

MATHS

BOOKS - DEEPTI MATHS (TELUGU ENGLISH)

TRANSFORMATION OF AXES

Solved Examples

1. The point to which the axes to be translated to eliminate x and y terms in the equation

 $3x^2 - 4xy - 2y^2 - 3x - 2y - 1 = 0$ is

A. (-2, 1)B. (-4, 3)C. (-2, 3)

D. (1/10, -3/5)

Answer: D

2. The transformed equation of $x^2+2y^2+2x-4y+2=0$ when the axes are translated to the point (-1,1) is

A.
$$x^2+2y^2=1$$

B.
$$x^2+3y^2=1$$

$$\mathsf{C}.\,x^2-y^2+3=0$$

D.
$$4x^2 + 9y^2 = 36$$

Answer: A

Watch Video Solution

3. If the two circles $(x-1)^2+(y-3)^2=r^2$ and $x^2+y^2-8x+2y+8=0$ intersect at two distinct points, then

A.
$$\left(3\sqrt{3}, \ -5
ight)$$

B. $\left(\ -1, \ -5
ight)$
C. $\left(5\sqrt{3}, \ -7
ight)$
D. $\left(7-\sqrt{3}
ight)$

Answer: C

4. The angle of rotation of axes to remove xy terms in the equation $9x^2 - 2\sqrt{3}xy + 3y^2 = 0$ is

A. $\pi/12$

B. $\pi/6$

C. $\pi/3$

D. $5\pi/12$

Answer: D

5. The origin is shifted to (2,3) and then the axes are rotated through angle θ in the counter clock sense. If the equation $3x^2 + 2xy + 3y^2 - 18x - 22y + 50 = 0$ is transformed to $4x^2 + 2y^2 - 1 = 0$, then the angle θ =

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Excersie 1

1. The coordinates of the point (3,-5) in the new system when the origin is shifted to (-2,3) are

A. (-5,8)

B. (5,-8)

C. (4,6)

D. (3,1)

Answer: B

2. If (7,5) are the coordinates of a point P in the new systems when the origin is shifted to (-5,3), then the original coordinates of P are

A. (-1, 2)

B. (1,-5)

C. (2,8)

D. (4,1)

Answer: C

Watch Video Solution

3. If $(\cos \alpha, \cos \beta)$ are the new coordinats of a point P when the axes are translated to the point (1,1) then the original coordinates of P are

A.
$$\left(2\cos^2lpha\,/\,2,\,2\cos^2eta\,/\,2
ight)$$

- B. $(2\sin^2 \alpha / 2, 2\sin^2 \beta / 2)$
- C. $(2 \cos \alpha / 2, 2 \cos \beta / 2)$
- D. $(2\sin \alpha / 2, 2\sin \beta / 2)$

Answer: A

Watch Video Solution

4. If the point (3,-2) is transformed to (-2,1) which the origin is shifted to P, then P=

A. (3,2)

B. (5,-3)

C. (-1,2)

D. (1,-2)

Answer: B

5. The point to which the origin should be shifted in order to eliminate x and y in the equation $x^2 + y^2 + 8x - 6y + 25 = 0$ is A. (1,3)

B. (-4,3)

C. (-1,2)

D. (1,-2)

Answer: B

6. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $4x^2 + 9y^2 - 8x + 36y + 4 = 0$ is A. (1,3)

B. (-4,3)

C. (-1,2)

D. (1,-2)

Answer: D

7. The point to which the origin should be shifted in order to eliminate x and y in terms in the equation $x^2 - y^2 + 2x + 4y = 0$ is

A. (1,3)

B. (-4,3)

C. (-1,2)

D. (1,-2)

Answer: C

8. In order to eliminate the first degrees terms

from

the

equation

$$2x^2+4xy+5y^2-4x-22y+7=0,$$
 the

point to which origin is to be shifted is

A. (1,-3)

B. (2,3)

C. (-2,3)

D. (1,3)

Answer: C

9. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $2x^2 - 3y^2 - 12x - 6y + 5 = 0$ is

A. (3,1)

B. (1,5)

C. (1,-5)

D. (3,-1)

Answer: D

Watch Video Solution

10. The point to which the origin should be shifted in order to eliminate x and y in the equation $2(x-5)^2 + 3(y+7)^2 = 10$ is

A. (2,0)

B. (5,-7)

C. (2,-1)

D. (2,-3)

Answer: B

11. If the origin is shifted to the point (2,-2), the equation to which the equation $(x-2)^2 + (y+2)^2 = 9$ transformed is A. $x^2 + y^2 = 9$ B. $x^2 + 3y^2 = 1$ C. $x^2 + y^2 - 2x + 6y = 0$ D. $4x^2 + 9y^2 = 36$

Answer: A

Watch Video Solution

12. If the equation $x^2 + y^2 - 4x - 6y - 12 = 0$ is transformed to $x^2 + y^2 = 25$ when the axes are transmitted to a point then the new coordinates of (-3,5) are

A. (-1,7)

B. (-5,2)

C. (1,-7)

D. (5,-2)

Answer: B

13. The point to which the axes are to translated to eliminate y term and constant term in the equation $y^2 + 8x + 4y - 2 = 0$ is

A. (3,-2)

- B. (3, -2/3)
- C. (3/4, -2)
- D. (2/3, -4)

Answer: C

Watch Video Solution

14. If the axes are translated to the circumcenter of the triangle formed by (9,3), (-1,7), (-1,3), then the centroid of the triangle in the new system is

A.
$$(5, 5/3)$$

B. $(4,3)$
C. $(-5/3, -2/3)$
D. (0.0)

Answer: C

15. The transformed equation of xy+2x - 5y -11=0 when the origin is shifted to the point (5,-2) is

- $\mathsf{B.}\, 6x^2 + 5xy 6y^2 = 0$
- $\mathsf{C.}\, 2x^2 + 4xy + 5y^2 = 22$
- D. $5x^2 + 4xy + 8y^2 = 9$

Answer: A

Watch Video Solution

16. The transformed equation of $x^2 + 3y^2 + 4x + 18y + 30 = 0$ when the axes are transferred to the point (-2,-3) is

A.
$$x^2+2y^2=1$$

B.
$$x^2+3y^2=1$$

$$\mathsf{C}.\,x^2-y^2+3=0$$

D.
$$4x^2 + 9y^2 = 36$$

Answer: B

17. The transformed equation of $4x^2 + 9y^2 - 8x + 36y + 4 = 0$ when the axes are translated to the point (1,-2) is

A.
$$x^2+2y^2=1$$

B.
$$x^2+3y^2=1$$

C.
$$x^2-y^2+3=0$$

D.
$$4x^2 + 9y^2 = 36$$

Answer: D

18. The transformed equation of $2x^2 + 4xy + 5y^2 - 4x - 22y + 7 = 0$ when the axes are translated to the point (- 2, 3) is A. xy=1 B. $6x^2 + 5xy - 6y^2 = 0$ C. $2x^2 + 4xy + 5y^2 = 22$

D.
$$5x^2 + 4xy + 8y^2 = 0$$

Answer: C

Answer: D

20. If the first degree terms of $x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$ are eliminated by translation of axes then the transformed equation is

A.
$$x^2 + 4xy + y^2 = 8$$

B. $x^2 + 4xy + y^2 = 6$
C. $x^2 + 4xy + y^2 = 4$
D. $5x^2 + 4xy + 8y^2 = 9$

Answer: C

21. If the transformed equation of a curve is $x^2 + y^2 + 4x + 6y + 12 = 0$ when the axes are translated to the point (2,3), then the original equaiton of the curve is

A.
$$x^2 + y^2 + 1 = 0$$

B. $x^2 + y^2 - 1 = 0$
C. $x^2 - y^2 - 1 = 0$

D.
$$x^2 - y^2 - 1 = 0$$

Answer: B

Watch Video Solution

22. If the area of a triangle is 5 s.u., then the area of the triangle when the origin is shifted to (2,-1) is

A. 2 s.u.

B. 3 s.u.

C. 4 s.u.

D. 5 s.u.

Answer: D

Watch Video Solution

23. The origin is shifted to (1,2). The equation

 $y^2-8x-4y+12=0$ changes to $y^2=4ax$

then a=

A. 1

B. 2

C. -2

D. -1

Answer: B

Watch Video Solution

24. By translating the axes the equation xyx+2y=6 has changed to xy=c, then c =

B. 5

C. 6

D. 7

Answer: A

Watch Video Solution

25. The condition that the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ can take the form $ax^2 - 2hxy + by^2 = 0$, when shifting the origi is

A.
$$abc+2fgh-af^2-bg^2-ch^2=0$$

$$\mathsf{B.}\, 2fgh - bg^2 - ch^2 = 0$$

$$\mathsf{C.}\, 2fgh-af^2-ch^2=0$$

$$\mathsf{D.}\, 2fgh-af^2-bg^2=0$$

Answer: A

Watch Video Solution

26. If the axes are rotated through an angle $45^{\,\circ}$

, the coordinates of $\left(2\sqrt{2},\ -3/\sqrt{2}
ight)$ in the

new system are

A.
$$\left(3\sqrt{3}, \ -5
ight)$$

B. $(\ -1, \ -5)$
C. $\left(5\sqrt{3}, \ -7
ight)$
D. $\left(7-\sqrt{3}
ight)$

Answer: B

27. If the coordinates of a pont P are transformed to $\left(\sqrt{2}, -\sqrt{2}\right)$ when the axes are rotated through an angle 45° , then P

A. (2,0)

B. (-2,3)

C. (4,-6)

D. (4,-9)

Answer: A

Watch Video Solution

28. Let A be the image of (2,-1) wr.to y-axis. Without transforming the origin, the axes are

turned through an angle of 45° in the clockwise direction. Then A in new system is

A.
$$\left(1/\sqrt{2}, 3/\sqrt{2}
ight)$$

B. $\left(-1/\sqrt{2}, -3/\sqrt{2}
ight)$
C. $\left(-3/\sqrt{2}, 1/\sqrt{2}
ight)$

D. none

Answer: B

29. If the axes are rotated through an angle 45° in the positive direction without changing the origin, then the coordinates of the point $(\sqrt{2}, 4)$ in the old system are

A.
$$\left(1-2\sqrt{2},1+2\sqrt{2}
ight)$$

B.
$$\left(1+2\sqrt{2},1-2\sqrt{2}
ight)$$

C.
$$\left(2\sqrt{2},\sqrt{2}\right)$$

D.
$$\left(\sqrt{2},2\right)$$

Answer: A

Watch Video Solution

30. If the coordiantes of a point P are transformed to $(2, -4\sqrt{3})$ when the axes are rotated through an angle 60° , then P=

Answer: D

Watch Video Solution

31. The line joining the points A(2,0) and B(3,1) is rotated through an angle of 45° , about A in the anti-clockwise direction. The coordinates of B in the new position

- A. $(2, \sqrt{2})$
- $\mathsf{B.}\left(\sqrt{2},\,2\right)$
- C. (2,2)
- D. $\left(\sqrt{2},\sqrt{2}\right)$

Answer: A

32. The angle of rotation of axes in order to eliminate xy term in the equation $x^2 + 2\sqrt{3}xy - y^2 = 2a^2$ is A. $\pi/6$ B. $\pi/4$ C. $\pi/3$

Answer: A

33. The angle of rotation of axes in order to eliminate xy term in the equation $2x^2 + \sqrt{3}xy + 3y^2 = 9$ is A. $\pi/6$ B. $\pi/4$

C. $\pi/3$

Answer: C

34. The angle of rotation of axes to remove xy term in the equation $xy = c^2$ is

A. $\pi/12$

B. $\pi/6$

C. $\pi/3$

D. $\pi/4$

35. The angle of rotation of axes to remove xy term in the equation $9x^2 + 2\sqrt{3}xy + 7y^2 = 10$ is

A. $\pi/12$

B. $\pi/6$

C. $\pi/3$

D. $5\pi/12$

Answer: B

36. The angle of rotation of axes to remove xy in the term equation $x^2 + 4xy + y^2 - 2x + 2y - 6 = 0$ is A. $\pi/12$ B. $\pi/6$ C. $\pi/3$ D. $\pi/4$

37.	The	transformed		equation		of
$x \cos \phi$	$lpha + y \sin i x$	$\mathrm{n}lpha=p$	when	the	axes	are

rotated through an angle lpha is

A. x=p

B. y=p

D. y+p=0

Answer: A

38.	The	transformed		equation		of
$x \sin c$	$\alpha - y \cos \theta$	$\mathrm{s}lpha=p$	when	the	axes	are

rotated through an angle lpha is

А. Х=р

B. y=p

C. x+p=0

39. The transformed equation of $2xy + a^2 = 0$ when the axes are rotated through an angle $\pi/4$ is

A.
$$x^2+y^2=a^2$$

$$\mathsf{B.}\, xy = a^2$$

$$\mathsf{C}.\,x^2-y^2+a^2$$

D.
$$y^2-x^2=a^2$$

Answer: C

40. The transformed equation of $x^2 - y^2 = a^2$ when the axes are rotated through an angle $\pi/4$ in clockwise direction is

A.
$$2xy+a^2=0$$

$$\mathsf{B.} xy = a^2$$

$$\mathsf{C}.\,x^2-4y^2=a^2$$

D.
$$2y^2 - x^2 + a^2 = 0$$

Answer: A

41. The transferred equation of $x^2 + 6xy + 8y^2 = 10$ when the axes are rotated through an angle $\pi/4$ is A. $15x^2 - 14xy + 3y^2 = 20$ B. $15x^2 + 14xy - 3y^2 = 20$ C. $15x^2 + 14xy + 3y^2 = 20$ D. $15x^2 - 14xy - 3y^2 = 20$

Answer: C

42. The transformed equation of $x^2+4xy+y^2-2x+2y-6=0$ when the axes are rotated through an anlge $\pi \, / \, 4$ is A. $3x^2 - y^2 + 2\sqrt{2}y - 6 = 0$ B. $5x^2 + 3y^2 = 5$ C. $5x^2 + 3y^2 = 4$ D. $4x^2 + 3y^2 = 6$

Answer: A

43. The transformed equation of $9x^2+2\sqrt{3}xy+7y^2=10$ when the axes are rotated through an angle $\pi/6$ is A. $3x^2 + y^2 + 2\sqrt{2}y - 6 = 0$ B. $5x^2 + 3y^2 = 5$ C. $5x^2 + 3y^2 = 4$ D. $4x^2 + 3y^2 = 6$

Answer: B

44. The transformed equation of
$$x^2 - 2\sqrt{3}xy - y^2 = 2a^2$$
 when the axes are

rotated through an angle 60° is

A.
$$x^2+y^2=a^2$$

$$\mathsf{B.}\, xy = a^2$$

C.
$$x^2-y^2=a^2$$

D.
$$y^2-x^2=a^2$$

45. The transformed equation of
$$x^2 - 2\sqrt{3}xy - y^2 = 2a^2$$
 when the axes are

rotated through an angle 60° is

A.
$$x^2+y^2=a^2$$

$$\mathsf{B.}\, xy = a^2$$

$$\mathsf{C}.\,x^2-y^2=a^2$$

D.
$$y^2-x^2=a^2$$

46. When the axes are rotated through an angle $\pi/6$. Find the transformed equation of $x^2 + 2\sqrt{3}xy - y^2 = 2a^2.$ A. $x^2 + y^2 = a^2$ B. $x^2 - y^2 = a^2$ C. $x^2 + y^2 = 2a^2$ D. $x^2-y^2=2a^2$

Answer: B

47. The transformed equation of
$$x^2 - 2\sqrt{3}xy - y^2 = 2a^2$$
 when the axes are

rotated through an angle 60° is

A.
$$x^2+y^2=a^2$$

$$\mathsf{B.}\, xy = a^2$$

C.
$$x^2-y^2=a^2$$

D.
$$y^2-x^2=a^2$$

Answer: A

48. The transformed equation of $3x^2 + 3y^2 + 2xy = 2$ when the coordinate axes are rotated through an angle of 45° is A. $x^2 + 2y^2 = 1$ B. $2x^2 + y^2 = 1$ C. $x^2 + y^2 = 1$ D. $x^2 + 3y^2 = 1$

Answer: B

49. The transferred equation of $x^2 - y^2 + a^2 = 0$ when the axes are rotated through an angle 60° is

A.
$$x^2+2\sqrt{3}xy-y^2=2a^2$$

B.
$$x^2+2\sqrt{3}xy+y^2=2a^2$$

$$\mathsf{C.}\, xy+2a^2=0$$

D.
$$xy=2a^2$$

Answer: A

50. The transformed equation of $x^2 + y^2 = a^2$ when the axes are rotated through an angle 18° is

A.
$$\sqrt{5}x^2-4xy+y^2=a^2$$

B. $x^2+2xy-\sqrt{5}y^2=a^2$
C. $x^2-y^2=a^2$
D. $x^2+y^2=a^2$

51. The transformed equation of $x^2 + y^2 = r^2$ when the axes are rotated through an angle 36° is

A.
$$\sqrt{5}x^2-4xy+y^2=r^2$$

B. $x^2+2xy-\sqrt{5}y^2=r^2$
C. $x^2-y^2=r^2$
D. $x^2+y^2=r^2$

52. The transformed equation of $x^2/a^2-y^2/b^2=1$ when the axes are rotated through an angle 90° is

A.
$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$

B. $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$
C. $rac{y^2}{b^2} - rac{x^2}{a^2} = 1$
D. $rac{y^2}{a^2} - rac{x^2}{b^2} = 1$

53. The transformed equation of $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ when the axes are rotated through an angle 90° is

A.

$$bX^2-2hXY+aY^2+2fX-2gY+c=0$$
B.

$$bX^2+2hXY+aY^2+2fX+2gY+c=0$$

$bX^2-2hXY+aY^2-2fX+2gY+c=0$

 $\mathsf{D}.\,bX^2+2hXY+aY^2-2gY+c=0$

Answer: A

A.
$$X^2 + Y^2 + 4X - 6Y + 12 = 0$$

B. $X^2 + Y^2 + 4X - 6Y - 12 = 0$
C. $X^2 + Y^2 - 4X - 6Y - 12 = 0$
D. $X^2 + Y^2 - 4X - 6Y + 12 = 0$

Answer: B

Watch Video Solution

55. If the axes are rotated through, an angle θ ,

the transformed equation of $x^2+y^2=25$ is

A.
$$(x+y)^2 = 25$$

B. $(x-y)^2 = 25$
C. $x^2 - y^2 = 25$
D. $x^2 + y^2 = 25$

56. If the transformed equation of a curve is $17x^2 - 16xy + 17y^2 = 225$ when the axes are

rotated through an angle $45^{\,\circ}$, then the original

equation of the curve is

A.
$$25x^2 + 9y^2 = 225$$

$$\mathsf{B}.\,9x^2 + 25y^2 = 225$$

$$\mathsf{C.}\, 25x^2 - 9y^2 = 225$$

D.
$$9x^2 - 25y^2 = 225$$

Answer: A

57. If the transferred equation of a curve is $x^2 + 2\sqrt{3}xy - y^2 = 2a^2$ when the axes are rotated through an angle 60° , then the original equation of the curve is

A.
$$x^2 + y^2 + a^2 = 0$$

B.
$$x^2 + y^2 - a^2 = 0$$

$$\mathsf{C}.\,x^2-y^2+a^2=0$$

D.
$$x^2-y^2-a^2=0$$

Answer: C

Watch Video Solution

58. The angle of rotation of the axes so that the equation $\sqrt{3}x - y + 5 = 0$ may be reduced to the form Y = constant is

$$D. \tan^{-1} b$$

Answer: A

Watch Video Solution

59. The angle of rotation of the axes so that the equation $\sqrt{3}x - y + 5 = 0$ may be reduced to the form Y = constant is

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: C

60. The angle of rotation of the axes so that the equation x+y-6=0 may bre reduced in the form $x=3\sqrt{2}$ is

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: B

61. The line joining two points A(2,0), B(3,1) is rotated about A in anticlockwise direction through an angle 15° . If B goes to C then C=

Answer: A

62. The point (4, 1) undergoes the following transformations successively I. Reflection about the line y = xII. Translation through a distance 2 units in the direction of positive X-axis. III. Rotation through an angle $\frac{\pi}{4}$ about origin in the anticlock wise direction.

Then, the final position of the point is

A.
$$\left(-\sqrt{18},\sqrt{18}\right)$$

B.
$$(-2, 3)$$

$$\mathsf{C.}\left(0,\sqrt{18}\right)$$

D. (0,3)

Answer: C

63. The point P(1,3) undergoes the following transformations successively :

- (i) Reflection with respect to the line y = x
- (ii) Translation through 3 units along the
positive direction of the X-axis

(iii) Rotation through an angle of $\frac{\pi}{6}$ about the origin in the clockwise direction. The final position of the point P is

Answer: D

64. The origin is translated to (1,2) . The point (7,5) in the old system undergoes the following transformations successively.

(i) Moves to the new point under the given translation of origin

(ii) Translated through 2 units along the negative direction of the new X-axis (iii) Rotated through an angle $\frac{\pi}{4}$ about the origin of new system in the clockwise direction The final position of the point (7,5) is

A.
$$\left(\frac{9}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

Answer: C

1. If the point (3,-2) is transformed to (-2,1) which

the origin is shifted to P, then P=

A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: A

Watch Video Solution

2. The point to which the origin should be shifted in order to eliminate x and y terms in the equation $4x^2 + 9y^2 - 8x + 36y + 4 = 0$ is A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: B

Watch Video Solution

A. only 1 is true

B. only II is true

C. both I and II are true

D. neither I nor II are true

Answer: C

Watch Video Solution

Set 2

1. If the transformed equation of $6x^2 + 5xy - 6y^2 = 0$ when the axes are translated to the pont (-1,-1) is $6X^2 + 5XY - 6Y^2 + aX + bY + c = 0$ then the descending order of a,b,c is

A. a,b,c

B. b,c,a

C. a,c,b

D. c,a,b

Answer: A

2. If the transformed equation of a curve is $3X^2 + XY - Y^2 - 7X + Y + 7 = 0$ when the axes are translated to the point (1,2), then the original equation of the curve is $3x^2 + xy - y^2 - ax + by + c = 0$, then the ascending order of a,b,c is

A. a,b,c

B. b,c,a

C. a,c,b

D. c,a,b

Answer: B

Watch Video Solution

A. a,b,c

B. b,c,a

C. a,c,b

D. c,a,b

Answer: D

Set 3

1. To remove the first degree terms in the following equation origin should be shifted to the another point then calculate the new

origins is

I. $x^2 - y^2 + 2x + 4y = 0$ II. $4x^2 + 9y^2 - 8x + 36y + 4 = 0$ III. $x^2 + 3y^3 - 2x + 12y + 1 = 0$ IV. $2(x - 5)^2 + 3(y + 7)^2 = 10$ e) (-1, -2)e) (-5, 7)

A. d,b,a,c

- B. e,c,b,d
- C. c,b,d,a
- D. d,c,b,a

Answer: C

2. Match the following

- 1. The transformed equation of $x^2 y^2 + 2x + 4y = 0$ when the origin is shifted to the point (-1, 2) is II. The transformed equation of $x^2 + 3y^2 + 4x + 18y + 30 = 0$ when the axes are translated to (-2, -3) is III. The transformed equation of $4x^2 + 9y^2 - 8x + 36y + 4 = 0$ when the axes are translate to (1, -2) is $2x^2 + 4xy + 5y^2 = 22$
 - The transformed equation of $2x^2 + 4xy + 5y^2 22y + 7 = 0$ when the axes are translated to (-2, 3) is e) $2x^2 + 4xy + 5y^2 = 11$

A. b,a,c,e

B. a,b,c,d

C. a,b,c,e

D. b,a,c,d

Answer: D

1. A: The transformed equation of $x^2-y^2+2x+4y=0$ when the origin is shifted to the point (-1,2) is $X^2 - Y^2 + 3 = 0$. R: If x,y terms are elimianted form $ax^2+2hxy+by^2+2gx+2fy+c=0$ by shifting the origin to (α, β) then the transformed equation is

 $ax^2+2hxy+by^2+glpha+feta+c=0$

A. Both A and R are true and R is the correct

explanation of A.

B. Both A and R are true but R is not the

correct explanation of A.

C. A is true but R is false

D. A is false but R is false

Answer: A

Watch Video Solution

2. A: The angle of rotation to remove the xyterm in the equation $2x^2 + \sqrt{3}xy + 3y^2 = 9$ is $\pi/6$.

R: The angle of rotation of the axes to eliminate xy term in the equation.

$$ax^2+2hxy+by^2+2gx+2fy+c=0$$
 is $rac{1}{2} an^{-1}((2h)/(a-b))$

A. Both A and R are true and R is the correct

explanation of A.

B. Both A and R are true but R is not the

correct explanation of A.

C. A is true but R is false

D. A is false but R is false

Answer: D

Watch Video Solution

3. A: If the transformed equation of a curve is $9X^2 + 16Y^2 = 144$ when the axes are rotated through an angle 45° , then the original equation is $25x^2 - 14xy + 25y^2 = 288$.

R: If f(x,y)=0 is the transformed equation of a

curve when the axes are rotate through an angle heta then the original equation of the curve is $f(x\cos heta+y\sin heta,\ -x\sin heta+y\cos heta)=0$

A. Both A and R are true and R is the correct explanation of A.

B. Both A and R are true but R is not the

correct explanation of A.

C. A is true but R is false

D. A is false but R is false

