©゙doubtnut

MATHS

BOOKS - NCERT MATHS (ENGLISH)

SEQUENCE AND SERIES

Short Answer Type Questions

1. The first term of an A.P. is a and the sum of first p terms is zero, show that the sum of its next q terms is $\frac{-a(p+q) q}{p-1}$.
2. A man saved Rs. 66000 in 20 years. In each succeeding year after the first year he saved Rs. 200 more than what he saved in the previous year. How much did he save in the first year?

- Watch Video Solution

3. A man accepts a position with an initial salary of Rs. 5200 per month. It is understood that the will receive an automatic increase of Rs. 320 in the very next month and each month thereafter. Find his salary for the tenth month What is his total earnings during the first year?

- Watch Video Solution

4. If the $p^{\text {th }} a n d q^{t h}$ terms of a G.P. are $q a n d p$ respectively, show that $(p+q)^{t h}$ term is $\left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$.

- Watch Video Solution

5. A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?

- Watch Video Solution

6. We know that the sum of the interior angles of a triangle is 180°. Show that the sums of eth interior angles of polygons
with $3,4,5,6$, sides for an arithmetic progression. Find the sum of the interior angles of or a 21 sided polygon.

- Watch Video Solution

7. A side of an equilarteral triangle is 20 cm long .A second equilateral triangle is inscribed in it by joning the mid -point of the sides of the first triangle. The process is caontinued as shown in the accompanying diagram. find the perimeter of the sixth inscribed equilateral triangle .

D Watch Video Solution

8. In a potato race 20 potatoes are placed in a line at intervals of 4 meters with first potato 24 metres from the starting point. A constant is required to bring the potatoes back to the starting
place one at a time. How far would he run in bringing back all the potatoes?

- Watch Video Solution

9. about to only mathematics

- Watch Video Solution

10. If $a_{1}, a_{2}, a_{3},, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{1}}+\sqrt{a_{3}}}++\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$

- Watch Video Solution

11.

Find
the
sum
of
series
$\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\ldots$ to n terms

- Watch Video Solution

12. Find the r th term of an AP sum of whose first n terms is $2 n+3 n^{2}$.

(D) Watch Video Solution

Long Answer Type Questions

1. If G_{1} and G_{2} are two geometric means inserted between any two numbers and A is the arithmetic mean of two numbers, then the value of $\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$ is:
2. If $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{n}$ are in AP, whose common difference is d, show that
$\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}++\sec \theta_{n-1} \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}$

- Watch Video Solution

3. If the sum of p terms of an AP is q and the sum of q terms is p, then show that the sum of $p+q$ terms is $-(p+q)$, Also find the sum of first $p-q$ terms (where , $p>q$).

- Watch Video Solution

4. If the $p t h, q t h$ and r th terms of a G.P. are a, b, c respectively, prove that: $a^{(q-r)} \dot{-}() b^{(r-p)} \dot{c}^{(p-q)}=1$.

Objective Type Question

1. The sum of first n terms of an AP is given by $S_{n}=2 n^{2}+3 n$.

Find the common difference of the AP.
A. 3
B. 2
C. 6
D. 4

Answer: D

2. If the third term of G.P.is 4 , then find the product of first five terms
A. 4^{3}
B. 4^{4}
C. 4^{5}
D. None of these

Answer: C

- Watch Video Solution

3. if 9 times the 9 th term of an AP is equal to 13 times the 13 th term, then the 22 nd term of the AP is
A. 0
B. 22
C. 198
D. 220

Answer: A

- Watch Video Solution

4. if $x, 2 y$ and $3 z$ are in AP where the distinct numbers x, yand z are in gp. Then the common ratio of the GP is
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

- Watch Video Solution

5. If in an AP, $S_{n}=q n^{2}$ and $S_{m}=q m^{2}$, where S_{r} denotes the of r terms of the AP , then S_{q} equals to
A. $\frac{q^{3}}{2}$
B. $m \mathrm{nq}$
C. q^{3}
D. $(m+n) q^{2}$

Answer: C

(D) Watch Video Solution
6. Let S_{n} denote the sum of first n terms of an AP and $3 S_{n}=S_{2 n}$ What is $S_{3 n}: S_{n}$ equal to?
A. 4
B. 6
C. 8
D. 10

Answer: B

- Watch Video Solution

7. The minimum value of $4^{x}+4^{1-x}, x \in \mathbb{R}$ is
A. 2
B. 4
C. 1
D. 0

Answer: B

- Watch Video Solution

8. let S_{n} denote the sum of the cubes of the first n natural numbers and s_{n} denote the sum of the first n natural numbers,
then $\sum_{r=1}^{n} \frac{S_{r}}{s_{r}}$ equals to
A. $\frac{n(n+1)(n+2)}{6}$
B. $\frac{n(n+1)}{2}$
C. $\frac{n^{2}+3 n+2}{2}$
D. None of these

- Watch Video Solution

9. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$ then $t_{50}=\ldots . . .49^{2}-1$ b. 49^{2} c. $50^{2}+1$ d. $49^{2}+2$
A. $49^{2}-1$
B. 49^{2}
C. $50^{2}+1$
D. $49^{2}+2$

Answer: D

10. The lengths of three unequal edges of a rectangular solids block are in GP. if the volume of the block is $216 \mathrm{~cm}^{3}$ and the total surface area is $252 \mathrm{~cm}^{2}$ then the length of the longest edge is
A. 12 cm
B. 6 cm
C. 18 cm
D. 3 cm

Answer: A

- Watch Video Solution

1. If a, b, c are in AP or GP or HP, then $\frac{a-b}{b-c}$ is equal to

- Watch Video Solution

2. Show that in an A.P. the sum of the terms equidistant from the beginning and end is always same and equal to the sum of first and last terms.

- Watch Video Solution

3. If the third term of G.P.is 4 , then find the product of first five terms

- Watch Video Solution

1. Two sequences cannot be in both AP and GP together .

- Watch Video Solution

2. Every proression is a sequence but the converse i.e., every sequence is also a progression need not mecessarily be true.

- Watch Video Solution

3. Any term of an AP (except first) is equal to half the sum of terms which are equidistant from it .

D Watch Video Solution

4. the sum of difference of two GP. Is again a GP.
5. If the sum of n terms of a sequence is quadratic expression it always represents an AP.

D Watch Video Solution

Match The Comumms

1. match the following .
columnI
columnII
(i) 4.1. $\frac{1}{4} \cdot \frac{1}{16}$
(a) $A P$
(ii) 2.3.5.7
(b) sequence
(iii) 13.8.3. - 2. -7
(c) $G P$
(D) Watch Video Solution
2. Match the following .
ColumnI
ColumnII
(i) $\quad 1^{2}+2^{2}+3^{2}+\ldots .+n^{2}$
(a) $\left[\frac{n(n+1)}{2}\right]^{2}$
(ii) $1^{3}+2^{3}+3^{3}+\ldots+n^{3}$
(b) $n(n+1)$
(iii) $2+4+6+\ldots+2 n$
(c) $\frac{n(n+1)(2 n+1)}{6}$
(iv) $1+2+3+\ldots+n$
(d) $\frac{n(n+1)}{2}$

D Watch Video Solution

