

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

RELATIONS

Exercise

1. If A ={1,2,3},B={x,y} then $A \times B$ =

A. {1,2,3,X,Y}

B. $\{(1,X),(2,Y),(1,Y)\}$

C. $\{(X,A),(Y,B),(X,3)\}$

D. $\{(1,X),(1,Y),(2,X),(2,Y),(3,X),(3,Y)\}$

Answer: D

Watch Video Solution

2.

 $\Big\{2rac{x}{x}\in N \,\, ext{and}\,\, x<3\Big\}, B=ig\{x/x^2-4x+3=0\,\, ext{and}\,\, x>1\Big\}$

A=

A. {(4,3),(2,3)}

B. {(2,4),(2,3)(4,3)}

C. {(1,4),(2,3),(2,2)}

D. {(1,2),(1,3)(2,3)}

Answer: A

View Text Solution

3. If A= {1,2,3},B={x} then $(A \times B) \cup (B \times A)$ =

A. $\{(1,X),(2,X),(3,X)\}$

B. $\{(X,1),(X,2),(X,3)\}$

C. $\{(1,X),(2,X),(3,X),(X,1),(X,2)(X,3)\}$

D. NONE

Answer: C

Watch Video Solution

4. If two sets P and Q ,n(P)=5 ,n(Q)=4 then n(P \times Q)=

A. 20

B. 9

C. 25

D. 5/4

Answer: A

Watch Video Solution

- **5.** If A={1,2,3,4,5},B ={p,q,r,s} then n(A \times B) =
 - A. 8
 - B. 4
 - C. 20
 - $D.5^4$

Answer: C

6. If
$$A = \{1,3,5,7\}B = \{a,b,c\}$$
, then $n(A \times b) =$

A. 3

B. 4

C. 12

D. 7

Answer: C

Watch Video Solution

7. If A= $\{1,2,3,4,5\}$,B = $\{a,b,c\}$, then n(B \times A)=

A. 5

B. 3

C. 15

D. 125

Answer: C

Watch Video Solution

8. If n(A imes B) = 15, n(A) = 3 then n(B)=

A. 12

B. 5

C. 45

D. 3

Answer: B

9. Let A and B be two sets containing 2 elements and 4 elements respectively the number of subsets of A \times B having 3 or more elements is

A. 219

B. 211

C. 256

D. 220

Answer: A

10. If n(A)=n then n{(x,y,z),x,y,z
$$\in A, x
eq y, y
eq z, z
eq x}=$$

A.
$$n^3$$

 $A = \{(x,y)\!:\!y\!:\!y = e^x, x \in R\}, B = ig\{(x,y)\!:\!y = e^{-x}, x \in Rig\}$

$$\Delta n^3$$

B. $n(n-1)^2$

C. $n^2(n-2)$

Answer: D

11.

then

A. $A \cup B = \mathscr{O}$

D. $n^3 - 3n^2 + 2n$

View Text Solution

B. $A \cup B \neq \mathscr{O}$

C. $A \cup B = R^2$

D. none

Answer: B

Watch Video Solution

12.

 $A = \{(x,y)\!:\! y=e^x, x\in R\}, B = \{(x,y)\!:\! y=x, x\in R\}$ then

A. $B\subset A$

 $\mathsf{B}.\,A\subset B$

 $\mathsf{C}.\,A\cap B=\mathscr{O}$

D.
$$A \cup B = A$$

Answer: C

Watch Video Solution

13. Let X ={1,2,3,4,5} then the number of different ordered pairs

that

- (Y,Z) that can be formed such
- $Y\subset X, Z\subset X ext{ and } Y\cap Z$ is empty is

 - A. 2^5

 $B. 5^{3}$

- $\mathsf{C.}\ 5^2$
- D. 3^5

Answer: D

14. If A={2,3,5},B={4,6,8}, then the relation from A in to B is

A. {(2,4),(3,5),(5,6)}

B. {(2,4),(5,8),(6,5)}

C. {(2,4),(3,6),(2,6)}

D. {(2,5),(3,6)}

Answer: C

Watch Video Solution

15. Domain of { (1,x),(2,y),(3,x),(4,z)}is

A. {1,2,3,4} B. $\{x,y,z\}$ C. {1,2,4,x,y,z} D. {1,x}

Answer: A

- **16.** Range of {(1,x),(1,y),(2,x),(2,y),(3,z)} is
 - A. {1,2,3}
 - B. $\{x,y,z\}$
 - C. {1,x}
 - D. {1,2,3,x,y,z}

Answer: B

Watch Video Solution

17. Inverse relation of $\{(1, 2), (1, 3), (2, 3)\}$ is

- A. {(1,2),(1,3),(2,3)}
- B. {(2,1),(3,1),(3,2)}
- c. Ø
- D. {(-1,2,(-1,-3),(-2,-3)}

18. Which of the above is many to many relation?

A. f

B. g

C.h

D. q

Answer: D

Watch Video Solution

19. Which of the above is one to one relation?

A. f

B. g

C. h

D. q

Answer: A

Watch Video Solution

20. Which of the above is one to many relation?

If $A = \{1,2,3\}, B = \{a,b,c\}, f = \{(1,a),(1,b),(1,c)\}, g = \{(1,a),(3,c),(2,b)\}, h = \{(1,a),(3,c),(2,c),(2,c)\}, h = \{(1,a),(3,c),(2,c),(2,c)\}, h = \{(1,a),(3,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c),(2,c)\}, h = \{(1,a),(2,c),(2$

 $(2,b),(3,a),q={(1,a),(2,a),(3,b),(1,b),(3,a)}$ then

A. f

B. g

A. f

B. g

C. h

D. q

Answer: B

Watch Video Solution

Watch Video Solution

21. Which of the above is one to ne relation?

C.h

D. q

Answer: A

22. Which of the above is many to many relation? A. f B. g C.h D. q **Answer: A**

23. Which of the above is many to one relation

Watch Video Solution

A. f

25. If A={1,2,3},f={(1,1),(1,2),(2,1)} then on A, f is

A. reflexive

B. symmetric

C. antisymmetric

D. equivalence

Answer: B

Watch Video Solution

26. If A={1,2,3},f={(1,1),(2,2),(3,3)} then on A, f is

A. reflexive

B. symmetric

C. antisymmetric

D. equivalence

Answer: A

Watch Video Solution

27. Let

 $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\}$

be a relation on the set A= {3,6,9,12}` The relation is

A. reflexive and transitive only

B. reflexive only

C. an equivalence relation

D. reflexive and symmetric only

Answer: A

Watch Video Solution

28. The relation \perp is

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: B

29. The relation > is

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: C

Watch Video Solution

30. The relation II is

A. reflexive

- B. symmetric
- C. transitive
- D. equivalence

Answer: D

Watch Video Solution

31. For , n m \in N,n I m means that n is a factor of m the relation is

- A. reflexive and symmetric
- B. transitive and symmetric
- C. reflexive and symmetric
- D. R is reflexive and transitive

Answer: D

Watch Video Solution

32. Let ${\sf x,y} \in {\sf Z}$ and suppose that a relation R on Z is defined by ${\sf x}$ R y if and only if $x \le y$ then

- A. R is partial order
- B. R is an equivalence relation
- C. R is reflexive and symmetric
- D. R is symmetric and transitive

Answer: A

33. The relation " son of " is
A. reflexive
B. symmetric
C. transitive
D. none
Answer: D
Watch Video Solution
Watch Video Solution 34. In the set of all triangles "similarity is
34. In the set of all triangles "similarity is

D. equivalence

Answer: D

Watch Video Solution

35. A and B are two sets having 3 and 4 elements respectively and having 2 elements in common The number of relation which can be defined from A to B is

 $\mathsf{A.}\ 2^5$

 ${\sf B.}\,2^{10}-1$

 $\mathsf{C.}\ 2^{12}-1$

D. none of these

Answer: D

36. If the relation R:A o B where $A=\{1,2,3,4\}$ and B= {1,3,5} is defined by $R=\{(x,y), x< y, x\in A, y\in B\}$ then ROR^{-1} is

D. none of these

Answer: C

37. Let $R=\{(x,y):x,y \text{ in } A,x+y=5\}$ where $A=\{1,2,3,4,5\}$ then

A. R is not reflexive, but symmetric and not transitive

B. R is an equivalence symmetric but transitive

C. R is not reflexive not symmetric but bit transitive

D.

Answer: A

Watch Video Solution

38. Let R be relation on a set A such that $R=R^{-1}$ then R is

A. reflexive

B. symmetric

C. transitive

D. an equivalence relation

Answer: B

Watch Video Solution

39. For x,y \in R define a relation R by x R y if and only if x-y + $\sqrt{2}$ is an irrational number .Then R is

A. Reflexive

B. Symmetric

C. Transitive

D. none of these

Answer: A

40. If R and S are two symmetric relation then

A. R_oS is symmetric relation

B. S_oR is a symmetric relation

C. R_oS^- is symmetric relation

D. R_oS is a symmetric relation if and onlyb if R_oSS_oR

Answer: D

View Text Solution

41. f is a relation on the set R of real numbers defined (a,b)

 $\in f
ightarrow 1 + ab > 0$ then f is

- A. transitive, reflexive but not symmetric
- B. reflexive symmetric but not transitive
- C. reflexive symmetric transitive
- D. not reflexive not symmetric not transitive

Answer: B

- **42.** Let W denote the words in the english dicitionary define the relation R by $R\colon\{(x,y)\in W\times W$ I the words x and y have at least one letter in common }Then R is
 - A. reflexive symmetric and transitive
 - B. reflexive not symmetric and transitive

C. not reflexive symmetric and transitive

D. reflexive symmetric and not transitive

Answer: D

Watch Video Solution

43. If $A=\{1,2,3\}$ the number of reflexive relations in A is

A. 9

B. 3

C. 64

D. 25

Answer: C

44. If A={1,2,3} the number of symmetric realtions in A is

A. 3

B. 8

C. 324

D. 64

Answer: D

Watch Video Solution

45. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation R is

- A. a function
- B. reflexive
- C. not symmetric
- D. transitive

Answer: D

A,BC

Watch Video Solution

46. The set S={1,2,3....12} is to be partitioned into three sets

of

equal

size

Thus $A \cup B \cup C = S, A \cap B = B \cap C = A \cap C = arphi$ the number

of ways to partitions S is

c.
$$\frac{12!}{4!^3}$$

Answer: C

Watch Video Solution

defined by a R bif Ia-bI \leq 1Then R is

47. Let R be the relation on the set R of all real numbers

A. reflexive and symmetric

B. symmetric only

C. transitive only

D. anti-symmetric only

Answer: A

48. The relation "less than " in the set of natural numbers is

A. only symmetric

B. only transitive

C. only reflexive

D. equivalence relation

Answer: B

Watch Video Solution

relation on N imes N defined by (a,b)R (c,d) if ad(b+c)=bc(a+d)

49. Let N denote the set of all natural numbers and R be the

then R is
A. symmetric only
B. reflexive only
C. transitive only
D. an equivalence relation
Answer: D
Watch Video Solution