

MATHS

BOOKS - NCERT MATHS (ENGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Short Answer Type Question

1. Given an example of a statement P(n) which is true for all

 $n \geq 4$ but $P(1), \ P(2) and \ P(3)$ are not true. Justify your

answer.

2. Given an example of a statement P(n) such that it is true of all nN.

3. prove that 4^n-1 is divisible by 3, for each natural number

n.

4. Using the principle of mathematical induction, prove that

$$\left(2^{3n}-1
ight)$$
 is divisible by 7 for all $n\in N_{2}$

5. Prove the following by the principle of mathematical induction: n^3-7n+3 is divisible 3 for all $n\in N.$

6. prove that $3^{2n} - 1$ is divisible by 8, for all natural numbers

n.

7. Prove that for any natural numbers n, 7^n-2^n is divisible

by 5.

8. If $x \neq y$, then for every natural number n, $x^n - y^n$ is divisible by

9. If n be any natural number then by which largest number

 $\left(n^3-n
ight)$ is always divisible? 3 (b) 6 (c) 12 (d) 18

Watch Video Solution

10. prove that $n \left(n^2 + 5
ight)$ is divisible by 6, for each natural

number n.

11. prove that $n^2 < 2^n$, for all natural number $n \ge 5$.

Watch Video Solution

14. prove that $2+4+6+\ldots 2n=n^2+n$, for all natural numbers n.

Watch Video Solution15. Prove that
$$1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$$
, for all natural number n.Watch Video Solution16. prove that $1+5+9+ \ldots +(4n-3)=n(2n-1)$, for all natural

number n.

1. A sequence a_1, a_2, a_3, \ldots is defined by letting $a_1 = 3$ and $a_k = 7a_{k-1}$, for all natural numbers $k \ge 2$. Show that $a_n = 3 \cdot 7^{n-1}$ for natural numbers.

2. A sequence b_0, b_1, b_2, \ldots is defined by letting $b_0 = 5$ and $b_k = 4 + b_{k-1}$, for all natural number k. Show that $b_n = 5 + 4n$, for all natural number n using mathematical induction.

3. A sequence $d_1, d_2, d_3. \ldots$ is defined by letting $d_1 = 2$ and

 $d_k=rac{d_{k-1}}{k}, \,\,$ for all natural numbers, $k\geq 2.$ Show that $d_n=rac{2}{n!},$ for all $n\in N.$

Watch Video Solution

4. Prove that for all
$$n \in N$$

 $\cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \ldots + \cos[\alpha + (n - 1)\beta]$
 $= \frac{\cos\left[\alpha + \left(\frac{n-1}{2}\right)\beta\right]\sin\left(\frac{n\beta}{2}\right)}{\sin\frac{\beta}{2}}$

Watch Video Solution

5. Using induction, prove that $\cos \theta \cdot \cos 2\theta \cdot \cos 2^2 \theta \dots \cos 2^{n-1} \theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$

all $n \in N$.

7. Prove that
$$rac{n^5}{5}+rac{n^3}{3}+rac{7n}{15}$$
 is a natural number.

Watch Video Solution

8. about to only mathematics

9. The number of subsets of a set containing n elements is :

C	Watch	Video S	olution		

Objective Type Questions

1. If $10^n + 3 \times 4^{n+2} + \lambda$ is divisible by 9 or all natural numbers, then the least positive integral value of λ is a. 5 b. 3 c. 7 d. 1

A. 5

B. 3

C. 7

Answer: A

Answer: B::C

3. If $x^n - 1$ is divisible by x - k then the least positive integral value of k is(a) 1 (b) 2 (c) 3 (d) 4

A. 1

B. 2

C. 3

D. 4

Answer: A

4. If $P(n): 2n < n!, n \in N$ then P(n) is true for all $n \geq \ldots$.

5. State whether the following statement is true or false. Justify If P(n) is a statement $(n \in N)$ such that if P(k) is true,

P(k+1) is true for $k \in N$, then P(n) is true.

View Text Solution