© 'doubtnut

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

SEQUENCES AND SERIES

Exercise

1. 10 th term of $4+6+8+\ldots$. Is
A. 18
B. 20
C. 22
D. 26

Answer: C
2. nth term of $4+9+14+\ldots$ is
A. $5 n-1$
B. $4 \mathrm{n}-1$
C. $5 n+1$
D. $4 \mathrm{n}+1$

Answer: A

- Watch Video Solution

3. If the first term of an A.P is -1 and common difference is -3 , then 12 th term is
A. 34
B. 32
C. -32
D. -34

Answer: D

- Watch Video Solution

4. In an A.P, if first term is 4, 9th term is 20 , then 15 th term is
A. 16
B. 32
C. 18
D. 36

Answer: B

5. In an A.P, if 16 th term is 47 and 31 st term is 92 , then 27 th term is
A. 80
B. 120
C. 86
D. 116

Answer: A

- Watch Video Solution

6. If 10th term of an A.P is 15 and 15 th term is 10 , then 4 th term is
A. 24
B. 23
C. 22
D. 21

Answer: D

- Watch Video Solution

7. An employee got Rs. 300 per month in his 11 year serivce and got Rs. 495 per month in his 24th year service. If his monthly salary is in A.P., then what is his initial salary ? What is his incriment?
A. Rs. 200, Rs 10
B. Rs. 300, Rs 10
C. Rs. 150, Rs. 20
D. Rs.150, Rs. 15

Answer: D

8. The interior angles of a polygon are in A.P. if the smallest angle is 100° and the common difference is 4° then the number of sides is q
A. 5
B. 7
C. 36
D. 44

Answer: A

- Watch Video Solution

9. Which term of the A.P. $5,2,-1, .$. is -22 ?
A. 8
B. 9
C. 10
D. 11

Answer: C

- Watch Video Solution

10. Which term of $11+9+7+\ldots$. Is -13
A. 13
B. 12
C. 5
D. 11

Answer: A

Watch Video Solution
11. The number of numbers that are divisible by 9 between 1,1000 is
A. 101
B. 110
C. 111
D. 100

Answer: C

- Watch Video Solution

12. The number of numbers which are divisible by 7 between 100 and 1000 is
A. 7
B. 128
C. 132
D. 127

Answer: B

13. Sum of 20 terms of $3+5+7+9+\ldots$...is
A. 410
B. 440
C. 460
D. 220

Answer: B

14. Sum of first 15 terms of $2+5+8+\ldots .$. . Is
A. 44
B. 42
C. 345
D. 386

Answer: C

- Watch Video Solution

15. How many terms are to be added to make the sum 52 in the series (-8)
$+(-6)+(-4)+\ldots . .$.
A. 3
B. 13
C. 12
D. 31

Answer: B

- Watch Video Solution

16. How many terms are added in $24+20+16+$ \qquad to make the sum 72 ?
A. 6
B. 7
C. 8
D. 9

Answer: D

- Watch Video Solution

17. In an A.P., if common difference is 2 , sum to n terms is 49 , 7 th term is

13 , then $n=$
A. 0
B. 5
C. 7
D. 13

Answer: C

18. If the sum of the series $24,20,16 \ldots . .$. Is 60 then the number of terms is
A. 0
B. 3
C. 13
D. 25

Answer: B

- Watch Video Solution

19. IF 8 th term of an A.P. is 15 , then the sum of 15 terms is
A. 15
B. 0
C. 225
D. $225 / 2$

Answer: C

Watch Video Solution
20. If 10th term of an A.P is 13 , then the sum of 19 terms $=$
A. 26
B. 247
C. 352
D. 1496

Answer: B

- Watch Video Solution

21. If the sum of the first ten terms of an A.P is four times the sum of its five terms, the ratio of the first terms to the common difference is
A. 1:2
B. 2:1
C. 1: 4
D. $4: 1$

Answer: A

- Watch Video Solution

22. If the sum of the three numbers in A.P is 15 and their product is 45 , then the numbers are
A. 1,5,9
B. 1,6,10
C. 2,5,8

D. 3,3,5

Answer: A

- Watch Video Solution

23. If the sum of three numbers which are in A.P is 27 and the product of first and last is 77 , then the numbers are
A. 7,9,11
B. 6,9,12
C. 7,10,11
D. none

Answer: A

- Watch Video Solution

24. If the sum of three numbers which are in A.P is 15 and the sum of the squares of the extermes is 58 , then those numbers are
A. $3,5,7$
B. 2,5,8
C. $3,6,9$
D. none

Answer: A

- Watch Video Solution

25. If the sum of four numbers in A.P is 24 and the sum of their square is

164, then those numbers are
A. 3,5,7,9
B. 1,4,7,11
C. 3,4,5,6

D. none

Answer: A

- Watch Video Solution

26. Let T_{r} be the rth term of an A.P, for $r=1,2 \ldots$... If for some positive integers m and n, we have $T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, the $T_{m n}=$
A. $-1 / m n$
B. $1 / m+1 / n$
C. 1
D. 0

Answer: C

27. If a and x are positive integers such that $x<a$ and $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are in A.P , then least possible value of a is
A. 5
B. 7
C. 11
D. none of these

Answer: A

- Watch Video Solution

28. If the length of sides of right angled triangle are in A.P., then the sines of the acute angles are
A. $3 / 5,4 / 5$
B. $\sqrt{2 / 3}, \sqrt{1 / 3}$
C. $\frac{\sqrt{5-1}}{2}, \frac{\sqrt{5+1}}{2}$
D. $\frac{\sqrt{3-1}}{2}, \frac{\sqrt{3+1}}{2}$

Answer: A

- Watch Video Solution

29. If three positive real numbers a, b, c are in A.P such that $a b c=4$, then the minimum possible value of b is
A. $2^{3 / 2}$
B. $2^{2 / 3}$
C. $2^{1 / 3}$
D. $2^{5 / 2}$

Answer: B

30. If $\log _{5} 2, \log _{5}\left(2^{x}-5\right) \log _{5}\left(2^{x}-7 / 2\right)$ are in A.P ., then $\mathrm{x}=$
A. $1 / 2$ or $3 / 2$
B. 3
C. 4 or 5
D. 8

Answer: B

- Watch Video Solution

31. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$ are in A.P. such that
$a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$, then
$a_{1}+a_{2}+a_{3}+\ldots \ldots . a_{23}+a_{24}=$
A. 909
B. 75
C. 750
D. 900

Answer: D

- Watch Video Solution

32. Four numbers are in arithmetic progression. The sum of first and last terms in 8 and the product of both middle terms is 15 . the least number of the series is
A. 4
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

33. The ratio of the sums of m arithmatic means and n arithmatic means between two numbers is
A. $m: n$
B. $n: m$
C. $2 m-1: 2 n-1$
D. none

Answer: A

- Watch Video Solution

34. Between 1 and 31 are inserted m arithmetic means, so that the ratio of the 7 th and $(m-1)$ th means is $5: 9$. then the value of m is
A. 12
B. 13
C. 14

D. 15

Answer: C

- Watch Video Solution

35. If $a_{1}, a_{2} \ldots \ldots \ldots a_{n}$ are in A.P with common difference $\mathrm{d} \neq 0$, then
sum of the series
\sin
$\left[\sec a_{1} \sec a_{2}+\sec a_{2} \sec a_{3}+\ldots .+\sec a_{n-1} \sec a_{n}\right]$
A. $\tan a_{n}-\tan a_{1}$
B. $\cot a_{n}-\cot _{a}$,
C. $\sec a_{n}-\sec a_{1}$
D. $\operatorname{cosec} a_{n}-\operatorname{cosed} a$

Answer: A

- Watch Video Solution

36. Value of $\operatorname{Lim}_{n \rightarrow \infty} \sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)$ is
A. $\pi / 2$
B. $\pi / 4$
C. 1
D. none of these

Answer: B

- Watch Video Solution

37. Given that n A.M.s are inserted between two sets of numbers $\mathrm{a}, 2 \mathrm{~b}$ and $2 \mathrm{a}, \mathrm{b}$ where $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Suppose further that the mth mean between these sets of numbers is same. Then the ratio $a: b=$ A. $n-m+1: m$
B. $\mathrm{n}-\mathrm{m}+1$: n
C. $\mathrm{n}: \mathrm{n}-\mathrm{m}+1$
```
D. m:n-m + 1
```


Answer: D

- Watch Video Solution

38. If pth, q th, rth terms of an A.P are a, b, c then $a(q-r)+b(r-p)+c(p-q)$
$=$
A. 0
B. 1
C. $a+b+c$
D. $a b c$

Answer: A

39. If mth terms of an A.P. Is n and nth term is m, then $(m+n)$ th term is
A. 0
B. $m+n-p$
C. $m+n$
D. $m n /(m+n)$

Answer: A

- Watch Video Solution

40. If the mth term of an A.P is n and nth term is m, then p th term $=$
A. $m-n+p$
B. $n-m+p$
C. $m+n-p$
D. $m-n-p$

Answer: C

D Watch Video Solution

41. If 100 times the $100^{\text {th }}$ term of an A.P with non zero common different equals the 50 times its $50^{t h}$ term, then the $150^{t h}$ term of this AP is
A. 150
B. zero
C. -150
D. 150 times its $50^{\text {th }}$ term

Answer: B

- Watch Video Solution

42. If the sum of m terms of an A.P, is equal to the sum of n terms of the A.P ., then the sum of $(m+n)$ terms is
A. 0
B. $m+n-p$
C. $m^{2}-n^{2}+1$
D. $m^{2}+n^{2}-1$

Answer: A

- Watch Video Solution

> 43. If $a_{1}, a_{2} \ldots \ldots a_{n}$ $\frac{\sqrt{a_{1}}+\sqrt{a_{n}}}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{\sqrt{a_{1}}+\sqrt{a_{n}}}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots .+\frac{\text { in }}{\sqrt{a_{1}}+\sqrt{a_{n}}}=$
A. n
B. $\mathrm{n}+1$
C. $\mathrm{n}-1$
D. 0
44. If the ratio of sum of n terms in two A.P' s is $2 n: n+1$, then the ratio of 8 th terms is
A. $15: 8$
B. $8: 13$
C. 5: 17
D. none

Answer: A

- Watch Video Solution

45. The sum of n terms in two A.P's are in the ratio $3 n+1: n+4$, then the ratio of 4 th terms is
A. $13: 8$
B. $22: 11$
C. 27: 7
D. 13: 22

Answer: B

- Watch Video Solution

46. If S_{n} danotes the sum of n terms of n terms of an A.P. then
$S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}=$
A. 0
B. 1
C. 3
D. 2

Answer: A

47. The first term of an A.P of consecutive integers is $p^{2}+1$. The sum of $(2 p+1)$ terms of this series can be expressed as
A. $(p+1)^{2}$
B. $(2 p+1)(p+1)^{2}$
C. $(p+1)^{3}$
D. $p^{3}+(p+1)^{3}$

Answer: D

- Watch Video Solution

48. The numbers $3^{2 \sin 20-1}, 14,3^{4-2 \sin 20}$ form first three terms of an A.P. Its fifth term =
A. -25
B. -12
C. 40
D. 53

Answer: D

- Watch Video Solution

49. Arithmetic mean of $1 / 2 \& 1 / 3$ is
A. $5 / 6$
B. $5 / 12$
C. $12 / 5$
D. $6 / 5$

Answer: B

50. One of the four A,M's between 3,23 is
A. 6
B. 8
C. 15
D. 21

Answer: C

- Watch Video Solution

51. Sum of 4 Arithmetic means between 3 and 23 is
A. 52
B. 50
C. 48
D. 69

- Watch Video Solution

52. Sum of 14 A.M's between 5 and 8 is
A. $454 / 5$
B. $456 / 5$
C. 92
D. 91

Answer: D

- Watch Video Solution

53. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200, then the value of n is
A. 6
B. 8
C. 9
D. 10

Answer: B

(Watch Video Solution

54. If $1, \log _{y} x, \log _{z} y,-15 \log _{x} z$ are in A.P ., then
A. $z^{3}=x$
B. $x=y^{-1}$
C. $z^{-3}=y$
D. all of the above

Answer: A

55. If the common difference of an A.P is 1 and 6th term is $\left(4 \cos ^{2} \alpha+1\right) / \cos ^{2} \alpha$, then first term is
A. $\sec ^{2} \alpha$
B. $\tan ^{2} \alpha$
C. $\cot ^{2} \alpha$
D. $\cos e c^{2} \alpha$

Answer: B

- Watch Video Solution

56. If S_{1}, S_{2}, S_{3}, are the sums of first n natural numbers their squares and their cubes respectively, then $S_{3}\left(1+8 S_{1}\right)=$
A. S_{2}^{2}
B. $9 S_{2}$
C. $9 S_{2}^{2}$
D. none

Answer: C

- Watch Video Solution

57. Sum of n terms of $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots$. is
A. $n /(n+1)$
B. $(\mathrm{n}+1) / \mathrm{n}$
C. $n /(2 n+1)$
D. $(2 n+1) / n$

Answer: A

$$
\begin{array}{lcccc}
\text { 58. } & \text { Sum } & \text { of } & \text { the } & \text { series }
\end{array} \text { S } \quad \text { = }
$$

terms is
A. 110
B. 111
C. 115
D. 116

Answer: C

- Watch Video Solution

59.

$1^{2}+2^{2}+3^{2}+\ldots \cdot+2003^{2}=(2003)(4007)(334)$ and $(1)(2003)+(2)(21$
(3)(2001)+....+(2003)(1)=(2003)(334)(x), then $x=$
A. 2005
B. 2004
C. 2003
D. 2001

Answer: A

- Watch Video Solution

60. The value of the expression
$\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{2}}\right)+.$.
Where ω is an imaginary cube root of unity, is
A. $\frac{n\left(n^{2}+2\right)}{3}$
B. $\frac{n\left(n^{2}-2\right)}{3}$
C. $\frac{n\left(n^{2}+1\right)}{3}$
D. none of these
61. If 2 nd term of a G.p. is 24 and 5th terms is 81 then the first term is
A. 16
B. 18
C. 21
D. 12

Answer: A

62. If 6 th term of a G.P is $-1 / 32$ and 9 th term is $1 / 1256$, then 11 th term $=$
A. 1024
B. 1/1024
C. $1 / 256$
```
D. \(1 / 512\)
```


Answer: B

- Watch Video Solution

63. Which term of $0.004+0.02+0.1+\ldots .$. Is 12.5 ?
A. 5
B. 6
C. 7
D. 8

Answer: B

- Watch Video Solution

A. 6
B. 9
C. 12
D. 13

Answer: B

D Watch Video Solution

65. Sum of 20 terms of $3+6+12+\ldots$. Is
A. $3\left(3^{20}-1\right) / 2$
B. $3\left(2^{19}-1\right) / 2$
C. $3\left(2^{20}-1\right)$
D. $3\left(2^{19-1}\right)$

Answer: C

66. If n th term of series is $2^{n}+\mathrm{n}$, then sum of n terms $=$
A. $n\left(2^{n}-1\right)+n(n+1)$
B. $2\left(2^{n}-1\right) / 2+n(n+1) / 2$
C. $2\left(2^{n}-1\right)+n(n+1) / 2$
D. none

Answer: C

- Watch Video Solution

67. If 5th term of a G.P is 32 and common ratio 2 , then the sum of 14 terms is
A. 16388
B. 32766
C. 64432
D. none

Answer: B

- Watch Video Solution

68. How many terms of the series $1+3+9+\ldots$. Sum to 364 ?
A. 5
B. 6
C. 4
D. 3

Answer: B

- Watch Video Solution

69. If $(1-y)\left(1+2 \mathrm{x}+4 x^{2}+8 x^{3}+16 x^{4}+32 x^{5}\right)=1-y^{6},(y \neq 1)$, then a value of y / x is
A. $1 / 2$
B. 2
C. $1 / 4$
D. 4

Answer: B

- Watch Video Solution

70. In a geometric progression consisting of positive terms each term equals the sum of the next two terms. Then the common ratio of this progression equals
A. $\frac{1}{2}(1-\sqrt{5})$
B. $\frac{1}{2} \sqrt{5}$
C. $\sqrt{5}$
D. $\frac{1}{2}(\sqrt{5}-1)$

Answer: D

- Watch Video Solution

$71.1+(0.04)+(0.04)^{2}+\ldots \infty=$
A. 1
B. 0.04
C. 25/24
D. $24 / 25$

Answer: C

72. If $|\mathrm{x}|<1, y=x-x^{2}+x^{3}-x^{4}+\ldots$. , the value of x in terms of y is
A. $\frac{y}{y+1}$
B. $\frac{y}{y-1}$
C. $\frac{y}{1-y}$
D. $\frac{1-y}{y}$

Answer: C

- Watch Video Solution

73.

$$
x \quad=\quad 1 \quad+
$$

$$
+\quad a
$$

$$
a \quad+
$$

$a^{2}+\ldots \infty$

$$
y=1+b+b^{2}+\ldots \infty
$$

$$
|a|<1,|b|<1
$$

then $1+a b+a^{2} b^{2}+\ldots . . \infty=$
A. $\frac{x y}{x+y-1}$
B. $\frac{x+y-1}{x y}$
C. $\frac{x y}{x+y+1}$
D. $\frac{x+y+1}{x y}$

Answer: A

- Watch Video Solution

74. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$ where a,b,c are in A.P . And $|a|<1,|b|<1,|c|<$, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$, are in
A. G.P
B. A.P.
C. Arithmetic-Geometric Progression
D. H.P.

Answer: D

75. If $\exp \left\{\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots\right.\right.$. Upto $\left.\left.\infty\right) \log _{e} 2\right\}$ satisfies the equation $x^{2}-17 x+16=0$ then the value of $\frac{2 \cos x}{\sin x+2 \cos x}(0<x<\pi / 2)$ is
A. $1 / 2$
B. $3 / 2$
C. $5 / 1$
D. none of these

Answer: A

- Watch Video Solution

76. If exp $\left\{\left(\tan ^{2} x-\tan ^{4} x+\tan ^{8} x-\tan ^{6} x \ldots\right) \log _{e} 16\right\}, \quad 0$ $<x<\pi / 4$, satisfies the quadratic equation $x^{2}-3 x+2=0$, then value of $\cos ^{2} x+\cos ^{4} x$ is
A. $4 / 5$
B. $21 / 16$
C. $\frac{17}{11}$
D. $19 / 31$

Answer: B

- Watch Video Solution

77. For $0<x<\pi$ the values of x which satisfy the relation $9^{1+|\cos x|+\left|\cos ^{2} x\right|+\cos ^{3} x \mid+\ldots \text { upto } \infty}=3^{4}$ are given by
A. $\pi / 3,2 \pi / 3$
B. $\pi / 3,3 \pi / 4$
C. $\pi / 4,3 \pi / 4$
D. none of these

Answer: A

78.

$<x<\frac{\pi}{4}, \frac{\pi}{4}<y<\frac{\pi}{2}$ and $\sum_{k=0}^{\infty}(-1)^{k} \tan ^{2 k} x=p, \sum_{k=0}^{\infty}(-1)^{k} \cot ^{2 k} y$
then
$\sum_{k=0}^{\infty} \tan ^{2 k} x \cot ^{2 k} y$ is
A. $\frac{1}{p}+\frac{1}{q}-\frac{1}{p q}$
B. $\frac{1}{\frac{1}{p}+\frac{1}{q}-\frac{1}{p q}}$
C. $p+q-p q$
D. $p+q+p q$

Answer: B

79. The coefficient of x in $\left(x^{2}+\frac{c}{x}\right)^{5}$ is
B. 20
C. 6
D. none

Answer: A

D Watch Video Solution

80. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots .=x, \frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\ldots=y$, then
A. $x=y$
B. $2 x+4 y=4$
C. $x^{2}=y$
D. $x+y=0$

Answer: B

81. the sum to infinity of $\frac{1}{7}+\frac{2}{7^{2}}+\frac{1}{7^{3}}+\frac{2}{7^{4}}+\ldots$. is
A. $1 / 5$
B. $7 / 24$
C. $5 / 48$
D. $3 / 16$

Answer: D

- Watch Video Solution

82. The sum of an infinite G.P. is 2 . If the sum of their squares is $4 / 3$, then the third term is
A. $1 / 2$
B. 1
C. $1 / 4$
D. 10

Answer: A

- Watch Video Solution

83. The least value of n for which $1+2+2^{2}+\ldots$. to n terms is greater than 1000 is
A. 7
B. 8
C. 9
D. 10

Answer: D

84.

$\log _{2}+\log _{2}(\sqrt{x})+\log _{2}(4 \sqrt{x})+\log _{2}(8 \sqrt{x})+\log _{2}(16 \sqrt{x})+\ldots . .=4$ then $\mathrm{x}=$
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

85. If $(1+3+5+\ldots .+P)+(1+3+5+\ldots . \mathrm{Q})=(1+3+5+\ldots r)$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $p+q+r$, is
A. 12
B. 21
C. 45
D. 54

Answer: B

- Watch Video Solution

86. The greatest value on n so that $1+5+5^{2}+5^{3}+\ldots . N$ terms is less than 4321 is
A. 6
B. 7
C. 8
D. 9

Answer: A

$87.7+77+777+\ldots . \mathrm{N}$ terms $=$
A. $70\left(10^{n}-1\right) / 81-7 n / 9$
B. $7\left(10^{n}-1\right) / 81-7 n / 9$
C. $7\left(10^{n}-1\right)-7 n / 9$
D. none

Answer: A

Watch Video Solution

$88.6+66+666+\ldots . . n$ terms $=$
A. $20\left(10^{n}-1\right) / 27-2 n / 3$
B. $20\left(10^{n}-1\right) / 81-2 n / 9$
C. $60\left(10^{n}-1\right) / 27-2 n / 3$
D. none

- Watch Video Solution

89. The sum to n terms of the series $.5+.55+.555+\ldots .$. Is
A. $\frac{5 n}{9}-\frac{5}{81}\left(1-\frac{1}{10^{n}}\right)$
B. $\frac{5 n}{9}+\frac{5}{81}\left(1-\frac{1}{10^{n}}\right)$
C. $\frac{5 n}{9}-\frac{5}{81}\left(\frac{1}{10^{n}}-1\right)$
D. none

Answer: A

Watch Video Solution

$90.7+77+777+\ldots . . N$ terms $=$
A. $\frac{7 n}{9}-\frac{7}{81}\left(1-\frac{1}{10^{n}}\right)$
B. $\frac{7\left(10^{n}-1\right)}{9}-\frac{7 n}{81}$
c. $\frac{70\left(10^{n}-1\right)}{81}-\frac{7 n}{9}$
D. none

Answer: A

- Watch Video Solution

91. The sum of first 20 terms of the sequence $0.7,0.77,0.777, \ldots . .$. Is
A. $\frac{7}{81}\left(179+10^{-20}\right)$
B. $\frac{7}{9}\left(99+10^{-20}\right)$
C. $\frac{7}{81}\left(179-10^{-20}\right)$
D. $\frac{7}{9}\left(99-10^{-20}\right)$

Answer: A

92. The value of n for which $704+\frac{1}{2}(704)+\frac{1}{4}(704)+\ldots .$. Upto n terms $=1984-\frac{1}{2}(1984)+\frac{1}{4}(1984)$.... Upto n terms is
A. 5
B. 4
C. 4
D. 10

Answer: A

Watch Video Solution
93. The positive integer n for which $2.2^{2}+3.2^{3}+4.2^{4}+$ \qquad $2^{n}=2^{n+10}$ is
A. 510
B. 511
C. 512
D. 513

Answer: D

- Watch Video Solution

94. $(666 \ldots . \text { Ndigits })^{2}+(888$.... N digits $)=$
A. $\frac{4}{9}\left(10^{n}-1\right)$
B. $\frac{4}{9}\left(10^{2 n}-1\right)$
C. $\frac{4}{9}\left(10^{n}-1\right)^{2}$
D. none of these

Answer: B

- Watch Video Solution

95. If the sum of three numbers in a G.P is 26 and the sum of products two at a time is 156 , then the numbers are
A. $2,6,18$
B. 1,8,64
C. 1,5,25
D. 1,4,1

Answer: A

- Watch Video Solution

96.

If
0
$<\phi<\pi / 2$, and $x=\sum_{n=0}^{\infty} \cos ^{2 n} \phi, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and $z=\sum_{n=0}^{\infty} \cos ^{2 n} \phi$ then
A. $x y z=x z+y$
B. $x y z=x y+z$
C. $x y z=x+y+z$
D. $x y z=y z+z x$

Answer: A

- Watch Video Solution

97. If the sum of three numbers in G.P is 21 and their product is 216 , then the numbers are
A. $3,6,12$
B. $2,4,8$
C. $5,7,9$
D. none

Answer: A

98. If the sum of three numbers in G.P is $\frac{7}{64}$ and the product of the extremes is $\frac{1}{1024}$ then the numbers are
A. $\frac{1}{64}, \frac{1}{32}, \frac{1}{16}$
B. $16,32,64$
C. $\frac{1}{8}, \frac{1}{16}, \frac{1}{32}$
D. none

Answer: A

- Watch Video Solution

99. If pth, q th, r th terms of an A.P are a, b, c then $a(q-r)+b(r-p)+c(p-q)$
$=$
A. 0
B. 1
C. pqr
D. abc

Answer: A

- Watch Video Solution

100. Let $S_{1}, S_{2}, S_{3}, \ldots$. Are squares such that for each $n \geq 1$, The length of the side of S_{n} is equal to length of diagonal of S_{n+1}. If the length of the side S_{1} is 10 cm then for what value of n , the area of S_{n} is less than 1 sq.cm.
A. 7
B. 8
C. 9
D. 10

Answer: B

101. In G.P $(p+q)$ th term is $m,(p-q)$ th term is n, then p th terms is
A. nm
B. $\sqrt{n m}$
C. m / n
D. $\sqrt{m / n}$

Answer: B

- Watch Video Solution

102. If 2 pth term of a G.P is q^{2} and $2 q$ th term is P^{2}, then $(p+q)$ th term is
A. 0
B. 1
C. $p+q$
D. $p q$

D Watch Video Solution

103. If g_{1}, g_{2}, g_{3} are three geometric means between two positive numbers a, b then $g_{1} g_{3}=$
A. g_{2}
B. g_{2}^{2}
C. $2 g_{2}$
D. $2 g_{2}^{2}$

Answer: B

D Watch Video Solution

104. What is the G.M. of 6 and 24 ?
A. 12
B. 15
C. 13
D. 30

Answer: A

D Watch Video Solution

105. One of the 5 geometric means between $\frac{1}{3}$ and 243 is
A. 79
B. 80
C. 81
D. 82

Answer: C

106. If x, y, z are the three geometric means between 6,54 , then $z=$
A. $9 \sqrt{3}$
B. 18
C. $18 \sqrt{3}$
D. 27

Answer: C

- Watch Video Solution

107. IF the A.M and G.M of two numbers are 13 and 12 respectively. Find the numbers.
A. 8,12
B. 8,18
C. 10,18

D. 12,18

Answer: B

- Watch Video Solution

108. Let x be the arithmetic mean y, z be the two geometric means
between any two positive numbers. Then value of $\frac{y^{3}+z^{3}}{x y z}$ is
A. 2
B. 3
C. $1 / 2$
D. $3 / 2$

Answer: A

109. 10th term of the hearmenie progression is $\frac{2}{1}+2 \frac{1}{2}+3 \frac{1}{3}+$ is
A. $2 / 5$
B. $-5 / 2$
C. $5 / 2$
D. $-2 / 5$

Answer: B

- Watch Video Solution

110. If the fourth term of a $H \cdot P$ is $1 / 3$ and 7 th term is $1 / 4$, then 16 th term is
A. $1 / 5$
B. $1 / 6$
C. $1 / 7$
D. $1 / 8$

Answer: C

- Watch Video Solution

111. If the third and seventh terms of a H.P. are $1 / 7,1 / 15$ respectively, then nth term is
A. $2 n+1$
B. $1 /(2 n+1)$
C. $2 \mathrm{n}-1$
D. $1 /(2 n-1)$

Answer: B

- Watch Video Solution

112. If m th terms of H.P is n and nth term is m, then $(m+n)$ th term is
A. 0
B. 1
C. -1
D. $\frac{m n}{m+n}$

Answer: D

- Watch Video Solution

113. If a, b, c are in H.P and $a b+b c c a=15$, then $c a=$
A. 5
B. 7
C. 9
D. 10

Answer: A

114. If $a_{1}, a_{2}, \ldots a_{n}$ are $a_{1} \cdot a_{2}+a_{2} \cdot a_{3}+a_{3} \cdot a_{4}+\ldots+a_{n-1} \cdot a_{n}=$ in H.P. then
A. $n a_{1} a_{n}$
B. $(n-1) a_{1} a_{n}$
C. $n\left(a_{1}-a_{n}\right)$
D. $(n-1)\left(a_{1}-a_{n}\right)$

Answer: B

Watch Video Solution

115. The cotangents of the angles $\pi / 3, \pi / 4, \pi / 6$ are in
A. A.P.
B. G.P
C. H.P

D. A.G.P

Answer: B

- Watch Video Solution

116. If three are four harmonic means between $1 / 12,1 / 42$, then the third harmonic mean is
A. $1 / 8$
B. $1 / 24$
C. $1 / 30$
D. $1 / 36$

Answer: C

117. Two harmonic means between $1 / 2,4 / 17$ are
A. $4 / 11,2 / 7$
B. $11 / 4,7 / 2$
C. 4/7,2/11
D. 7/4,11/2

Answer: A

- Watch Video Solution

118. H_{1}, H_{2} are 2 H.M.'s between a,b then $\frac{H_{1}+H_{2}}{H_{1} \cdot H_{2}}=$
A. $\frac{a . b}{a+b}$
B. $\frac{a+b}{a b}$
C. $\frac{a-b}{a b}$
D. $\frac{a b}{a-b}$

Answer: B

D Watch Video Solution

119. Let $a_{1}, a_{2}, \ldots, a_{10}$ be in A.P and $h_{1}, h_{2}, \ldots, h_{10}$ be I H.P if $a_{1}=h_{1}=$ 2 and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is
A. 2
B. 3
C. 5
D. 6

Answer: D

D Watch Video Solution

120. If the arthimetic mean between a and b is $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$, then $\mathrm{n}=$
A. 0
B. 1
C. -1
D. $1 / 2$

Answer: A

- Watch Video Solution

121. If the geometic mean between a and b is $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$, then n
A. 0
B. $1 / 2$
C. $-1 / 2$
D. $1 / 2$

Answer: C

122. If the harmonic mean between a and b is $\frac{a^{n+1}+b^{n-1}}{a^{n}+b^{n}}$, then $\mathrm{n}=$
A. 0
B. -1
C. $-1 / 2$
D. 1

Answer: B

D Watch Video Solution

123. x, y are two real numbers. If A is half of their sum, G is root of their product and H is average of their reciprocls then
A. A.H $=G^{2}$
B. $G=A . H$
C. $\mathrm{A}=H G^{2}$
D. $A=G+H$

Answer: A

- Watch Video Solution

124. If the first and $(2 n+1)$ th terms of an A.P. , G.P. and H.P. are equal and their $(n+1)$ th terms are a, b and c respectively, then
A. $a>b>c$
B. $a c=b^{2}$
C. $a+b=c$
D. none of these

Answer: B

- Watch Video Solution

125. If $H_{1}, H_{2}, \ldots . H_{n}$ are n harmonic means between a and $\mathrm{b}(\neq \mathrm{a})$, then the value of $\frac{H_{1}+a}{H_{1}-a}+\frac{H_{n}+b}{H_{n}-b}$
A. $n+1$
B. n-1
C. 2 n
D. $2 \mathrm{n}+3$

Answer: C

- Watch Video Solution

126. The harmonic mean of two numbers is 4 their arithmetic mean is A and geometric mean is G . if G satisfies $2 \mathrm{~A}+G^{2}=27$, the numbers are
A. 1,13
B. 9,12
C. 3,6
D. 4,8

Answer: C

- Watch Video Solution

127. The ratio of the harmonic mean to the geometric mean of two positive numbers is $12 / 13$. the numbers are in the ratio
A. $12 / 13$
B. $13 / 12$
C. $4 / 3$
D. $4 / 9$

Answer: D

- Watch Video Solution

128. If $b+c, c+a, a+b$ are in A.P then a, b, c are in
A. A.P
B. G.P
C. H.P
D. none

Answer: A

- Watch Video Solution

129. If a^{2}, b^{2}, c^{2} are in A.P., then $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in
A. A.P
B. G.P
C. H.P
D. none of these

- Watch Video Solution

130. IF the roots of $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal then a, b,c are in
A. A.P
B. G.P
C. H.P
D. none

Answer: A

- Watch Video Solution

131. IF the roots of $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal then a, b, c are in
A. A.P
B. G.P
C. H.P
D. none

Answer: C

- Watch Video Solution

132. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then $a / c, b / a$ and c / b are in
A. Geometric Progression
B. Harmonic Progression
C. Arithmetic-Geometric Progression
D. Arithmetic Progression

D Watch Video Solution

133. If the system of linear equations $x+2 a y+a z=0, x+3 b y+b z=0, x+4 c h+c z=0$ has a non zero solution then $\mathrm{a}, \mathrm{b}, \mathrm{c}$
A. are in G.P.
B. are in H.P
C. Satisfy $a+2 b+3 c=0$
D. are in A.P.

Answer: B

134. Let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and a, b, c are in A.P., then $f^{\prime}(a), f^{\prime}(c)$ are in
A. G.P
B. H.P
C. A.G.P
D. A.P

Answer: D

- Watch Video Solution

135. If $\mathrm{x}>1, y>1, z>1$ are in G.P then

$$
\frac{1}{1+\log x}, \frac{1}{1+\log y}, \frac{1}{1+\log z} \text { are in }
$$

A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

136. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then a ,b ,c ,d are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

137. If $a^{x}=b^{y}=c^{z}=d^{t}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c} \mathrm{d}$ are in G.P. Then $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

D Watch Video Solution

138. If a, b and c are in G.P then $\frac{b-a}{b-c}+\frac{b+a}{b+c}$
A. $b^{2}-c^{2}$
B. ac
C. $a b$
D. 0

Answer: D

139. If a, b, c are unequal numbers such that a, b, c are in A.P and $b-a, c-b, a$ are in G.P., then $a: b: c$ is
A. $1: 2: 3$
B. 1:3:5
C. 2:3:4
D. 1:2:4

Answer: A

Watch Video Solution

140. If $2(y-a)$ is the H.M between $y-x$ and $y-z$, then $x-a, y-a, z-a$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

141. Suppose a, b, c are positive resl numbers different from 1. If $\log _{a} 100,2 \log _{b} 10,2 \log _{c} 5+\log _{c} 4$ are in H.P., then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: B
142. If $\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}$ are in H.P., then
A. a^{2}, b^{2}, c^{2} are in G.P
B. a^{2}, b^{2}, c^{2} are in H.P
C. $b+c, c+a, a+b$ are in A.P
D. $\frac{1}{b+c} \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P

Answer: D

- Watch Video Solution

143. If $b+c, c+a, a+b$ are in H.P then
A. a, b, c are in A.P
B. a^{2}, b^{2}, c^{2} are H.P
C. a^{2}, b^{2}, c^{2} are in A.P
D. a^{2}, b^{2}, c^{2} are in G.P

Answer: C

D Watch Video Solution

144. If $a, 8, b$ are in A.P, $a, 4, b$ are in G.P, a, x, b are in H.P then $x=$
A. 2
B. 1
C. 4
D. 16

Answer: A

Watch Video Solution

145. Three positive numbers form an increasing G.P. if the middle term in this G.P is doubled, the new numbers are in A.P then the common ratio of the G.P. is
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\sqrt{2}+\sqrt{3}$
D. $3+\sqrt{2}$

Answer: B

D Watch Video Solution

146. If a, b, c are real
A. $a=b=c$
B. $2 b=3 a+c$
C. $b^{2}=\sqrt{a c / 8}$
D. none of these

Answer: A

147. If p, q, r are three positive real numbers then the value of $(p+q)(q+r)$ $(r+p)$ is
A. $>8 \mathrm{pqr}$
B. $<8 \mathrm{pqr}$
C. $8 p q r$
D. $8(p+q+r)$

Answer: A

- Watch Video Solution

148. Suppose $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P and a^{2}, b^{2}, c^{2} are in G.P if a $<b<c$ and $\mathrm{a}+$ $b+c=3 / 2$ then the value of a is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{1}{2}-\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}-\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

149. If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$ then $I_{2}+I_{4}, I_{3}+I_{5}, I_{4}+I_{6} \ldots$. are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C
150. If a,b,c are in A.P., p,q,r are in H.P and ap, bq, cr are in G.P., then $\frac{p}{r}+\frac{r}{p}=$
A. $\frac{a}{c}+\frac{c}{a}$
B. $\frac{a}{c}-\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{a}{p}$

Answer: A

- Watch Video Solution

151. If a $\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P., then
A. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P.
B. a, b, care in H.P
C. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P
D. a,b,c are in A.P

Answer: D

- Watch Video Solution

152. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point and that point is
A. $(-1,-2)$
B. $(-1,2)$
C. $(1,-2)$
D. $(1,-1 / 2)$

Answer: C

- Watch Video Solution

153. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P., then
A. $6 x=3 y=2 z$
B. $6 x=4 y=3 z$
C. $x=y=z$
D. $2 x=3 y=6 z$

Answer: C

- Watch Video Solution

154. The sum of the series $1+\frac{5}{2}+\frac{9}{4}+\frac{13}{8}+\ldots$. is
A. $\frac{1003}{256}$
B. $\frac{997}{256}$
C. $\frac{1003}{128}$
D. $\frac{997}{128}$

D Watch Video Solution

155. The sum of the series $1+\frac{5}{2}+\frac{9}{4}+\frac{13}{8}+\ldots$. is
A. 8
B. 9
C. 10
D. 11

Answer: C

Watch Video Solution
156. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$,
then k is equal to
A. 100
B. 110
C. $\frac{121}{10}$
D. $\frac{441}{100}$

Answer: A

- Watch Video Solution

