©゙doubtnut

MATHS

BOOKS - DEEPTI MATHS (TELUGU

ENGLISH)

TRANSFORMATION OF AXES

Solved Examples

1. The point to which the axes to be translated
to eliminate x and y terms in the equation
$3 x^{2}-4 x y-2 y^{2}-3 x-2 y-1=0$ is
A. $(-2,1)$
B. $(-4,3)$
C. $(-2,3)$
D. $(1 / 10,-3 / 5)$

Answer: D

D Watch Video Solution
2. The transformed equation of
$x^{2}+2 y^{2}+2 x-4 y+2=0$ when the axes
are translated to the point $(-1,1)$ is

$$
\begin{aligned}
& \text { A. } x^{2}+2 y^{2}=1 \\
& \text { B. } x^{2}+3 y^{2}=1 \\
& \text { C. } x^{2}-y^{2}+3=0 \\
& \text { D. } 4 x^{2}+9 y^{2}=36
\end{aligned}
$$

Answer: A
3. If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2}$
and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect at two distinct points, then
A. $(3 \sqrt{3},-5)$
B. $(-1,-5)$
C. $(5 \sqrt{3},-7)$
D. $(7-\sqrt{3})$

Answer: C

4. The angle of rotation of axes to remove xy
terms in the equation $9 x^{2}-2 \sqrt{3} x y+3 y^{2}=0$ is
A. $\pi / 12$
B. $\pi / 6$
C. $\pi / 3$
D. $5 \pi / 12$

Answer: D

5. The origin is shifted to (2,3) and then the axes are rotated through angle θ in the counter clock sense. If the equation
$3 x^{2}+2 x y+3 y^{2}-18 x-22 y+50=0 \quad$ is
transformed to $4 x^{2}+2 y^{2}-1=0$, then the angle $\theta=$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: C

D Watch Video Solution

Excersie 1

1. The coordinates of the point $(3,-5)$ in the new
system when the origin is shifted to $(-2,3)$
are
A. $(-5,8)$
B. $(5,-8)$

C. $(4,6)$

D. $(3,1)$

Answer: B

D Watch Video Solution

2. If $(7,5)$ are the coordinates of a point P in the new systems when the origin is shifted to $(-5,3)$, then the original coordinates of P are

$$
\text { A. }(-1,2)
$$

B. $(1,-5)$
C. $(2,8)$
D. $(4,1)$

Answer: C

- Watch Video Solution

3. If $(\cos \alpha, \cos \beta)$ are the new coordinats of a point P when the axes are translated to the point $(1,1)$ then the original coordinates of P are
A. $\left(2 \cos ^{2} \alpha / 2,2 \cos ^{2} \beta / 2\right)$
B. $\left(2 \sin ^{2} \alpha / 2,2 \sin ^{2} \beta / 2\right)$
C. $(2 \cos \alpha / 2,2 \cos \beta / 2)$
D. $(2 \sin \alpha / 2,2 \sin \beta / 2)$

Answer: A

D Watch Video Solution

4. If the point $(3,-2)$ is transformed to $(-2,1)$ which the origin is shifted to P , then $\mathrm{P}=$
A. $(3,2)$
B. $(5,-3)$
C. $(-1,2)$
D. $(1,-2)$

Answer: B

D Watch Video Solution

5. The point to which the origin should be shifted in order to eliminate x and y in the equation $x^{2}+y^{2}+8 x-6 y+25=0$ is
A. $(1,3)$
B. $(-4,3)$
C. $(-1,2)$
D. $(1,-2)$

Answer: B

D Watch Video Solution

6. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $4 x^{2}+9 y^{2}-8 x+36 y+4=0$ is
A. $(1,3)$
B. $(-4,3)$
C. $(-1,2)$
D. $(1,-2)$

Answer: D

D Watch Video Solution

7. The point to which the origin should be shifted in order to eliminate x and y in terms in the equation $x^{2}-y^{2}+2 x+4 y=0$ is
A. $(1,3)$
B. $(-4,3)$
C. $(-1,2)$
D. $(1,-2)$

Answer: C

8. In order to eliminate the first degrees terms
$2 x^{2}+4 x y+5 y^{2}-4 x-22 y+7=0, \quad$ the point to which origin is to be shifted is
A. $(1,-3)$
B. $(2,3)$
C. $(-2,3)$
D. $(1,3)$

Answer: C

- Watch Video Solution

9. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $2 x^{2}-3 y^{2}-12 x-6 y+5=0$ is
A. $(3,1)$
B. $(1,5)$
C. $(1,-5)$
D. $(3,-1)$

Answer: D
10. The point to which the origin should be shifted in order to eliminate x and y in the equation $2(x-5)^{2}+3(y+7)^{2}=10$ is
A. $(2,0)$
B. $(5,7)$
C. $(2,-1)$
D. $(2,-3)$

Answer: B
11. If the origin is shifted to the point $(2,-2)$, the equation to which the equation $(x-2)^{2}+(y+2)^{2}=9$ transformed is

$$
\text { A. } x^{2}+y^{2}=9
$$

$$
\text { B. } x^{2}+3 y^{2}=1
$$

$$
\text { C. } x^{2}+y^{2}-2 x+6 y=0
$$

$$
\text { D. } 4 x^{2}+9 y^{2}=36
$$

Answer: A

12. If the equation $x^{2}+y^{2}-4 x-6 y-12=0$
is transformed to $x^{2}+y^{2}=25$ when the axes are transmitted to a point then the new coordinates of $(-3,5)$ are
A. $(-1,7)$
B. $(-5,2)$
C. $(1,-7)$
D. $(5,-2)$

Answer: B
13. The point to which the axes are to translated to eliminate y term and constant term in the equation $y^{2}+8 x+4 y-2=0$ is
A. $(3,-2)$
B. $(3,-2 / 3)$
C. $(3 / 4,-2)$
D. $(2 / 3,-4)$

Answer: C
14. If the axes are translated to the circumcenter of the triangle formed by $(9,3)$,
$(-1,7),(-1,3)$, then the centroid of the triangle in
the new system is
A. $(5,5 / 3)$
B. $(4,3)$
C. $(-5 / 3,-2 / 3)$
D. $(0,0)$

- Watch Video Solution

15. The transformed equation of $x y+2 x-5 y-11=0$
when the origin is shifted to the point $(5,-2)$ is
A. $x y=1$
B. $6 x^{2}+5 x y-6 y^{2}=0$
C. $2 x^{2}+4 x y+5 y^{2}=22$
D. $5 x^{2}+4 x y+8 y^{2}=9$

Answer: A
16. The transformed equation of
$x^{2}+3 y^{2}+4 x+18 y+30=0$ when the axes
are transferred to the point $(-2,-3)$ is
A. $x^{2}+2 y^{2}=1$
B. $x^{2}+3 y^{2}=1$
C. $x^{2}-y^{2}+3=0$
D. $4 x^{2}+9 y^{2}=36$

Answer: B
17. The transformed equation of
$4 x^{2}+9 y^{2}-8 x+36 y+4=0$ when the axes
are translated to the point $(1,-2)$ is

$$
\begin{aligned}
& \text { A. } x^{2}+2 y^{2}=1 \\
& \text { B. } x^{2}+3 y^{2}=1 \\
& \text { C. } x^{2}-y^{2}+3=0 \\
& \text { D. } 4 x^{2}+9 y^{2}=36
\end{aligned}
$$

Answer: D
18. The transformed equation of
$2 x^{2}+4 x y+5 y^{2}-4 x-22 y+7=0 \quad$ when
the axes are translated to the point $(-2,3)$ is
A. $x y=1$
B. $6 x^{2}+5 x y-6 y^{2}=0$
C. $2 x^{2}+4 x y+5 y^{2}=22$
D. $5 x^{2}+4 x y+8 y^{2}=0$

Answer: C
19. The transformed equation of
$5 x^{2}+4 x y+8 y^{2}-12 x-12 y=0$ when the axes are translated to the point $(1,1 / 2)$ is
A. $x y=1$
B. $6 x^{2}+5 x y-6 y^{2}=0$
C. $2 x^{2}+4 x y+5 y^{2}=22$
D. ${ }^{`} 5 x^{\wedge}(2)+4 x y+8 y^{\wedge}(2)=9$

Answer: D
20. If the first degree terms of
$x^{2}+4 x y+y^{2}-2 x+2 y-6=0 \quad$ are
eliminated by translation of axes then the transformed equation is

$$
\begin{aligned}
& \text { A. } x^{2}+4 x y+y^{2}=8 \\
& \text { B. } x^{2}+4 x y+y^{2}=6 \\
& \text { C. } x^{2}+4 x y+y^{2}=4 \\
& \text { D. } 5 x^{2}+4 x y+8 y^{2}=9
\end{aligned}
$$

Answer: C

D Watch Video Solution

21. If the transformed equation of a curve is $x^{2}+y^{2}+4 x+6 y+12=0$ when the axes are translated to the point $(2,3)$, then the original equaiton of the curve is
A. $x^{2}+y^{2}+1=0$
B. $x^{2}+y^{2}-1=0$
C. $x^{2}-y^{2}-1=0$

$$
\text { D. } x^{2}-y^{2}-1=0
$$

Answer: B

D Watch Video Solution

22. If the area of a triangle is 5 s.u., then the area of the triangle when the origin is shifted to $(2,-1)$ is
A. 2 s.u.
B. 3 s.u.
C. 4 s.u.
D. 5 s.u.

Answer: D

D Watch Video Solution

23. The origin is shifted to $(1,2)$. The equation
$y^{2}-8 x-4 y+12=0$ changes to $y^{2}=4 a x$
then $a=$
A. 1
B. 2
C. -2

$$
\text { D. }-1
$$

Answer: B

D Watch Video Solution

24. By translating the axes the equation $x y-$
$x+2 y=6$ has changed to $x y=c$, then $c=$
A. 4
B. 5
C. 6
D. 7

Answer: A

D Watch Video Solution

25. The condition that the equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad$ can
take the form $a x^{2}-2 h x y+b y^{2}=0$, when shifting the origi is

A. $a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$

$$
\text { B. } 2 f g h-b g^{2}-c h^{2}=0
$$

C. $2 f g h-a f^{2}-c h^{2}=0$
D. $2 f g h-a f^{2}-b g^{2}=0$

Answer: A

- Watch Video Solution

26. If the axes are rotated through an angle 45°
, the coordinates of $(2 \sqrt{2},-3 / \sqrt{2})$ in the new system are
A. $(3 \sqrt{3},-5)$
B. $(-1,-5)$
C. $(5 \sqrt{3},-7)$
D. $(7-\sqrt{3})$

Answer: B

D Watch Video Solution

27. If the coordinates of a pont P are transformed to $(\sqrt{2},-\sqrt{2})$ when the axes are rotated through an angle 45°, then P
A. $(2,0)$
B. $(-2,3)$
C. $(4,-6)$
D. $(4,-9)$

Answer: A

D Watch Video Solution

28. Let A be the image of $(2,-1)$ wr.to y-axis.

Without transforming the origin, the axes are
turned through an angle of 45° in the clockwise direction. Then A in new system is
A. $(1 / \sqrt{2}, 3 / \sqrt{2})$
B. $(-1 / \sqrt{2},-3 / \sqrt{2})$
C. $(-3 / \sqrt{2}, 1 / \sqrt{2})$
D. none

Answer: B
29. If the axes are rotated through an angle 45° in the positive direction without changing the origin, then the coordinates of the point $(\sqrt{2}, 4)$ in the old system are
A. $(1-2 \sqrt{2}, 1+2 \sqrt{2})$
B. $(1+2 \sqrt{2}, 1-2 \sqrt{2})$
C. $(2 \sqrt{2}, \sqrt{2})$
D. $(\sqrt{2}, 2)$

Answer: A

30. If the coordiantes of a point P are transformed to $(2,-4 \sqrt{3})$ when the axes are rotated through an angle 60°, then $\mathrm{P}=$
A. $(3 \sqrt{3}, 5)$
B. $(-1,-5)$
C. $(5 \sqrt{3},-7)$
D. $(7,-\sqrt{3})$

Answer: D
31. The line joining the points
$A(2,0)$ and $B(3,1)$ is rotated through an angle of 45°, about A in the anti-clockwise direction. The coordinates of B in the new position
A. $(2, \sqrt{2})$
B. $(\sqrt{2}, 2)$
C. $(2,2)$
D. $(\sqrt{2}, \sqrt{2})$

D Watch Video Solution

32. The angle of rotation of axes in order to
eliminate $x y$ term in the equation
$x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

D Watch Video Solution

33. The angle of rotation of axes in order to
eliminate $x y$ term in the equation
$2 x^{2}+\sqrt{3} x y+3 y^{2}=9$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

D Watch Video Solution

34. The angle of rotation of axes to remove $x y$
term in the equation $x y=c^{2}$ is
A. $\pi / 12$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 4$

D Watch Video Solution

35. The angle of rotation of axes to remove $x y$
term in the equation $9 x^{2}+2 \sqrt{3} x y+7 y^{2}=10$ is
A. $\pi / 12$
B. $\pi / 6$
C. $\pi / 3$
D. $5 \pi / 12$

Answer: B

D Watch Video Solution

36. The angle of rotation of axes to remove $x y$
term in the
equation
$x^{2}+4 x y+y^{2}-2 x+2 y-6=0$ is
A. $\pi / 12$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 4$

D Watch Video Solution

37. The transformed equation of
$x \cos \alpha+y \sin \alpha=p \quad$ when the axes are rotated through an angle α is
A. $x=p$
B. $y=p$
C. $x+p=0$
D. $y+p=0$

D Watch Video Solution

38. The transformed equation of
$x \sin \alpha-y \cos \alpha=p$ when the axes are rotated through an angle α is
A. $X=p$
B. $y=p$
C. $x+p=0$
D. $y+p=0$

D Watch Video Solution

39. The transformed equation of $2 x y+a^{2}=0$
when the axes are rotated through an angle $\pi / 4$ is

$$
\text { A. } x^{2}+y^{2}=a^{2}
$$

B. $x y=a^{2}$
C. $x^{2}-y^{2}+a^{2}$
D. $y^{2}-x^{2}=a^{2}$

Answer: C

D Watch Video Solution

40. The transformed equation of $x^{2}-y^{2}=a^{2}$
when the axes are rotated through an angle
$\pi / 4$ in clockwise direction is
A. $2 x y+a^{2}=0$
B. $x y=a^{2}$
C. $x^{2}-4 y^{2}=a^{2}$
D. $2 y^{2}-x^{2}+a^{2}=0$

Answer: A

- Watch Video Solution

41. The transferred equation of
$x^{2}+6 x y+8 y^{2}=10$ when the axes are rotated through an angle $\pi / 4$ is

$$
\text { A. } 15 x^{2}-14 x y+3 y^{2}=20
$$

B. $15 x^{2}+14 x y-3 y^{2}=20$
C. $15 x^{2}+14 x y+3 y^{2}=20$
D. $15 x^{2}-14 x y-3 y^{2}=20$

Answer: C

D Watch Video Solution

42. The transformed equation of
$x^{2}+4 x y+y^{2}-2 x+2 y-6=0$ when the axes are rotated through an anlge $\pi / 4$ is

$$
\begin{aligned}
& \text { A. } 3 x^{2}-y^{2}+2 \sqrt{2} y-6=0 \\
& \text { B. } 5 x^{2}+3 y^{2}=5 \\
& \text { C. } 5 x^{2}+3 y^{2}=4 \\
& \text { D. } 4 x^{2}+3 y^{2}=6
\end{aligned}
$$

Answer: A

D Watch Video Solution

43. The transformed equation of $9 x^{2}+2 \sqrt{3} x y+7 y^{2}=10$ when the axes are rotated through an angle $\pi / 6$ is

$$
\text { A. } 3 x^{2}+y^{2}+2 \sqrt{2} y-6=0
$$

B. $5 x^{2}+3 y^{2}=5$
C. $5 x^{2}+3 y^{2}=4$
D. $4 x^{2}+3 y^{2}=6$

Answer: B

D Watch Video Solution

44. The transformed equation of
$x^{2}-2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes are rotated through an angle 60° is
A. $x^{2}+y^{2}=a^{2}$
B. $x y=a^{2}$
C. $x^{2}-y^{2}=a^{2}$
D. $y^{2}-x^{2}=a^{2}$

Answer: D

- Watch Video Solution

45. The transformed equation of
$x^{2}-2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes are rotated through an angle 60° is

$$
\text { A. } x^{2}+y^{2}=a^{2}
$$

B. $x y=a^{2}$
C. $x^{2}-y^{2}=a^{2}$
D. $y^{2}-x^{2}=a^{2}$

Answer: D

D Watch Video Solution

46. When the axes are rotated through an
angle $\pi / 6$. Find the transformed equation of

$$
x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}
$$

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=a^{2} \\
& \text { B. } x^{2}-y^{2}=a^{2} \\
& \text { C. } x^{2}+y^{2}=2 a^{2}
\end{aligned}
$$

$$
\text { D. } x^{2}-y^{2}=2 a^{2}
$$

Answer: B

D Watch Video Solution

47. The transformed equation of
$x^{2}-2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes are rotated through an angle 60° is
A. $x^{2}+y^{2}=a^{2}$
B. $x y=a^{2}$
C. $x^{2}-y^{2}=a^{2}$
D. $y^{2}-x^{2}=a^{2}$

D Watch Video Solution

48. The transformed equation of
$3 x^{2}+3 y^{2}+2 x y=2$ when the coordinate axes are rotated through an angle of 45° is

$$
\begin{aligned}
& \text { A. } x^{2}+2 y^{2}=1 \\
& \text { B. } 2 x^{2}+y^{2}=1 \\
& \text { C. } x^{2}+y^{2}=1
\end{aligned}
$$

$$
\text { D. } x^{2}+3 y^{2}=1
$$

Answer: B

- Watch Video Solution

49. The transferred equation of
$x^{2}-y^{2}+a^{2}=0$ when the axes are rotated
through an angle 60° is

> A. $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$
> B. $x^{2}+2 \sqrt{3} x y+y^{2}=2 a^{2}$
> C. $x y+2 a^{2}=0$
D. $x y=2 a^{2}$

D Watch Video Solution

50. The transformed equation of $x^{2}+y^{2}=a^{2}$
when the axes are rotated through an angle 18° is

$$
\begin{aligned}
& \text { A. } \sqrt{5} x^{2}-4 x y+y^{2}=a^{2} \\
& \text { B. } x^{2}+2 x y-\sqrt{5} y^{2}=a^{2} \\
& \text { C. } x^{2}-y^{2}=a^{2} \\
& \text { D. } x^{2}+y^{2}=a^{2}
\end{aligned}
$$

D Watch Video Solution

51. The transformed equation of $x^{2}+y^{2}=r^{2}$
when the axes are rotated through an angle 36° is

$$
\begin{aligned}
& \text { A. } \sqrt{5} x^{2}-4 x y+y^{2}=r^{2} \\
& \text { B. } x^{2}+2 x y-\sqrt{5} y^{2}=r^{2} \\
& \text { C. } x^{2}-y^{2}=r^{2} \\
& \text { D. } x^{2}+y^{2}=r^{2}
\end{aligned}
$$

D Watch Video Solution

52. The transformed equation of
$x^{2} / a^{2}-y^{2} / b^{2}=1$ when the axes are rotated
through an angle 90° is
A. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
C. $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
D. $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

- Watch Video Solution

53. The transformed equation of $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ when the axes are rotated through an angle 90° is
A.

$$
b X^{2}-2 h X Y+a Y^{2}+2 f X-2 g Y+c=0
$$

B.

$$
b X^{2}+2 h X Y+a Y^{2}+2 f X+2 g Y+c=0
$$

C.

$$
\begin{aligned}
& \quad b X^{2}-2 h X Y+a Y^{2}-2 f X+2 g Y+c=0 \\
& \text { D. } b X^{2}+2 h X Y+a Y^{2}-2 g Y+c=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

54. The transformed equation of
$x^{2}+y^{2}-4 x+6 y-12=0$ when the axes
are rotated through an angle 180° is

A. $X^{2}+Y^{2}+4 X-6 Y+12=0$

B. $X^{2}+Y^{2}+4 X-6 Y-12=0$
C. $X^{2}+Y^{2}-4 X-6 Y-12=0$
D. $X^{2}+Y^{2}-4 X-6 Y+12=0$

Answer: B

- Watch Video Solution

55. If the axes are rotated through, an angle θ,
the transformed equation of $x^{2}+y^{2}=25$ is
A. $(x+y)^{2}=25$
B. $(x-y)^{2}=25$
C. $x^{2}-y^{2}=25$
D. $x^{2}+y^{2}=25$

Answer: D

D Watch Video Solution

56. If the transformed equation of a curve is
$17 x^{2}-16 x y+17 y^{2}=225$ when the axes are
rotated through an angle 45°, then the original equation of the curve is
A. $25 x^{2}+9 y^{2}=225$
B. $9 x^{2}+25 y^{2}=225$
C. $25 x^{2}-9 y^{2}=225$
D. $9 x^{2}-25 y^{2}=225$

Answer: A

Watch Video Solution
57. If the transferred equation of a curve is $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ when the axes are rotated through an angle 60°, then the original equation of the curve is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}+a^{2}=0 \\
& \text { B. } x^{2}+y^{2}-a^{2}=0 \\
& \text { C. } x^{2}-y^{2}+a^{2}=0 \\
& \text { D. } x^{2}-y^{2}-a^{2}=0
\end{aligned}
$$

Answer: C
58. The angle of rotation of the axes so that the
equation $\sqrt{3} x-y+5=0$ may be reduced to
the form $Y=$ constant is

$$
\begin{aligned}
& \text { A. } \frac{\tan ^{-1} b}{a} \\
& \text { B. } \frac{\tan ^{-1} a}{b} \\
& \text { C. } \tan ^{-1} a \\
& \text { D. } \tan ^{-1} b
\end{aligned}
$$

Answer: A
59. The angle of rotation of the axes so that the equation $\sqrt{3} x-y+5=0$ may be reduced to
the form $Y=$ constant is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C
60. The angle of rotation of the axes so that the
equation $x+y-6=0$ may bre reduced in
the form $x=3 \sqrt{2}$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: B
61. The line joining two points $A(2,0), B(3,1)$ is rotated about A in anticlockwise direction through an angle 15°. If B goes to C then $\mathrm{C}=$

$$
\begin{aligned}
& \text { A. }\left(2+\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right) \\
& \text { B. } 2\left(2-\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right) \\
& \text { C. } \sqrt{2\left(-1, \frac{\sqrt{3}}{2}\right)} \\
& \text { D. }\left(\sqrt{2}-\frac{1}{2}, \frac{\sqrt{2}}{3}\right)
\end{aligned}
$$

- Watch Video Solution

62. The point $(4,1)$ undergoes the following transformations successively
I. Reflection about the line $y=x$
II. Translation through a distance 2 units in the direction of positive X -axis.
III. Rotation through an angle $\frac{\pi}{4}$ about origin in the anticlock wise direction.

Then, the final position of the point is

$$
\text { A. }(-\sqrt{18}, \sqrt{18})
$$

B. $(-2,3)$
C. $(0, \sqrt{18})$
D. $(0,3)$

Answer: C

Watch Video Solution

63. The point $P(1,3)$ undergoes the following transformations successively :
(i) Reflection with respect to the line $y=x$
(ii) Translation through 3 units along the
positive direction of the X -axis
(iii) Rotation through an angle of $\frac{\pi}{6}$ about the origin in the clockwise direction. The final position of the point P is

$$
\begin{aligned}
& \text { A. }\left(\frac{7}{\sqrt{2}},-\frac{5}{\sqrt{2}}\right) \\
& \text { B. }\left(\frac{6+\sqrt{3}-1}{2}, \frac{6+\sqrt{3}}{2}\right) \\
& \text { C. }\left(\frac{6 \sqrt{3}-1}{2}, \frac{6+\sqrt{3}}{2}\right) \\
& \text { D. }\left(\frac{6 \sqrt{3}+1}{2}, \frac{\sqrt{3}-6}{2}\right)
\end{aligned}
$$

Answer: D

64. The origin is translated to $(1,2)$. The point
$(7,5)$ in the old system undergoes the following transformations successively.
(i) Moves to the new point under the given translation of origin
(ii) Translated through 2 units along the negative direction of the new X-axis
(iii) Rotated through an angle $\frac{\pi}{4}$ about the origin of new system in the clockwise direction

The final position of the point $(7,5)$ is
A. $\left(\frac{9}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
B. $\left(\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{7}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
D. $\left(\frac{5}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$

Answer: C

1. If the point $(3,-2)$ is transformed to $(-2,1)$ which the origin is shifted to P, then $P=$
A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: A

D Watch Video Solution

2. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $4 x^{2}+9 y^{2}-8 x+36 y+4=0$ is
A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: B

D Watch Video Solution

3. The transformed equation of $2 x^{2}+4 x y+5 y^{2}-4 x-22 y+7=0 \quad$ when the axes are translated to the point $(-2,3)$ is
A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: C

1. If the transformed equation of
$6 x^{2}+5 x y-6 y^{2}=0$ when the axes are translated to the pont $(-1,-1)$ is
$6 X^{2}+5 X Y-6 Y^{2}+a X+b Y+c=0$ then
the descending order of a, b, c is
A. a,b,c
B. b, c, a
C. a, c, b
D. c, a, b

- Watch Video Solution

2. If the transformed equation of a curve is
$3 X^{2}+X Y-Y^{2}-7 X+Y+7=0 \quad$ when
the axes are translated to the point $(1,2)$, then
the original equation of the curve is
$3 x^{2}+x y-y^{2}-a x+b y+c=0$, then the ascending order of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
A. a,b,c
B. b,c,a
C. a,c,b

D. c, a, b

Answer: B

- Watch Video Solution

3. The transformed equation of
$x^{2}+4 x y+y^{2}-2 x+2 y-6=0$ when the axes are rotated through an anlge $\pi / 4$ is
A. a,b,c
B. b, c, a

C. a,c,b

D. c, a, b

Answer: D

D Watch Video Solution

Set 3

1. To remove the first degree terms in the
following equation origin should be shifted to
the another point then calculate the new
origins is
I. $x^{2}-y^{2}+2 x+4 y=0$
a) $(5,-7)$
II. $4 x^{2}+9 y^{2}-8 x+36 y+4=0$
b) $(1,-2)$
III. $x^{2}+3 y^{3}-2 x+12 y+1=0$
c) $(-1,2)$
IV. $2(x-5)^{2}+3(y+7)^{2}=10$
d) $(-1,-2)$
e) $(-5,7)$
A. d,b,a,c
B. e,c,b,d
C. c,b,d,a
D. $\mathrm{d}, \mathrm{c}, \mathrm{b}, \mathrm{a}$

Answer: C

2. Match the following

1. The transformed equation of $x^{2} \quad y^{2}+2 x+4 y=0$ when the origin is shifted to the point $(-1,2)$ is
II. The trans formed equation of $x^{2}+3 y^{2}+4 x+18 y+30=0$ when the axes are translated to $(-2,-3)$ is
III. The transformed equation of $4 x^{2}+9 y^{2}-8 x+36 y+4=0$ when the axes are translate to $(1,-2)$ is
a) $x^{2}+3 y^{2}=1$
b) $x^{2}-y^{2}+3=0$
c) $4 x^{2}+9 y^{2}=36$
d) $2 x^{2}+4 x y+5 y^{2}=22$

The transformed equation of $2 x^{2}+4 x y+5 y^{2}-22 y+7=0$ when the axes arc translated to $(-2,3)$ is
c) $2 x^{2}+4 x y+5 y^{2}=11$

A. b,a,c,e

B. a,b,c,d

C. a,b,c,e

D. b,a,c,d

Answer: D

Set 4

1. A: The transformed equation of $x^{2}-y^{2}+2 x+4 y=0$ when the origin is shifted to the point $(-1,2)$ is $X^{2}-Y^{2}+3=0$.
R : If x, y terms are elimianted form $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \quad$ by
shifting the origin to (α, β) then the transformed equation is
$a x^{2}+2 h x y+b y^{2}+g \alpha+f \beta+c=0$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false

D. A is false but R is false

Answer: A

2. A: The angle of rotation to remove the $x y-$ term in the equation $2 x^{2}+\sqrt{3} x y+3 y^{2}=9$ is $\pi / 6$.

R: The angle of rotation of the axes to eliminate xy term in the equation.

$$
\begin{aligned}
& a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \\
& \frac{1}{2} \tan ^{-1}((2 h) /(a-b))
\end{aligned}
$$

A. Both A and R are true and R is the correct
explanation of A.
B. Both A and R are true but R is not the

C. A is true but R is false

D. A is false but R is false

Answer: D

D Watch Video Solution

3. A: If the transformed equation of a curve is
$9 X^{2}+16 Y^{2}=144$ when the axes are rotated through an angle 45°, then the original equation is $25 x^{2}-14 x y+25 y^{2}=288$.

R: If $f(x, y)=0$ is the transformed equation of a
curve when the axes are rotate through an
angle θ then the original equation of the curve is $f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)=0$
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true but R is not the
correct explanation of A.
C. A is true but R is false
D. A is false but R is false

