© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

THE PLANE

Solved Examples

1. If $(2,3,-1)$ is the foot of the perpendicular from $(4,2,1)$ to a plane, the equation of the plane is
A. $2 x-y-2 z-3=0$
B. $2 x+y-2 z-9=0$
C. $2 x+y+2 z-5=0$
D. $2 x-y+2 z+1=0$
2. The point which is equidistant from $A(3,4,-1)$ and $B(1,-2,5)$ on y-axis is
A. $(0,1,0)$
B. $(0,1 / 3,0)$
C. $(0,-1 / 3,0)$
D. $(0,-5 / 3,0)$

Answer: C

- Watch Video Solution

3. Find the ratio in which the plane $2 x-3 y+6 z=5$ divides the line joining $(2,3,-1),(-1,4,1)$.
A. $(5,2,0)$
B. $(5,4,-4)$
C. $(-3,-1,-6)$
D. $(10,-15,12)$

Answer: B

- Watch Video Solution

4. Find the coordinates of the point at which yz plane intersects the line segment joining the points $(-2,3,7)$ and $(6,-1,2)$.
A. $(0,2,23 / 4)$
B. $(0,2,33 / 4)$
C. $(0,1,23 / 4)$
D. $(0,1,33 / 4)$

Answer: A

5. The equation of the plane which is parallel to x-axis and making intercepts 3 and 8 on y and z-axes respectively is
A. $3 y+8 z=24$
B. $3 y-8 z=24$
C. $8 y-3 z=24$
D. $8 y+3 z=24$

Answer: D

- Watch Video Solution

6. If $\lambda x+4 y+5 z=7,4 x+4 \lambda y+10 z-14=0$ represent the same plane the value of $\lambda=$
A. 1
B. 2
C. 0
D. 3

Answer: B

- Watch Video Solution

7. The angle between the planes $2 x+y+z=3, x-y+2 z=5$ is
A. $\pi / 2$
B. $\pi / 6$
C. $3 \pi / 4$
D. $\pi / 3$

Answer: D

8. The equation of the plane passing through the points ($2,1,-1$). ($1,1,1$), $(3,3,0)$ is
A. $4 x-3 y+2 z-3=0$
B. $4 x-4 z+1=0$
C. $4 x+3 y-2 z+8=0$
D. $4 x-3 y+5 z-16=0$

Answer: A

- Watch Video Solution

9. The equation of the plane through the point $(-1,6,2)$ and perpendicular to the planes $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$ is
A. $2 x-3 y+2 z+15=0$
B. $4 x+y-3 z-26=0$
C. $2 x-4 y+3 z+8=0$
D. $3 x+5 y-2 z+12=0$

Answer: C

- Watch Video Solution

10. The equation of the plane through the line of intersection of the planes $x+y+z-6=0,2 x+3 y+4 z+5=0$ and the point $(1,1,1)$ is
A. $7 x-9 y+8 z=0$
B. $7 x+y+8 z=0$
C. $2 x-2 y-3 z=14$
D. $20 x+23 y+26 z-69=0$

Answer: D

- Watch Video Solution

11. A plane passing through $(1,2,3)$ and whose normal makes equal angles with the coordinate axes is
A. $x+y+z-6=0$
B. $2 x+y-z+11=0$
C. $x-y+2+6=0$
D. $x+y+z-5=0$

Answer: A

- Watch Video Solution

12. A tetrahedron has vertices $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then the angle between the faces $O A B$ and $A B C$ is
A. $\cos ^{-1}\left(\frac{\sqrt{3}}{35}\right)$
B. $\cos ^{-1}\left(\frac{21}{35}\right)$
C. $\cos ^{-1}\left(\frac{9}{35}\right)$
D. $\cos ^{-1}\left(\frac{\sqrt{35}}{3}\right)$

Answer: A

- Watch Video Solution

13. R is the set of real numbers. If $a^{2}+b^{2}+c^{2} \neq a b+b c+c a$ and $a+b+c \neq 0$ then the set of points satisfying the equations ax+by+z=0, $b x+b y+a z=0, c x+a y+b z=0$ is
A. $R \times R \times R$
B. $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
C. $R \times R \times[0]$
D. $R \times[0] \times R$

Answer: B

14. The plane $x=0, x=a, y=0, y=a, z=$ and $z=a$ from a
A. Parallelopiped
B. Rectangular parallelopiped with distinct edges
C. Cube
D. Tetrahedron

Answer: C

- Watch Video Solution

15. A tetrahedron has vertices $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then the angle between the faces $O A B$ and $A B C$ is
A. 90°
B. $\cos ^{-1}\left(\frac{19}{35}\right)$
C. $\cos ^{-1}\left(\frac{17}{31}\right)$
D. 30°

Answer: B

- Watch Video Solution

Excerise 1

1. The projection of the line segment joining the origin and the point P (5,

2,4) on the line whose d.c.'s are $\left(\frac{2}{7},-\frac{3}{7}, \frac{6}{7}\right)$ is
A. $6 x-2 y-3 z=35$
B. $6 x+2 y-3 z=50$
C. $3 x-12 y+4 z=26$
D. $2 x+y+z=3 \sqrt{11}$

Answer: A

2. If $(2,4,-3)$ is the foot of the perpendicular drawn from the origin to a plane then the equation of the plane is
A. $2 x+4 y-3 z-29=0$
B. $2 x+4 y-3 z-39=0$
C. $2 x+4 y+3 z+29=0$
D. $5 x+6 y-3 z-29=0$

Answer: A

- Watch Video Solution

3. If the foot of the perpendicular from $(0,0,0)$ to a plane is $(1,2,2)$, then the equation of the plane is

$$
\text { A. }-x+2 y+8 z-9=0
$$

B. $x+2 y+2 z-9=0$
C. $x+y+z-5=0$
D. $x+2 y-3 z+1=0$

Answer: B

- Watch Video Solution

4. If the foot of the perpendicular from $(0,0,0)$ to a plane is $(1,2,3)$, then the equation of the plane is
A. $2 x+y+3 z=14$
B. $x+2 y+3 z=14$
C. $x+2 y+3 z+14=0$
D. $x+2 y-3 z=14$

Answer: B

5. The foot of the perpendicular from $(1,3,4)$ to $2 x-y+z+3=0$ is
A. $(1,-4,3)$
B. $(-1,4,3)$
C. $(0,3,0)$
D. $(1,2,3)$

Answer: B

- Watch Video Solution

6. The foot of the perpendicular from $(0,0,0)$ to $3 x+4 y-6 z=0$ is
A. $(3,4,-6)$
B. (0,4-6)
C. $(3,0,-6)$
D. $(0,0,0)$

- Watch Video Solution

7. The image of $(1,3,4)$ in the plane $2 x-y+z+3=0)$ is
A. $(3,-5,2)$
B. $(3,5,-2)$
C. $(-3,5,2)$
D. $(3,5,2)$

Answer: C

8. The image of the point $(3,2,1)$ in the plane $2 x-y+3 z=7$ is:
A. $(1,2,3)$
B. $(2,3,1)$
C. $(3,2,1)$
D. $(2,1,3)$

Answer: C

- Watch Video Solution

9. The image of the point $(-1,3,4)$ in the plane $x-2 y=0$ is
A. $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
B. $\left(\frac{9}{5},-\frac{14}{5}, 4\right)$
C. $\left(-\frac{17}{3},-\frac{19}{3}, 4\right)$
D. $(15,11,4)$

Answer: B

10. The d.c.'s of the normal to the plane $2 x+3 y-6 z+5=0$ are
A. $(3,-2,6)$
B. $\left(\frac{2}{7}, \frac{3}{7},-\frac{6}{7}\right)$
C. $\left(\frac{3}{7},-\frac{2}{7}, \frac{6}{7}\right)$
D. $\left(\frac{1}{2},-\frac{1}{3}, 1\right)$

Answer: B

- Watch Video Solution

11. The perpendicular distance from the origin to the plane $x-2 y+2 z-9=$ 0 is
A. 3
B. 6
C. 4
D. 2

D Watch Video Solution

12. The perpendicular distance from the point $(-2,3,1)$ to the plane $2 x-3 y$
$-6 z+5=0$ is
A. $\sqrt{14}$
B. $1 \sqrt{14}$
C. $5 \sqrt{14}$
D. 2

Answer: D

- Watch Video Solution

13. The normal form of $2 x-2 y+z=5$ is
A. $12 x-4 y+3 z=39$
В. $-\frac{6}{7} x+\frac{2}{7} y+\frac{3}{7} z=1$
C. $\frac{12}{13} x-\frac{4}{13} y+\frac{3}{13} z=3$
D. $\frac{2}{3} x-\frac{2}{3} y+\frac{1}{3} z=\frac{5}{3}$

Answer: D

- Watch Video Solution

14. The equation of the plane passing through ($3,4,-2$) and whose normal has the d.r.'s $(2,3,4)$ is
A. $3 x+4 y+5 z+20=0$
B. $3 x+4 y+5 z-20=0$
C. $x-2 y-3 z+20=0$
D. $2 x-3 y+4 z+14=0$
15. A plane passing through (-1,2,3) and whose normal makes equal angles with the coordinate axes is
A. $x+y+z+4=0$
B. $x-y+z+4=0$
C. $x+y+z-4=0$
D. $x+y+z=0$

Answer: C

- Watch Video Solution

16. A plane passes through $(2,3,-1)$ and is perpendicular to the line having direction ratios $3,-4,7$. The perpendicular distance from the origin to this plane is
A. $\frac{3}{\sqrt{74}}$
B. $\frac{5}{\sqrt{74}}$
C. $\frac{6}{\sqrt{74}}$
D. $\frac{13}{\sqrt{74}}$

Answer: D

- Watch Video Solution

17. A plane \prod passes through the point ($1,1,1$). If b, c, a are the direction ratios of a normal to the plane, where a, b, c (a
A. $29 x+31 y+3 z=63$
B. $23 x+29 y-29 z=23$
C. $23 x+29 y+3 z=55$
D. $31 x+27 y+3 z=71$

Answer: C

18. The equation of the plane which is at a distance of 5 unit from the origin and whose normal has the d.r.'s $(6,12,-4)$ is
A. $3 x+6 y-2 z=5$
B. $6 x+12 y-2 z=5$
C. $3 x+6 y-2 z=7$
D. $3 x+6 y-2 z=35$

Answer: D

- Watch Video Solution

19. The equation of the plane having intercepts $2,3,6$ is
A. $3 x+3 y+6 z=12$
B. $3 x+3 y-6 z=12$
C. $4 x+3 y-6 z=12$
D. $3 x+2 y+z=6$

Answer: D

- Watch Video Solution

20. The intercepts of the plane $2 x-3 y+5 z-30=0$ are
A. 15, - 10,6
B. 5, 10, 6
C. $1 / 8,-1 / 6,1 / 4$
D. $3,-4,6$

Answer: A

D Watch Video Solution

21. The intercepts form of $6 x-3 y-2 z+12=0$ is
A. $\frac{x}{-2}+\frac{y}{4}+\frac{z}{6}=1$
B. $\frac{x}{6}+\frac{y}{3}+\frac{z}{-2}=1$
C. $-\frac{2}{3} x+\frac{1}{3} y-\frac{2}{3} z=4$
D. $\frac{x}{-3}+\frac{y}{6}+\frac{z}{-3}=1$

Answer: A

- Watch Video Solution

22. The area of the triangle formed by $\frac{x}{4}+\frac{y}{3}-\frac{z}{2}=1$ with x -axis and y axis is is
A. 2
B. 3
C. 6
D. 12

- Watch Video Solution

23. If the areas of triangles formed by a plane with the positive $x, y, y, z, 2$, x axes respectively are $12,9,6$ sq. unit respectively then the equation of the plane is
A. $\frac{x}{4}+\frac{y}{6}+\frac{z}{3}=1$
B. $\frac{x}{6}+\frac{y}{3}+\frac{z}{4}=1$
C. $\frac{x}{3}+\frac{y}{4}+\frac{z}{6}=1$
D. $\frac{x}{3}+\frac{y}{6}+\frac{z}{4}=1$

Answer: A

- Watch Video Solution

24. If the plane $7 x+11 y+13 z=3003$ meets the coordinate axes in A, B, C then the centroid of the $\Delta \mathrm{ABC}$ is
A. $(143,91,77)$
B. $(143,77,91)$
C. $(91,143,77)$
D. $(143,66,91)$

Answer: A

- Watch Video Solution

25. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$.
A. $60^{\circ}, 120^{\circ}$
B. 60°
C. 120°
D. 90°

- Watch Video Solution

26. The angle between the planes $2 x+6 y+6 z=9,3 x+4 y-5 z=9$ is
A. $\pi / 2$
B. $2 \pi / 3$
C. $3 \pi / 4$
D. $5 \pi / 6$

Answer: A

Watch Video Solution
27. If the planes $2 x+3 y-z+5=0, x+2 y-k z+7=0$ are perpendicular then $\mathrm{k}=$
A. 4
B. 6
C. 8
D. -8

Answer: D

- Watch Video Solution

28. If the planes $2 x+3 y+4 z+7=0$ and $4 x+k y+8 z+1=0$ are parallel then $\mathrm{k}=$
A. 2
B. 4
C. 5
D. 6
29. The equation of the plane passing through the point $(1,2,-3)$ and parallel to the plane $2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}+5=0$ is
A. $2 x-3 y+z+7=0$
B. $2 x+3 y-z-7=0$
C. $2 x+3 y-z-9=0$
D. $2 x+3 y-z+9=0$

Answer: A

- Watch Video Solution

30. The equation of the plane passing through the point $(-1,2,4)$ and parallel to the plane $2 x+3 y-5 z+6=0$ is

$$
\text { A. } 2 x+3 y-z=0
$$

B. $2 x+3 y-z-7=0$
C. $2 x+3 y-2-9=0$
D. $2 x+3 y-5 z+16=0$

Answer: D

D Watch Video Solution

31. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-1=0$
B. $x-2 y+2 z+5=0$
C. $x-2 y+2 z-3=0$
D. $x-2 y+2 z+1=0$

Answer: C

32. The equation of the plane passing through the point $(1,2,3)$ and parallel to xy-plane is
A. $x+2=0$
B. $y-3=0$
C. $\mathrm{z}=3$
D. $x-2=0$

Answer: C

- Watch Video Solution

33. The equation of the plane passing through the point $(3,-6,9)$ and perpendicular to the x-axis is

$$
\text { A. } x+2=0
$$

B. $y-3=0$
C. $z-7=0$
D. $x-3=0$

Answer: D

- Watch Video Solution

34. In the space the equation by $+c z+d=0$ represents a plane perpendicular to the plane
A. YOZ
B. ZOX
C. XOY
D. $z=k$

Answer: A

35. Distance between to parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5$
$=0$ is
A. $\frac{7}{2}$
B. $\frac{9}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: A

- Watch Video Solution

36. The distance between the parallel planes $12 x-3 y+4 z-7=0,12 x-3 y$ $+4 z+6=0)$ is
A. 1
B. 2
C. $1 / 2$
D. 3

Answer: A

- Watch Video Solution

37. The planes $x= \pm a, y= \pm a, z= \pm a$ form a
A. parallelopiped
B. rectangular parallelopiped
C. cube
D. tetrahedron

Answer: B

- Watch Video Solution

38. The plane $x=0, x=a, y=0, y=a, z=$ and $z=a$ from a
A. parallelopiped
B. rectangular parallelopiped
C. cube
D. tetrahedron

Answer: C

- Watch Video Solution

39.

The
four
planes
$7 x+4 y-4 z+3=0,36 x-51 y+12 z+17=0,14 x+8 y-8 z-12=0$
are the four faces of a
A. parallelopiped
B. rectangular parallelopiped
C. cube
D. tetrahedron

D Watch Video Solution

40. The ratio in which the plane $2 x+3 y-2 z+7=0$ divides the line segment joining the points $(-1,2,3),(2,3,5)$ is
A. 3:5
B. 7: 5
C. 9: 11
D. 1: 2 externally

Answer: D

- Watch Video Solution

41. The ratio in which the line joining $(2,-4,3)$ and $(-4,5,-6)$ is divided by the plane $3 x+2 y+z-4=0$ is
A. $2: 1$
B. $4: 3$
C. $-1: 4$
D. 2: 3

Answer: C

- Watch Video Solution

42. For the plane $I I=4 x-3 y+2 z-3=0$, the points $A(-2,1,2)$ В $=(3,1,-2)^{\prime}$
A. lie on the same side of $\prod=0$
B. line on the opposite sides of $\prod=0$
C. lie on the normal to $\prod=0$
D. None
43. For the plane $\prod=4 x-3 y+2 z-3=0$, the points $\mathrm{A}=(-2,1,2), \mathrm{B}=$ $(3,1,-2) 1)$ lie on the same side of $\prod=0$
A. lie on the same side of $\prod=0$
B. line on the opposite sides of $\prod=0$
C. lie on the normal to $\prod=0$
D. None

Answer: B

- View Text Solution

44. For the plane $\prod=x+y+z-4=0$, the point $(1,2,3)$ lie in the
A. opposite to the origin side
B. origin side
C. plane
D. none

Answer: A

- View Text Solution

45. Which point lies on the origin side of the plane $2 x+3 y+4 z+7=0$?
A. $(1,2,-7)$
B. $(2,-3,1)$
C. $(1,1,-4)$
D. $(2,-1,-3)$

Answer: B

46. The direction ratios of a normal to the plane passing through $(0,0,1)$, $(0,1,2)$ and $(1,2,3)$ are
A. $(0,1,-1)$
B. $(1,0,-1)$
C. $(0,0,-1)$
D. $(1,0,0)$

Answer: A

- View Text Solution

47. The equation of the plane passing through the points ($1,2,1$), ($1,1,0$), (-$2,2,-1$) is
A. $2 x+3 y-3 z-5=0$
B. $2 x-3 y+2 z-11=0$
C. $4 x+3 y-2 z+8=0$
D. $2 x-3 y+5 z-16=0$

Answer: A

D Watch Video Solution

48. The equation of the plane passing through the points $(1,1,1),(1,-1,1)$, $(-7,-3,-5)$ is
A. $4 x-3 y+2 z+11=0$
B. $3 x-4 z+1=0$
C. $3 x+3 y-2 z+8=0$
D. $3 x-3 y+5 z-16=0$

Answer: B

49. If $A=(2,4,1), B(-1,0,1), C=(-1,4,2)$, then the distance of $(1,-2,1)$ from the plane $A B C$ is
A. $2 / 3$
B. $14 / 13$
C. $4 / 3$
D. 1

Answer: B

- Watch Video Solution

50. The distance from the plane passing through $(1,3,2),(-5,0,2),(1,1,-4)$ to the point $(2,3,4)$ is
A. 1 unit
B. 5 unit
C. 8 unit
D. 10 unit

Answer: A

- Watch Video Solution

51. The equation of the plane through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$ is
A. $x+16 y+11 z-7=0$
B. $x+16 y-11 z+37=0$
C. $x+y+z-2=0$
D. $3 x+4 y-5 z-9=0$

Answer: D

- Watch Video Solution

52. The equation of the plane passing through (1, - 2, 4), (3, -4,5) and perpendicular to $x y$-plane is
A. $x+y+1=0$
B. $y+2 x+6=0$
C. $y+2 z-6=0$
D. $3 y+2 z-2=0$

Answer: A

- View Text Solution

53. The equation of the plane passing through (1,-2, 4), (3, - 4,5) and parallel to x-axis is
A. $5 x+3 y=19$
B. $5 x+3 y+19=0$
C. $3 x+5 y=21$
D. $y+2 z-6=0$

Answer: D

- Watch Video Solution

54. The equation of the plane through the point $(-1,6,2)$ and perpendicular to the planes $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$ is
A. $2 x-4 y+3 z+20=0$
B. $2 x+y-3 z-26=0$
C. $2 x-4 y+3 z+23=0$
D. $2 x+5 y-2 z+12=0$

Answer: A

55. The equation of the perpendicular bisecting plane of the line segment joining $(-3,3,2),(9,5,4)$ is
A. $x-y+4 z-13=0$
B. $2 x-2 y+7 z-23=0$
C. $x-7 y+2 z-1=0$
D. $6 x+y+z-25=0$

Answer: D

- Watch Video Solution

56. The equation of the perpendicular bisecting plane of the line segment joining origin, $(4,6,-2)$ is
A. $2 x+3 y-z-14=0$
B. $2 x-2 y+7 z-23=0$
C. $3 x-7 y+2 z-1=0$
D. $x+y+z-4=0$

Answer: A

- Watch Video Solution

57. The plane $2 x+3 y+k z-7=0$ is parallel to the line whose d.r's are
$(2,-3,1)$ then $k=$
A. 5
B. 8
C. 1
D. 0

Answer: A

58. $P=(0,1,0), Q=(0,0,1)$ then projection of $\overline{P Q}$ on the plane $x+y+z=3$ is
A. 2
B. 3
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

59. A variable plane through a fixed point $(1,2,3)$ then the foot of the perpendicular from the origin to the plane lies on
A. a circle
B. a sphere
C. an ellipse
D. a parabola

Answer: B

- Watch Video Solution

60. The locus of the point whose distance from the origin is twice its distance from the plane $2 x+3 y-6 z=0$ is
A. $33 x^{2}-y^{2}-5 z^{2}-16 x y+112 x-56 y+196=0$
B. $4 x^{2}-y^{2}=49$
C. $33 x^{2}+13 y^{2}-95 z^{2}+144 y z+96 x z-48 x y=0$
D. $4 x^{2}+y^{2}=49$

Answer: C

61. The locus of a point for which the sum of the squares of the distances from the coordinate planes is 5 unit is
A. $x^{2}+y^{2}+z^{2}=7$
B. $x^{2}+y^{2}+z^{2}=5$
C. $x+y+z=\sqrt{5}$
D. $x^{2}+y^{2}+z^{2}=25$

Answer: A

- Watch Video Solution

62. The locus of the point such that the sum of the squares of its distances from the planes $x+y+z=0, x-y=0$ and $x+y-2 z=0$ is equal to the double of the square of its distance from the plane $x=z$ is
A. $x^{2}+x y=0$
B. $x^{2}+2 y z=0$
C. $y^{2}=z x$
D. $y^{2}+2 z x=0$

Answer: D

- View Text Solution

63. The locus of a point P whose distance from the plane $6 x-2 y+3 z+4=$ 0 is equal to its distance from the point $(-1,1,2)$ is
A. $5\left(x^{2}+y^{2}+z^{2}\right)+4(x y+2 y z-x z)-18(2 x-y+3 z)+126=0$
B. $8 x^{2}+5 y^{2}+5 z^{2}+4 x y+8 y z-4 z x-36 x+18 y-54 z+126=0$
C. $8 x^{2}+y^{2}+z^{2}+4(x y+2 y z-x z)+18(2 x-y+3 z)+126=0$
D.

$$
13 x^{2}+44 y^{2}+40 z^{2}+12 y z-36 x z+24 x y+50 x-82 y-220 z+278=
$$

Answer: D

64. If a plane meets the coordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point (p, q, r) then the equation of the plane is
A. $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=1$
B. $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=2$
C. $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$
D. $p x+q y+r z=3$

Answer: C

- View Text Solution

65. A plane meets the coordinate axes at A, B, C so that the centroid of the triangle $A B C$ is $(1,2,4)$ Then the equation of the plane is :
A. $x+2 y+4 z=12$
B. $4 x+2 y+z=12$
C. $x+2 y+4 z=3$
D. $4 x+2 y+z=3$

Answer: B

- Watch Video Solution

66. A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the triangle $A B C$ is
A. $x^{-2}+y^{-2}+z^{-2}=p^{-2}$
B. $z^{-2}+y^{-2}+z^{-2}=3 p^{-2}$
C. $x^{-2}+y^{-2}+z^{-2}=9 p^{-2}$
D. $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$

Answer: A

- Watch Video Solution

67. A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the triangle $A B C$ is
A. $x^{-2}+y^{-2}+z^{-2}=p^{-2}$
B. $z^{-2}+y^{-2}+z^{-2}=4 p^{-2}$
C. $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$
D. $x^{-2}+y^{-2}+z^{-2}=9 p^{-2}$

Answer: D

- Watch Video Solution

68. A variable plane is at a constant distance P from the origin and meets the axes in A, B and C. The locus of the centroid of tetrahedran $O A B C$ is

$$
\text { A. } x^{-2}+y^{-2}+z^{-2}=p^{-2}
$$

B. $z^{-2}+y^{-2}+z^{-2}=3 p^{-2}$
C. $x^{-2}+y^{-2}+z^{-2}=9 p^{-2}$
D. $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$

Answer: D

- Watch Video Solution

69. Two systems of rectangular axes have the same origin. If a plane cuts them at distances $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and a_{1}, b_{1}, c_{1} respectively from the origin, then $a^{-2}+b^{-2}+c^{-2}$
A. $a_{1}^{-2}+b_{1}^{-2}+c_{1}^{-2}$
B. $a^{2}+b^{2}+c^{2}$
C. $a^{-2}+b^{-2}+c^{-2}$
D. None

Answer: A

- View Text Solution

70. The equation of the plane which is parallel to y-axis and making intercepts of lengths 3 and 4 on x-axis and z-axis is
A. $2 x+2 z=20$
B. $4 x+3 z=12$
C. $4 x-3 z=12$
D. $6 x+13 z=15$

Answer: B

- Watch Video Solution

71. The point on x-axis with is equidistant to (2,-1-4), $(-4,3,0)$ is
A. $(0,0,0)$
B. $(-26 / 3,0,0)$
C. $(1,0,1)$
D. $(1,1,1)$

- Watch Video Solution

72. The plane passing through the points $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is parallel to
A. x-axis
B. y-axis
C. z-axis
D. none

Answer: B

- Watch Video Solution

73.

plane
determined
by the
points
$(-1,2,-2),(0,1,1)$ and $(1,1,2)$ passes through
A. $(1,1,0)$
B. $(-1,1,0)$
C. $(-1,0,1)$
D. $(1,0,-1)$

Answer: B

- Watch Video Solution

74. The equation of the plane through the line of intersection of the planes $x-3 y+2 z+3=0,3 x-y+2 z-5=0$ and the origin is
A. $7 x-4 y+8 z=0$
B. $7 x+y+8 z=0$
C. $2 x-2 y-3 z=14$
D. none
75. The equation of the plane through the line of intersection of the planes $x-2 y+3 z-1=0,2 x+y+z-2=0$ and the point $(1,2,3)$ is
A. $7 x-4 y+8 z=0$
B. $7 x+y+8 z=0$
C. $x+3 y-2 z-1=0$
D. none

Answer: C

- Watch Video Solution

76. The equation of the plane through the line of intersection of the planes $x+y+z-1=0,2 x+3 y+4 z-5=0$ and perpendicular to the plane is $x+y+z=0$ is
A. $7 x-y-6 z-17=0$
B. $x-y-6 z-27=0$
C. $7 x+y+6 z-27=0$
D. none

Answer: A

- Watch Video Solution

77. The equation of the plane through the line of intersection of the planes $2 x+3 y+4 z-7=0, x+y+z-1=0$ and perpendicular to the plane x $-5 y+3 z-2=0$) is
A. $7 x-y-6 z-17=0$
B. $x-y-6 z-27=0$
C. $x+2 y+3 z-6=0$
D. none

Answer: C

D View Text Solution

78. The equations to the plane through the line of intersection of $2 x+y+$ $3 z-2=0, x-y+z+4=0$ such that each plane is at a distance of 2 unit from the origin is
A. $x+y+2 z+13=0, x+y+z-3=0$
B. $2 x+y-2 z+3=0, x-2 y-2 z-3=0$
C. $15 x-12 y+16 z+50=0, x+2 y+2 z-6=0$
D. none

Answer: C

79. Equation of the bisector of the angle between the planes $x+2 y+2 z-9=0,4 x-3 y+12 z+13=0$
A. $25 x+17 y+62 z-78=0, x+35 y-10 z-156=0$
B. $15 \mathrm{x}-27 \mathrm{y}+2 \mathrm{z}-78=0, \mathrm{x}-5 \mathrm{y}-15 \mathrm{z}-15=0$
C. $50 x+70 y+62 z-80=0, x-35 y+10 z+15=0$
D. $y-1=0, x+z-3=0, y-1=0$

Answer: A

- Watch Video Solution

80. The equations of the bisectors of the angles between the planes $3 x-$ $6 y+2 z+5=0,4 x-12 y+3 z-3=0$ is
A. $25 x+17 y+62 z-78=0, x+35 y-10 z-156=0$
B. $15 x-27 y+2 z-78=0, x-5 y-15 z-15=0$
C. $67 x-162 y+47 z+44=0,11 x+6 y+5 z+86=0$
D. $y-1=0, x+z-3=0, y-1=0$

Answer: C

D Watch Video Solution

81. Find the equation of locus of point which lies on bisectors of angles between the co-ordinate axes.
A. $x-z=0, x+2 z=0$
B. $x-z+2=0$
C. $x+z=0, x-z=0$
D. $x+y=0, x-y=0$

Answer: C

82. The equations of bisectors of angles between $y z$-plane and $x z$-plane is
A. $x-z=0, x+2 z=0$
B. $x-z+2=0$
C. $x+z=0, x-z=0$
D. $x+y=0, x-y=0$

Answer: D

- View Text Solution

Exercise 2 Special Type Questions Set 1

1. I: The foot of the perpendicular from $(1,3,4)$ to $2 x-y+z+3=0$ is $(-1,4$,
3)

II: The image of $(1,3,4)$ in the plane $2 x-y+z+3=0$ is $(-3,5,2)$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: C

- Watch Video Solution

2. I: The equation of the plane passing through the point ($1,2,-3$) and parallel to the plane $2 x-3 y+z+5=0$ is $2 x-3 y+z+7=0$

II : The equation of the plane passing through the point ($1,2,3$) and parallel to $x y$-plane is $x+2=0$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

- Watch Video Solution

3. I: The equation of the plane through the points $(1,-2,2),(3,1,-2)$ and perpendicular to the plane $x+2 y-3 z=5$ is $x+16 y-11 z+37=0$

II : The equation of the plane passing through $(1,-2,4),(3,-4,5)$ and parallel to x-axis is $y+2 z-6=0$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: B

- View Text Solution

4. I: The equation of the perpendicular bisecting plane of the line segment joining $(-3,3,2),(9,5,4)$ is $x-7 y+2 z-1=0$

II : The equation of the plane passing through the points $(1,2,1),(1,1,0),(-$
$2,2,-1)$ is $2 x-3 y+2 z-11=0$
A. only I is true
B. only II is true
C. both I and II are true
D. neither I nor II are true

Answer: D

- View Text Solution

Exercise 2 Special Type Questions Set 2

1. If a, b, c are the intercepts of the plane $2 x+3 y+5 z-30=0$ on the coordinate axes respectively then the increasing order of a, b, c is
A. a, b, c
B. b, c, a
C. c, a, b
D. c, b, a

Answer: A

- View Text Solution

2. If the plane $a x+b y+c z=5$ passes through the points $(1,2,1),(1,1,0),(-$
$2,2,-1)$ then the decreasing order of a, b, c is
A. a, b, c
B. b, c, a
C. c, a, b
D. $\mathrm{c}, \mathrm{b}, \mathrm{a}$

Answer: C

3. The equation of the plane through the point $(-1,6,2)$ and perpendicular to the planes $x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$ is
A. a, b, c
B. b, c, a
C. c, a, b
D. $\mathrm{c}, \mathrm{b}, \mathrm{a}$

Answer: A

- Watch Video Solution

Exercise 2 Special Type Questions Set 3

1. Match the following

Pount and piane
I. $(1,3,4), 2 x-y+z+3=0$
II. $(7,14,5), 2 x+4 y-z=2$
III. $(0,0,0), 3 x+4 y-6 z=0$
IV. $(0,0,0), 3 x-5 y+8 z+98=0$
a) $(-3,5,-8)$

Foot of the perpendicular
b) $(-1,4,3)$
c) $(1,2,8)$
d) $(0,0,0)$
A. a, b, c, d
B. b, a, d, c
C. c, b, d, a
D. b, c, d, a

Answer: D

2. Match the following

Parallel planes
I. $12-3 y+4 z-7=0,12 x-3 y+4 z+6=0$
II. $4 x-4 y+2 z+5=0,2 x-2 y+z+3=0$
III. $2 x+3 y-6 z+5=0,2 x+3 y-6 z-9=0$
IV. $x+2 y+2 z-1=0, x+2 y+2 z+8=0$

Distance between the planes
a) 1
b) 2
c) 3
d) $1 / 6$
A. a, b, c, d
B. b, a, d, c
C. c, b, d, a
D. b, c, d, a

Answer: C

- View Text Solution

3. Match the following

Points
I. $(-3,3,2),(9,5,4)$
II. $(2,0,6),(-6,2,4)$

He $(0,0,0)(4,6,2)$
IV. $(1,3,4),(-3,5,2)$

Perpendicular bisecting plane
a) $2 x-y+z+3=0$
b) $6 x+y+z-25=0$
c) $4 x \quad y+4-+4-0$
d) $2 x+3 y-z \quad 14=0$
A. a, b, c, d
B. b, a, d, c
C. c, b, d, a
D. b, c, d, a

View Text Solution

4. Match the following

Point and plane
I. $(1,3,4), 2 x-y+z+3=0$

II $(7,14,5), 2 x+4 y-z=2$
III. $(0,0,0), 3 x+4 y \quad 6 z=0$
IV. $(0,0,0), 3 x-5 y+8 z+98=0$

Perpendicular distance
a) $\sqrt{6}$
b) $3 \sqrt{21}$
c) 0
d) $7 \sqrt{2}$
A. a, b, c, d
B. b, a, d, c
C. c, b, d, a
D. b, c, d, a

Answer: A

1. A: The equation of the plane passing through the point $(-1,2,4)$ and parallel to the plane $2 x+3 y-5 z+6=0$ is $2 x+3 y-5 z+16=0$.

R : The equation of the plane passing through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to the plane $a x+$ by $+c z \quad+d=0$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
A. both A and R are true and R is the correct explanation of A
B. both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- View Text Solution

2. A: The area of the triangle formed by $\frac{x}{4}+\frac{y}{3}-\frac{z}{2}=1$ with x-axis and y-axis is 6 .

R: The area of the triangle formed by $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ with x -axis and y axis is $\frac{1}{2}|b c|$
A. both A and R are true and R is the correct explanation of A
B. both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

- View Text Solution

3. A: The plane $2 x+3 y+5=0$ is parallel to x-axis.
R : The plane $a x+b y+c z+d=0$ is parallel to x-axis if $a=0$.
A. both A and R are true and R is the correct explanation of A
B. both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- View Text Solution

4. Statement-I : The point $A(3,1,6)$ is the miror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.

Statement-II : The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$
A. Statement-1 is true, statement-2 is true, statement-2 is a correct explanation for statement-1
B. Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1
C. Statement-1 is true, statement-2 is false.
D. Statement-1 is false, statement-2 is true.

Answer: B

- Watch Video Solution

