch Video Solution

8. if a > 0 and $b^2 - 4ac = 0$, then the curve $y = ax^2 + bx + c$

A. Cuts the x- axis

B. touches the x- axis lies below it

C. lies entirely above the x- axis

D. touches the x- axis and lies above it

Answer: D

9. $x^2 - 2x + 10$ has minimum at x=

A. 2

B. - 1

C. 1

D. - 2

Answer: C

10. $3x - 5x^2 + 12$ has maximum at x=

A. 2/5

B.-1/5

C. 3/10

D.-3/10

Answer: C

Watch Video Solution

11. if $2x - 7 - 5x^2$ has maximum value at x = a then a=

A. - 1/5

B. 1/5

C. 34/5

D. - 34/5

Answer: B

12. the minimum value of
$$x^2 - 8x + 17$$
, $\forall x \in R$ is

A. 17

B. - 1

C. 1

D. 2

Answer: C

Watch Video Solution

13. The maximum value of $10x - 5x^2 - 1$ is

A. - 1

B. - 1/5

C. 2

D. 4

Answer: D

14. the maximum value of (x - a)(b - x) is

A.
$$(a^2 - b)^2/4$$

B. $(a - b)^2$
C. a
D. b

Answer: A

15. The maximum value of $a^2 - abx - b^2x^2$ is

A. 5*a*²/4

B. $a^2/2$

С. а

D. - *a*

Answer: A

16. the minimum value of
$$\left(x - \frac{5}{3}\right)^2 + \frac{7}{2}$$
 is

A. 1

B. 7

C. 7/5

D. 7/2

Answer: D

17. the maximum value of
$$\frac{7}{5} - \left(x - \frac{2}{3}\right)^2$$
 is

A. 11/3

B.7/5

C. 7

D. 5

Answer: B

18. the maximum value of $c + 2bx - x^2$ is

A. *b*²c

B. *b*² - *c*

C. *c* - *b*²

D. $b^{2} + c$

Answer: D

Watch Video Solution

19. the minimum value of the quadratic expression $x^2 + 2bx + c$ is

A. cb^2

B. c^2b

C. $c + b^2$

D. *c* - *b*²

Answer: D

Watch Video Solution

20. the expression $2x^2 + 4x + 7$ has minimum value m at

 $x = \alpha$. The ordered pair (α , m) is

A. (1, 5)

B. (1, - 5)

C.(-1,-5)

D.(-1,5)

Answer: D

Answer: B

22. Find the changes in the sign of the following expressions and find their extreme values.

 $15 + 4x - 3x^2$

A. 49/3

B. - 49/3

C. 47/3

D.-47/3

Answer: A

23. If $a_1, a_2, \dots a_n$ are in H.P. then $a_1, a_2 + a_2, a_3 + a_3, a_4 + \dots + a_{n-1}, a_n =$

A.
$$a_1 + a_2 + \dots + a_n$$

B. $(a_1 + a_2 + a_3 + \dots + a_n)$
C. $n(a_1 + a_2 + \dots + a_n)$

D. none

Answer: D

Watch Video Solution

24. IF a,b,c are positive then the least value of (a + b + c)(1/a + 1/b + 1/c) is

A. 4

B. 3

C. 7

D. 9

Answer: D

Watch Video Solution

25. If a,b,c are distinct positive numbers then the 3expression (b + c - a)(c + a - b)(a + b - c) - abc is

A. positive

B. negative

C. nonpositive

D. nonnegative

Answer: C

26. IF $a^2 + b^2 + c^2 = 1$ then the range of ab + bc + ca is

A. [1/2, 2]

B.[-1/2]

C.[-1/2,1]

D.[1,3/2]

Answer: C

27. In triangle ABC, range of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ is (a,b,c are sides

of triangle)

A. [1,2)

B.(-∞,1] ∪ [2,∞)

C. zero

D. none

Answer: A

Watch Video Solution

28. The solution set of $-x^2 + 3x + 4 > 0$ is

A.(-1,4)

D.[-4,1]

Answer: A

Watch Video Solution

29. the solution set of
$$x^2 - 4x - 21 \ge 0$$
 is

A. (-1,4)

- B. (∞, -3] U [7, ∞)
- C. (-∞, 3) U (5,∞)

D.[-4,1]

Answer: B

30. the solution set of $1 \le x^2 - 2x$ is

A.
$$(-\infty, 1 - \sqrt{2}] \cup [1 + \sqrt{2}, \infty)$$

B. $(-\infty, -3) \cup (1 + \sqrt{2}, \infty)$
C. $(-1, 1/2)$

D.[-1,1/2]

Answer: A

31. the solution set of $x^2 > 4x + 5$ is

A.
$$\left(-\infty 1\sqrt{2}\right] \cup \left[1+\sqrt{2},\infty\right)$$

B. R

C.(-1,1/2)

D.[-1,1/2]

Answer: B

32. The solution set of $2x^2 - 4x + 5 > 0$ is

A.[-1/2,3]

B.*R*

C.(-2,1/2)

D. *ф*

Answer: D

Watch Video Solution

33. the solution set of $x^2 - 2x + 2 < 0$ is

A.[-1/2,3]

B.*R*

C.(-2,1/2)

D. *ф*

Answer: D

- A. R (∞, 5)
- **B**. *R* (5, ∞)
- С. *ф*
- D. $R (-\infty, -4)$

Answer: C

Watch Video Solution

35. The set of solutions of $|x|^2 - 5|x| + 4 < 0$ is

A. (- 4, - 1) B. (1, 4) C. (- 4, - 1) ∪ (1, 4) D. (- 4, 4)

Answer: C

Watch Video Solution

36. if the expression $4x - 5x^2 + 1$ is positive if x lies in

A.(-1/5,1)

B. (1, 1)

С. *ф*

D. *R*

Answer: A

Watch Video Solution

37. the expression $-7x^2 + 8x - 9$ is positive if x lies in

A. (- ∞, 1) U (2, ∞)

B. (-∞, 2) U (3,∞)

С. *ф*

D. *R*

Answer: C Watch Video Solution **38.** the expression $x^2 - 5x - 6$ is negative is x lies in A. (-1, 6) B. (2, 5) C.(-3,1/2) D. *R*

Answer: A

39. The greatest positive integral value of x for which 200-

x (10 + x) is positive is

A. 11

B. 10

C. 9

D. none

Answer: C

40. The least integral value of x for which 33-x (2+3x)gt 0`

A. - 11

B. - 3

C. - 2

D. - 1

Answer: B

Watch Video Solution

41. The integer k for which the inequality $x^2 - 2(4k - 1)x + 15k^2 - 2k - 7 > 0$ is valid for any x, is

A. 2

B. 3

C. 4

D. 5

Answer: B

Watch Video Solution

42. IF the difference between the roots the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$ then the set of possible values of a is

A. (- 3, 3) B. (- 3, ∞)

C. (3, ∞)

Answer: A

Watch Video Solution

43. IF
$$x^2 + 6x - 27 > 0 - x^2 + 3x + 4 > 0$$
 then x lies in the interval

A. (3, 4)

B. [3, 4]

C.(-∞,3] U [4,∞)

D.(-9,4)

Answer: A

44. The set of values of x for which the inequalities $x^2 - 3x - 10 < 0$, $10x - x^2 - 16 > 0$ hold simultancously, is

A.(-2,5)

B. (2, 8)

C. (-2,8)

D. (2, 5)

Answer: B

45. The set of values of x for which the inequalities x² - 2x + 3 > 0, 2x² + 4x + 3 > 0 hold simultancously, is
A. (-4, 1)
B. (-4, -3] ∪ [-2, 1)
C. (-4, -3) ∪ (-2, 1)
D. R

Answer: D

Watch Video Solution

46. IF $x^2 - 2x + 3 > 0$, $2x^2 + 4x + 3 > 0$ then x lies in the

interval

A. (1, 2)

B.*R*

C. (2, 5)

D. *ф*

Answer: B

Watch Video Solution

47. the greatest negative integer satifying $x^2 - 4x - 77 < 0$ and and x² gt4` is

A. 1

B. 2

C. 3

D. - 3

Answer: D

A. 2

B. - 2

C. 1

D. 0

Answer: A

49. the least value of $\cos^2 x + \sec^2 x$ is

- A. 0
- **B.** 2
- **C**. 2
- **D.** 1

Answer: C

50. The range of
$$\frac{x^2 + 2x + 1}{x^2 + 2x - 1}$$
 is

B. [1/2, 2]

C.(-∞, -2/9] U (1,∞)

D.
$$(-\infty, -6) \cup (-2, \infty)$$

Answer: A

51. The range of
$$\frac{x^2 - 2x + 9}{x^2 + 2x + 9}$$
 is

B. [1/2, 2]

C. (- ∞ , - 2/9] U (1, ∞)

D.
$$(-\infty, -6) \cup (-2, \infty)$$

Answer: B

52. The range of
$$\frac{x^2 - 2x + 3}{x^2 - 2x - 8}$$
 is
A. [- 9/2, 1/2]

B.(-∞,1] U [2,∞)

D. R

Answer: C

Watch Video Solution

53. The range of
$$\frac{x^2 - 2x + 3}{x^2 - 2x - 8}$$
 is

A.[-9/2,1/2]

B.(-∞,1] U [2,∞)

C.(-∞, -9] ∪ [-1,∞)

D. R

Answer: D

54. IF x is real then the value of $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ lies in the

interval

A.
$$\left[\frac{1}{3}, 3\right]$$

B. $\left[\frac{1}{5}, 5\right]$
C. $\left[\frac{1}{6}, 6\right]$
D. $\left[\frac{1}{7}, 7\right]$

Answer: D

55. Show that none of the values of the function $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ over R lies between 5 and 9.

A. does not lie

B. lies

C. none

D. cannot be determined

Answer: A

56. IF x is real, then
$$\frac{x^2 - bc}{2x - b - c}$$
 has _____ values between b

and c

A. no real

B. real

C. none

D. cannot be determined

Answer: A

57. If x is real then
$$y = \frac{2x^2 + 6x + 5}{x^2 + 3x + 2}$$
 _____ between -2 and +2

A. lies

B. does not lie

C. none

D. cannot be determined

Answer: B

Watch Video Solution

59. the (relative) minimum value of
$$\frac{x^2 - 3x + 2}{x^2 + 3x + 2}$$
 is

A. - 1/11

- **B.** 17 + $12\sqrt{2}$
- **C.** 17 $12\sqrt{2}$

D. 0

Answer: B

60. For
$$x \in R$$
, the least value of $\frac{x^2 - 6x + 5}{x^2 + 2x + 1}$ is

B.
$$-\frac{1}{2}$$

C. $-\frac{1}{4}$
D. $-\frac{1}{3}$

A. - 1

Answer: D

61. If
$$x \in R$$
, then the range of $\frac{x}{x^2 - 5x + 9}$ is

A. - 1/11

B. - 1

C. 1/11

D. 1

Answer: D

Watch Video Solution

63. the limits of
$$\frac{6x^2 - 18x + 21}{6x^2 - 18x + 17}$$
 are

A. 1, 15/7

B. 1, 15

C. 2, 3/5

D. 1, 7/15

Answer: A

64. If x is real, then the range of
$$\frac{x^2 + 2x + 1}{x^2 + 2x + 7}$$
 is

A. 0, 1

B. 1, 2

C. 0, 2

D. 2, 3

Answer: A

Watch Video Solution

65. IF $\frac{x-a}{x^2-3x+2}$ takens all real values for $x \in R$, then A. a = 2B. a < 2C. $1 \le a \le 2$

D. 1 ≤ *a* ≤ 2

Answer: D

View Text Solution

66. IF
$$x \in R$$
 then $\frac{x^2 + 2x + a}{x^2 + 4x + 3a}$ can take all real values if

A.
$$a \in (0, 2)$$

B. *a* ∈ [0, 1]

 $C. a \in [-1, 1]$

D. none

Answer: B

67. If $Y = \tan x \cot 3x$, $x \in R$, then

A.
$$\frac{1}{3} < y < 1$$

B. $\frac{1}{3} \le y \le 1$
C. $\frac{1}{3} \le y \le 3$

D. none

Answer: D

68. IF
$$x \in R$$
 then $\frac{2a(x-1)\sin^2\alpha}{x^2 - \sin\alpha}$ connot lie between

A. $a\sin^2\alpha$, $a\cos^2\alpha$

B.
$$a\sin^2(\alpha/2)a$$
, $\cos^2(\alpha/2)$

C. $2a\sin^2\alpha$, $2a\cos^2\alpha$

D.
$$2a\sin^2(\alpha/2, 2a\cos^2(\alpha/2))$$

Answer: D

69. If
$$a \neq b$$
 then the expression
 $x^2 - (a + b)x + (a^2 - ab + b^2)$ ____ negative values for any
real value of x

A. does not take

B. take

C. none

D. cannot be determined

Answer: A

View Text Solution

70. If α , β are the roots of x^2 - (a - 2)x - (a + 1) = 0 where a

is a variable then the least value of $\alpha^2 + \beta^2$ is

A. 2

B. 3

C. 5

Answer: C

71. IF the sum of the squares of the roots of the equation

 x^2 - $(\sin \alpha - 2)x$ - $(1 + \sin \alpha) = 0$ is least , then α =

Α. *π*/4

B. *π*/3

C. *π*/2

D. *π*/6

Answer: C

72. The value of a for which the sum of the squares of the roots of the equation $x^2 - (a - 2)x - a - 1 = 0$ assume the least value is

A. 0

B. 1

C. 2

D. 3

Answer: B

73. IF the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the experssion $3b^2x^2 + 6bcx + 2c^2$ is

A. less than 4ab

B. greater than - 4ab

C. less than - 4ab

D. greater than 4 ab

Answer: B

74. The smallest value of the constant m > 0 for which

0, is

$$f(x) = 9mx - 1 + \frac{1}{x} \ge 0 \text{ for all } x >$$
A. $\frac{1}{9}$
B. $\frac{1}{16}$
C. $\frac{1}{36}$
1

D.
$$\frac{1}{81}$$

Answer: C

75. The real values of a for which $y = \sqrt{\frac{(x+1)(x-3)}{x-2}}$ takes

real values are

A. - $1 \le x \le 2$ or $x \ge 3$

B. 1 < x < 2 or x > 2

C. x < 2 or x > 3

D. *x* > 2

Answer: A

76. IF x > -c then the minimum value of $\frac{(a+x)(b+x)}{c+x}$ is

A.
$$\sqrt{a - c} + \sqrt{b - c}$$

$$\mathsf{B}.\sqrt{a-c}-\sqrt{b-c}$$

$$\mathsf{C}.\left(\sqrt{a-c}+\sqrt{b-c}\right)^2$$

D.
$$\left(\sqrt{a-c} - \sqrt{b-c}\right)^2$$

Answer: C

77. IF x > -c then the minimum value of $\frac{(a+x)(b+x)}{c+x}$ is

A.
$$\sqrt{a - c} + \sqrt{b - c}$$

B. $\sqrt{a - c} - \sqrt{b - c}$
C. $(\sqrt{a - c} + \sqrt{b - c})^2$
D. $(\sqrt{a - c} - \sqrt{b - c})^2$

Answer: D

78. For real x , the function $\frac{(x-a)(x-b)}{x-c}$ will assume all

real values provided

A. *a* < *b* < *c*

B. *b* < *c* < *a*

C. *c* < *a* < *b*

D. none of these

Answer: B

79. The range of values of x which satisfy 5x + 2 < 3x + 8

and
$$\frac{x+2}{x-1}$$
 < 4 are
A. '(-oo ,1) U(2,3)`
B. (0, ∞)
C. (- ∞ , 2)

D. (1, 3)

Answer: A

80. The range of values of x for which the inequality $\frac{x-1}{4x+5} < \frac{x-3}{4x-3}$ holds is A. (-4/3, 5/8)

B. (-4/3, 1/2)

C. (-5/4, 3/4)

D. none

Answer: C

81. The values of x for which $\frac{x-1}{3x+4} < \frac{x-3}{3x-2}$ holds , lie in

A. $(-\infty, -5/4)$

B. (-4/3, 2/3)

 $C.(3/4,\infty)$

Answer: B

Watch Video Solution

82.
$$\left\{ x \in R : \frac{14x}{x+1} - \frac{9x-30}{x-4} < 0 \right\}$$
 is equal to
A. $(-1, 4)$
B. $(1, 4) \cup (5, 7)$

C. (1, 7)

D.(-1,1) U (4,6)

Answer: D

83. IF the inequation $\sqrt{3x - 8} < -2$ then

A. *ф*

B.[1, 2]

C. [12, ∞)

D. (1, 12]

Answer: A

84. if the inequation $\sqrt{x+5} < -x$ then

A. 5ltxlarr1

B. - 5 < *x* < 1

C. -5 < *x* < -1

D. none

Answer: C

View Text Solution

85. If the inequation $\sqrt{x^2 - 18x + 72} < x - 1$ then

A. *ф*

B. [1, 2)

C. [12, ∞)

D. (1, 2]

Answer: C

86. IF
$$\sqrt{9x^2 + 6x + 1} < (2 - x)$$
 then

$$A. x \in \left(+ \frac{3}{2}, \frac{1}{4} \right)$$
$$B. x \in \left(-\frac{3}{2}, \frac{1}{4} \right)$$
$$C. x \in \left[-\frac{3}{2}, \frac{1}{4} \right)$$
$$D. x < \frac{1}{4}$$

Answer: B

87. If the inequation $\sqrt{(x+2)(x-5)} > 8 - x$ then x lies in

A.
$$\left(\frac{74}{36}, \infty\right)$$

B. $\left[\frac{74}{13}, \infty\right)$
C. $\left(-\frac{74}{13}, \infty\right)$
D. $\left[-\frac{74}{13}, \infty\right)$

Answer: A

88. If the inequation
$$\frac{\sqrt{6+x-x^2}}{x+10} \le \frac{\sqrt{(8-2x-x^2)}}{2x+9}$$
 then

A.
$$2 \le x \le -1$$

 $\mathsf{B.-2} \le x \le -1$

 $C.2 \le x \le x = 3$

D. none

Answer: B

lies in

A.[-4,1]U {2}

B.(-4,1] U {2}

C.[-4,1)U {2}

D. none

Answer: A

View Text Solution

90. if $x^2 + ky^2 + x - y$ is resolvable into two linear factors then k=

A. - 1

B. 1

C. 2

D. 0

Answer: A

O Watch Video Solution

91. If xy + 2x - 3y - k is resolvable into two linear factors then k=

A. - 1

B.4

C. 6

D. -5

Answer: C

92. IF $x^2 - y^2 + 4x - 6y + k$ is resolvable into two linear factors then k=

A. - 1

B.4

C. 6

D. - 5

Answer: D

93. IF $x^2 + 4xy + 4y^2 + 4x + cy + 3$ can be written as a

product of two linear factors , then c=

A. 2

B.4

C. 6

D. 8

Answer: D

Watch Video Solution

94. IF $12x^2 - mxy + 3y^2 - 5y^2 - 2$ can be resolvarble into two

linear factors then m=

A. ± 6

 $B.\pm 3$

 $C.\pm 5$

 $\textbf{D.}\pm7$

Answer: D

View Text Solution

95. IF $12^2 - 10xy + 2y^2 + 11x - 5y + k$ is resolvable into two

linear factors factors then k=

A. 2

B. 1

C. 0

D. 4

Answer: A

View Text Solution

96. IF $3x^2 + 8xy - ky^2 + 29x - 3y + 18$ is resolvable into two

linear factors then k=

A. 2

B. 1

C. 3

D. 4

Answer: C

View Text Solution

97. IF $mx^2 + 7xy - 3y^2 + 4x + 7y + 2$ is resolvable into two linear factors then m=of twp linear factors then the factors are

A. 7

B.4

C. 2

D. -5

Answer: C

98. IF $4x^2 + 4xy - ky^2 - 12 - 2y + 8$ can be written as the produ of two linear factors then the factors are

A.
$$(2x + 3y + 4)(3x + 5y + 2)$$

B.
$$(3y + x + 9)(y - 3x - 2)$$

$$C. (2x + 3y - 4)(2x - y - 2)$$

D.
$$(x - y + 4)$$
, $(x - 2y + 5)$

Answer: C

99. IF $3x^2 + 8xy + 5y^2 + 14x + 22y + 8$ is resolvable into two

linear factors then the factors are

A.
$$(2x + 3y + 4)(3x + 5y + 2)$$

B. (3y + x + 9)(y - 3x - 2)

C. (2x + 3y - 4)(2x - y - 2)

D.
$$(x - y + 4), (x - 2y + 5)$$

Answer: A

View Text Solution

100. Examine $3y^2 - 8xy - 3x^2 - 29x + 3y - 18$ is re-solvable

into two linear factors.

A.
$$(2x + 3y + 4)(3x + 5y + 2)$$

B.
$$(3y + x + 9)(y - 3x - 2)$$

$$C.(2x + 3y - 4)(2x - y - 2)$$

D.
$$(x - y + 4), (x - 2y + 5)$$

Answer: B

101.Thecoorditionfor $ax^2 + 2cxy + by^2 + 2by^2 + 3bx + 2ay + c$ is resolvable intotwo linear factors is

A.
$$a^3 + b^3 + c^3 = 3abc$$

$$B. a^3 + b^3 + c^3 = abc$$

C.
$$a^2 + b^2 + c^2 ab + bc + ca$$

D.
$$a^3 + b^3 + c^3 = 27abc$$

Answer: A

102. The condition for $3x^2 + 2pxy + 2y^2 + 2ax - 4y + 1$ can

be resolved into two linear factors is

A.
$$p^2 + 4ap + a^2 + 6 = 0$$

B.
$$p^2 + 4ap + a^2 = 6$$

$$C. p^2 + 4ap + 2a^2 + 6 = 0$$

$$D. p^2 + 4ap + 2a^2 = 6$$

Answer: C

103. If
$$x^2 + 4y^2 - 8x + 12 = 0$$
 is satified by real values of x

nad y then y must lies between

A. 2, 6

B. 2, 5

C. - 1, 1

D. - 2, 1

Answer: A

104. If $x^2 + 4y^2 - 8x + 12 = 0$ is satified by real values of x

nad y then y must lies between

A. 2, 6

B. 2, 5

C. - 1, 1

D. - 2, 1

Answer: C

Watch Video Solution

105. Let f(x) be a polynomial for which the remainders when divided by x - 1, x - 2, x - 3 respectively are 3, 7, 13 then the remainder of f(x) when divided by (x - 1)(x - 2)(x - 3) is

A. f(x)

B. $x^2 + X + 1$

C. $x^2 + 1$

D. none

Answer: B

106. Let two numbers have arthmetic mean 9 geometric mean 4. then these numbers are the roots of the quadratic equation

A.
$$x^2 + 18x + 16 = 0$$

B. $x^2 - 18x - 16 = 0$
C. $x^2 + 18x - 16 = 0$

D.
$$x^2 - 18x + 16 = 0$$

Answer: D

Watch Video Solution

Exercise 2 Special Type Questionos Set 1

1. I : If $(a\alpha + b)^2 + (a\beta = b)^{-2} = 1$ where α, β are the roots of $ax^2 + bx + c = 0$ then $ac(ac + 2) = b^2$ II : the value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the quadratic equation

A. Only I is true

B. Only II is true

C. both I and II are true

D. niether I nor II true

Answer: A

View Text Solution

2. I: If $p(q - r)x^2 + q(r - p)x + r(p - q) = 0$ has equal roots then p,q,r in A.P

II : if the sum of the roots of $ax^2 + bx + c = 0$ has equal to the sum of the squares of their reciprocals then bc^2 , ca^2 , + bx + c = 0 is equal to the sum of the squares of their reciproocals then bc^2 , ca^2 , ab^2 are in A.P

A. Only I is true

B. Only II is true

C. both I and II are true

D. niether I nor II true

Answer: B

3. I) The maximum value of $c + 2bx - x^2$ is $c + b^2$

II) The minimum value of $x^2 + 2bx + c$ is $c - b^2$

Which of the above statements is true ?

A. Only I is true

B. Only II is true

C. both I and II are true

D. niether I nor II true

Answer: A

4. E_1 , a + b + c = 0 if 1 is a root of $ax^2 + bx + c = 0$. $E_2: b^2 - a^2 = 2ac$ if $sin\theta cos\theta$ are the of $ax^2 + bx + c = 0$ which of the following is true?

A. E_1 is true E_2 is true

B. E_1 is true E_2 is false

C. E_1 is false E_2 is ture

D. E_1 is false E_2 is false

Answer: A

View Text Solution

Exercise 2 Special Type Questionos Set 2

1. a,b,c $\in R\alpha$ is a root of $a^2x^2 + bx + c = 0\beta$ is a root of $a^2x^2 - bx - c = 0$ and γ is a root of $a^2x^2 + 2bx + 2c = 0$ then

A. A,B,C,D

B. B,D,C,A

C. A,C,B,D

D. D,B,A,C

Answer: B

2. if *A*, *B*, *C*, *D* are the sum of the roots of the roots of $2x^2 + x + 3 = 0, x^2 - x + 2 = 0, 3x^2 - 2x + 1 = 0, x^2 - x - x + 1 = 0$ then the ascendinf order of A,B,C,D is

A. A,B,C,D

B. B,D,C,A

C. A,C,B,D

D. C,D,A,B

Answer: C

3. IF A,B,C, are the minimum value of $x^2 - 8x + 17$, $2x^2 + 4x - 5$, $3x^2 - 7x + 1$ then the ascending order of A,B,C is

A. A,B,C

B. B,C,A

C. C,A,B

D. A,C,B

Answer: B

Watch Video Solution

4. IF A,B,C are the maximum value of $2x + 5 - x^2$, $x - 1 - 2x^2$, $5x + 2 - 3x^2$ then the descending order of A,B,C is

A. A,B,C

B. B,C,A

C. C,A,B

D. A,C,B

Answer: D

Watch Video Solution

Exercise 2 Special Type Questionos Set 3

1. IF α , β are the roots of $ax^2 + bx + c = 0$ then the match

the following

I.
$$\alpha\beta^{2} + \alpha^{2}\beta + \alpha\beta =$$

a) $\frac{b^{2} - 2ac}{c^{2}}$
II. $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} =$
b) $\frac{3abc - b^{3}}{a^{2}c}$
III. $\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha} =$
c) $\frac{c^{3}}{a^{3}}$
IV. $\frac{\alpha^{3} + \beta^{3}}{\alpha^{-3} + \beta^{-3}} =$
d) $\frac{ac - bc}{a^{2}}$

A. c,d,a,b

B. d,c,b,a

C. d,a,b,c

D. c,b,a,c

Answer: C

2. Match the following

If α , β are the roots of $x^2 + 5x - 4 = 0$ then the equation whose roots are $\frac{\alpha + 2}{3}$, $\frac{\beta + 2}{3}$ is II. If α , β are the roots of $2x^2 + x + 3 = 0$ then the equation whose roots are $\frac{1 - \alpha}{1 + \alpha}$, $\frac{1 - \beta}{1 + \beta}$ is III. If α , β are the roots of $x^2 - 2x + 3 = 0$ then the equation whose roots are $\frac{\alpha - 1}{1 + \alpha}$, $\frac{\beta - 1}{1 + \beta}$ is IV. If α , β are the roots of $2x^2 + 3x - 4 = 0$ then the equation whose roots are $\frac{\alpha - 1}{\alpha + 1}$, $\frac{\beta - 1}{\beta + 1}$ is IV. If α , β are the roots of $2x^2 + 3x - 4 = 0$ then the equation whose roots are $2\alpha + \frac{3}{\beta}$, $2\beta + \frac{3}{\alpha}$ is

A. a,c,d,b

B. d,c,b,a

C. b,c,d,a

D. c,d,a,c

Answer: D

3. match the following .

Inequation	Solution set		
I. $x^2 - 7x + 12 \ge 0$	a)Ø		
$II.x^2 + 3x - 4 \le 0$	b) (- 2, 1/2)		
$III_{2r^2} = 3r < 2$	e) [4 , 1]		
IV. $x^2 - 2x + 2 < 0$	d) $(-\infty, 3] \cup [4, \infty)$		

A. a,c,d,b

B. d,c,b,a

C. b,c,d,a

D. c,d,a,c

Answer: B

4. Let α and β be the roots of the quadratic equation

 $ax^2 + bx + c = 0$. Observe the lists given below:

List -I i) $\alpha = \beta \Rightarrow$ ii) $\alpha = 2 \beta \Rightarrow$ iii) $\alpha = 3 \beta \Rightarrow$ iv) $\alpha = \beta^2 \Rightarrow$

List-II A) $(ac^2)^{1/3} + (a^2c)^{1/3} + b = 0$ B) $2b^2 = 9ac$ C) $b^2 = 6ac$ D) $3b^2 = 16ac$ E) $b^2 = 4ac$ F) $(ac^2)^{1/3} + (a^2c)^{1/3} = b$

Let correct match of List -I from List -II is

A.	Ι	ii	iii	iv
	E	В	D	F
Β.	Ι	ii	iii	iv
	E	В	Α	D
C.	Ι	ii	iii B	iv
	E	D	В	F
D.	Ι	ii	iii	iv
	E	В	iii D	Α

Answer: D

Exercise 2 Special Type Questionos Set 4

- **1.** A: The quadratic equation having roots $3 \pm 2I$ is $x^2 - 6x + 13 = 0$
- R : the quadratic equation having roots α, β is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$
 - A. Both A are R are ture R is the correct explanation Of

А

- B. Both A are R are true but R is not correct explanation of A
- C. A is true but R is false
- D. A is false but R is true

2. A: the quadratic equation whose roots are the reciprocals of the roots of $3x^2 - 7x + 2 = 0$ is $3x^2 + 7x + 2 = 0$

R : the quadratic equation whose roots are the reciprocals of the roots of the quadratic equation f(x) is f(1/x)=0

A. Both A are R are ture R is the correct explanation Of

A

B. Both A are R are true but R is not correct

explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: D

Watch Video Solution

3. A : $x^2 + x + 1 > 0$ for all $x \in R$

R : if the roots of $ax^2 + bx + c = 0$ are imaginary then for

 $x \in R$, $ax^2 + bx + c$ and a have the same sign.

A. Both A are R are ture R is the correct explanation Of

А

B. Both A are R are true but R is not correct

explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

View Text Solution

4. A : $x^2 + x - 12 \le 0 \Rightarrow x \in [-4, 3]$

R : if α , β are the roots of $ax^2 + bx + c = 0$, $\alpha < \beta$ then

 $\alpha < x < \beta \Leftrightarrow ax^2 + bx + c$ and *a* have opposite signs .

A. Both A are R are ture R is the correct explanation Of

А

B. Both A are R are true but R is not correct

explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

D View Text Solution