©゙’doubtnut

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

RELATIONS

Exercise

1. If $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{\mathrm{x}, \mathrm{y}\}$ then $A \times B=$
A. $\{1,2,3, \mathrm{X}, \mathrm{Y}\}$
B. $\{(1, \mathrm{X}),(2, \mathrm{Y}),(1, \mathrm{Y})\}$
C. $\{(\mathrm{X}, \mathrm{A}),(\mathrm{Y}, \mathrm{B}),(\mathrm{X}, 3)\}$
D. $\{(1, \mathrm{X}),(1, \mathrm{Y}),(2, \mathrm{X}),(2, \mathrm{Y}),(3, \mathrm{X}),(3, \mathrm{Y})\}$

D Watch Video Solution

2.

If
$A=$
$\left\{2 \frac{x}{x} \in N\right.$ and $\left.x<3\right\}, B=\left\{x / x^{2}-4 x+3=0\right.$ and $\left.x>1\right\}$ then $\mathrm{A} \times \mathrm{B}=$
A. $\{(4,3),(2,3)\}$
B. $\{(2,4),(2,3)(4,3)\}$
C. $\{(1,4),(2,3),(2,2)\}$
D. $\{(1,2),(1,3)(2,3)\}$

Answer: A

3. If $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{\mathrm{x}\}$ then $(A \times B) \cup(B \times A)=$
A. $\{(1, \mathrm{X}),(2, \mathrm{X}),(3, \mathrm{X})\}$
B. $\{(\mathrm{X}, 1),(\mathrm{X}, 2),(\mathrm{X}, 3)\}$
C. $\{(1, X),(2, X),(3, X),(X, 1),(X, 2)(X, 3)\}$
D. NONE

Answer: C

- Watch Video Solution

4. If two sets P and $Q, n(P)=5, n(Q)=4$ then $n(P \times Q)=$
A. 20
B. 9
C. 25
D. $5 / 4$

Answer: A

- Watch Video Solution

5. If $A=\{1,2,3,4,5\}, B=\{p, q, r, s\}$ then $n(A \times B)=$
A. 8
B. 4
C. 20
D. 5^{4}

Answer: C

6. If $A=\{1,3,5,7\} B=\{a, b, c\}$, then $n(A \times b)=$

A. 3
B. 4
C. 12
D. 7

Answer: C

D Watch Video Solution

7. If $A=\{1,2,3,4,5\}, B=\{a, b, c\}$, then $n(B \times A)=$
A. 5
B. 3
C. 15
D. 125

Answer: C

(D) Watch Video Solution

8. If $n(A \times B)=15, n(A)=3$ then $\mathrm{n}(\mathrm{B})=$
A. 12
B. 5
C. 45
D. 3

- Watch Video Solution

9. Let A and B be two sets containing 2 elements and 4 elements respectively the number of subsets of $A \times B$ having

3 or more elements is
A. 219
B. 211
C. 256
D. 220

Answer: A

10. If $\mathrm{n}(\mathrm{A})=\mathrm{n}$ then $\mathrm{n}\{(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{x}, \mathrm{y}, \mathrm{z} \in A, x \neq y, y \neq z, z \neq x\}=$
A. n^{3}
B. $n(n-1)^{2}$
C. $n^{2}(n-2)$
D. $n^{3}-3 n^{2}+2 n$

Answer: D

- View Text Solution

11.

$$
A=\left\{(x, y): y: y=e^{x}, x \in R\right\}, B=\left\{(x, y): y=e^{-x}, x \in R\right\}
$$ then

A. $A \cup B=\varnothing$
B. $A \cup B \neq \varnothing$
C. $A \cup B=R^{2}$
D. none

Answer: B

D Watch Video Solution

12.

$A=\left\{(x, y): y=e^{x}, x \in R\right\}, B=\{(x, y): y=x, x \in R\}$ then
A. $B \subset A$
B. $A \subset B$
C. $A \cap B=\varnothing$
D. $A \cup B=A$

Answer: C

- Watch Video Solution

13. Let $X=\{1,2,3,4,5\}$ then the number of different ordered pairs
$(\mathrm{Y}, \mathrm{Z}) \quad$ that can be formed such that
$Y \subset X, Z \subset X$ and $Y \cap Z$ is empty is
A. 2^{5}
B. 5^{3}
C. 5^{2}
D. 3^{5}

- Watch Video Solution

14. If $A=\{2,3,5\}, B=\{4,6,8\}$, then the relation from A in to B is
A. $\{(2,4),(3,5),(5,6)\}$
B. $\{(2,4),(5,8),(6,5)\}$
C. $\{(2,4),(3,6),(2,6)\}$
D. $\{(2,5),(3,6)\}$

Answer: C

- Watch Video Solution

15. Domain of $\{(1, x),(2, y),(3, x),(4, z)\} i s$
A. $\{1,2,3,4\}$
B. $\{x, y, z\}$
C. $\{1,2,4, x, y, z\}$
D. $\{1, x\}$

Answer: A

- Watch Video Solution

16. Range of $\{(1, x),(1, y),(2, x),(2, y),(3, z)\}$ is
A. $\{1,2,3\}$
B. $\{x, y, z\}$
C. $\{1, x\}$
D. $\{1,2,3, x, y, z\}$

D Watch Video Solution

17. Inverse relation of $\{(1,2),(1,3),(2,3)\}$ is

A. $\{(1,2),(1,3),(2,3)\}$
B. $\{(2,1),(3,1),(3,2)\}$
C. \varnothing
D. $\{(-1,2,(-1,-3),(-2,-3)\}$

- Watch Video Solution

18. Which of the above is many to many relation?
A. f
B. g
C. h
D. q

Answer: D

D Watch Video Solution
19. Which of the above is one to one relation ?
A. f
B. g
C. h
D. q

Answer: A

- Watch Video Solution

20. Which of the above is one to many relation ?

If $A=\{1,2,3\}, B=\{a, b, c\}, f=\{(1, a),(1, b),(1, c)\}, g=\{(1, a),(3, c),(2, b)\}, h=\{(1, a)$,
(2,b),(3,a)\},q=\{(1,a),(2,a),(3,b),(1,b),(3,a)\} then
A. f
B. g
C. h
D. q

Answer: A

- Watch Video Solution

21. Which of the above is one to ne relation ?
A. f
B. g
C. h
D. q

Answer: B
22. Which of the above is many to many relation?
A. f
B. g
C. h
D. q

Answer: A

(D) Watch Video Solution

23. Which of the above is many to one relation
A. f
B. g
C. h
D. q

Answer: C

(D) Watch Video Solution

24. Which of the above is many to many relation?
A. f
B. g
C. h
D. q

- Watch Video Solution

25. If $A=\{1,2,3\}, f=\{(1,1),(1,2),(2,1)\}$ then on A, f is

A. reflexive
B. symmetric
C. antisymmetric
D. equivalence

Answer: B

- Watch Video Solution

26. If $A=\{1,2,3\}, f=\{(1,1),(2,2),(3,3)\}$ then on A, f is
A. reflexive
B. symmetric
C. antisymmetric
D. equivalence

Answer: A

- Watch Video Solution

27.

$R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)\}$
be a relation on the set $A=\{3,6,9,12\}$ ' The relation is
A. reflexive and transitive only
B. reflexive only
C. an equivalence relation
D. reflexive and symmetric only

Answer: A

- Watch Video Solution

28. The relation \perp is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: B

29. The relation $>$ is

A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: C

(D) Watch Video Solution

30. The relation II is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: D

(D) Watch Video Solution

31. For, $n \mathrm{~m} \in \mathrm{~N}, \mathrm{n}$ I m means that n is a factor of m the relation is
A. reflexive and symmetric
B. transitive and symmetric
C. reflexive and symmetric
D. R is reflexive and transitive

- Watch Video Solution

32. Let $x, y \in Z$ and suppose that a relation R on Z is defined by x R y if and only if $x \leq y$ then
A. R is partial order
B. R is an equivalence relation
C. R is reflexive and symmetric
D. R is symmetric and transitive

Answer: A

33. The relation " son of " is
A. reflexive
B. symmetric
C. transitive
D. none

Answer: D

D Watch Video Solution

34. In the set of all triangles "similarity is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: D

- Watch Video Solution

35. A and B are two sets having 3 and 4 elements respectively and having 2 elements in common The number of relation which can be defined from A to B is
A. 2^{5}
B. $2^{10}-1$
C. $2^{12}-1$
D. none of these

- Watch Video Solution

36. If the relation $\mathrm{R}: A \rightarrow B$ where $A=\{1,2,3,4\}$ and $\mathrm{B}=$ $\{1,3,5\}$ is defined by $R=\{(x, y), x<y, x \in A, y \in B\}$ then $R O R^{-1}$ is
A. $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
B. $\{(3,1),(5,1),(2,3),(2,5),(3,5),(4,5)\}$
C. $\{(3,3),(3,5),(5,3),(5,5)\}$
D. none of these

Answer: C

37. Let $R=\{(x, y): x, y$ in $A, x+y=5\}$ where $A=\{1,2,3,4,5\}$ then
A. R is not reflexive,but symmetric and not transitive
B. R is an equivalence symmetric but transitive
C. R is not reflexive not symmetric but bit transitive
D.

Answer: A

- Watch Video Solution

38. Let R be relation on a set A such that $R=R^{-1}$ then R is
A. reflexive
B. symmetric
C. transitive
D. an equivalence relation

Answer: B

D Watch Video Solution

39. For $x, y \in R$ define a relation R by $x R y$ if and only if $x-y+$
$\sqrt{2}$ is an irrational number .Then R is
A. Reflexive
B. Symmetric
C. Transitive
D. none of these

- Watch Video Solution

40. If R and S are two symmetric relation then
A. $R_{o} S$ is symmetric relation
B. $S_{o} R$ is a symmetric relation
C. $R_{o} S^{-}$is symmetric relation
D. $R_{o} S$ is a symmetric relation if and onlyb if $R_{o} S S_{o} R$

Answer: D

- View Text Solution

41. f is a relation on the set R of real numbers defined (a, b)
$\in f \rightarrow 1+a b>0$ then f is
A. transitive, reflexive but not symmetric
B. reflexive symmetric but not transitive
C. reflexive symmetric transitive
D. not reflexive not symmetric not transitive

Answer: B

(Watch Video Solution

42. Let W denote the words in the english dicitionary define the relation R by $R:\{(x, y) \in W \times W$ I the words x and y have at least one letter in common \}Then R is
A. reflexive symmetric and transitive
B. reflexive not symmetric and transitive
C. not reflexive symmetric and transitive
D. reflexive symmetric and not transitive

Answer: D

D Watch Video Solution

43. If $A=\{1,2,3\}$ the number of reflexive relations in A is
A. 9
B. 3
C. 64
D. 25

Answer: C
44. If $A=\{1,2,3\}$ the number of symmetric realtions in A is
A. 3
B. 8
C. 324
D. 64

Answer: D

- Watch Video Solution

45. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation R is
A. a function
B. reflexive
C. not symmetric
D. transitive

Answer: D

D Watch Video Solution

46. The set $S=\{1,2,3 \ldots .12\}$ is to be partitioned into three sets
A,BC
of equal size Thus
$A \cup B \cup C=S, A \cap B=B \cap C=A \cap C=\varphi$ the number of ways to partitions S is
A. $\frac{12!}{3!\left(4!^{3}\right)}$
B. $\frac{12!}{3!\left(4!^{4}\right)}$
c. $\frac{12!}{4!^{3}}$
D. $\frac{12!}{3!^{4}}$

Answer: C

- Watch Video Solution

47. Let R be the relation on the set R of all real numbers defined by a R bif la-bl ≤ 1 Then R is
A. reflexive and symmetric
B. symmetric only
C. transitive only
D. anti-symmetric only

- Watch Video Solution

48. The relation "less than " in the set of natural numbers is
A. only symmetric
B. only transitive
C. only reflexive
D. equivalence relation

Answer: B

D Watch Video Solution

49. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a,b)R (c,d) if ad(b+c)=bc(a+d)
then R is
A. symmetric only
B. reflexive only
C. transitive only
D. an equivalence relation

Answer: D

D Watch Video Solution

