

India's Number 1 Education App

MATHS

BOOKS - NCERT MATHS (ENGLISH)

SETS

Short Answers Type Questions

1. Write the following sets in the roaster from.

(i)
$$A = \{x \colon\! x \in R, 2x + 11 = 15\}$$

$$\text{(ii) } B = \left\{x \mid x^2 = x, x \in R\right\}$$

C = $\{x \mid x \text{ is a positive factor of a prime number p}\}$

2. If $Y = \{x \mid x \text{ is a positive factor of the number } 2^{p-1}(2^p-1)$ where 2^p-1 is a prime number} Write Y in roaster form.

3. If $L=\{1,2,3,4\}, M=\{3,4,5,6\}$ and $N=\{1,3,5\}$, then verify that $L-(M\cup N)=(L-M)\cap (L-N)$.

- 4. If A and B are subsets of the universal set U, then slow that
- (i) $A\subset A\cup B$, (ii) $A\subset B\Leftrightarrow A\cup B=B$
- (iii) $(A \cap B) \subset A$

- **5.** Give that $N = \{1, 2, 3, \ldots, 100\}$. The, write
- (i) the subset of N whose elements are even numbers.
- (ii) the subset of N whose elements are perfect square numbers.
 - Watch Video Solution

- **6.** If $X=\{1,2,3\}$, if n represents any member of X, write the following sets containing all numbers represented by
- (i) 4n , (ii) n+6 , (iii) $rac{n}{2}$, (iv) n-1
 - Watch Video Solution

- **7.** If $y=\{1,2,3,\ldots,10\}$ and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions,
- (i) $a \in Y$ but $a^2 \notin Y$

- (ii) $a + 1 = 6, a \in Y$
- (iii) a is less than 6 and $a \in Y$
 - Watch Video Solution

- **8.** A, B and C are subsets of universal set U. If $A=\{2,4,6,8,12,20\}$, $B=(3,6,9,12,15\}, C=\{5,10,15,20\}$ and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.
 - Watch Video Solution

9. Let U be the set of all boyes and girls in a school, G be the set of all girls in the school, B be the set of all boys in the school and S be the set of all students in the school who take swimming. Some but not all, students in the school take swimming. Draw a Venn diagram

showing one of the possible interrelationship among sets U, G, B and S.

10. For all sets A,B and C show that
$$(A-B)\cap (A-C)=A-(B\cup C)$$

12. For all sets A, B and C, A - (B - C) = (A - B) - C.

11. For all sets A and B, $(A-B) \cup (A \cap B) = A$.

13. For all sets A,B and C, if $A\subset B$, then $A\cap C\subset B\cap C$.

14. For all sets A,B and C, if $A\subset B$, then $A\cup C\subset B\cup C$.

15. For all sets A, B and C, if $A\subset C$ and $B\subset C$, then $A\cup B\subset C$.

16. For all sets A and B, show that, $A \cup (B-A) = A \cup B$.

 $A-(A-B)=A\cap B$

17.

20. Let $T=\left\{x\mid \frac{x+5}{x-7}-5=\frac{4x-40}{13-x}\right\}$. Is T an empty set ? Justify your answer.

For any two sets A and B prove the following:

18. For all sets A and B, $A-(A\cap B)$ is equal to

19. For all set A and B, $(A \cup B) - B = A - B$.

Long Answers Type Questions

- 1. B and C be sets. Then. show that
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
 - **Watch Video Solution**

- 2. Out of 100 students 15 passed in English 12 in Mathematics, 8 in
- Science 6 in English and Mathematics 7 in Mathematics and Science
- 4 in English and science and 4 in all the three .Find how many students passed
- (a) in English and Mathmatics but not in science
- (b) in Mathematics and science but not in English
- (c) in Mathematics only
- (d) in more than one subujects

Water video Solution

3. In Dr. Steve's math class, 12 students play the piano and 17 students play the guitar. If a total of 19 students play only one of these two instruments, how many students play both instruments?

4. In a survey of 200 students of higher secondary school, it was found that 120 studied Mathematics, 90 studies Physics and 70 studied Chemistry, 40 studied Mathematics and Physics, 3 studied Physics and Chemistry, 50 studied Chemistry and Mathematics and 20 studied none of these subjects. Find the number of students who studied all the three subjects.

5. In a town of 10000 families, it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10 % families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4 % buy a and C. If 2% families buy all the three newspaper. Find

- (i) the number of families which buy newspaper A only.
- (ii) the number of families which buy none of A, B and C.

- **6.** In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4, French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study
- (i) only French, (ii) only English.
- (iii) only Sanskrit., (iv) English and Sanskrit but not French.
- (v) French and Sanskrit but not English.

- (vi) French and English but not Sanskrit.
- (vii) atleast one of the three languages.
- (viii) none of the three languages.

Watch Video Solution

Objective Type Questions

- 1. Suppose, A_1,A_2,\ldots,A_{30} are thirty sets each having 5 elements and B_1,B_2,B_n sets each with 3 elements, let
- $igcup_{i=1}^{30}A_i=igcup_{j=1}^nB_j=S$ and each element of S belongs to exactly 10 of the A_i 's and exactly 9 of the B_j 's. Then, n is equal to
 - A. 15
 - B. 3
 - C. 45
 - D. 35

Answer: C

- **2.** Two infinite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are, respectively.(a) 4, 7(b) 7,4(c)4,4(d)7, 7
 - A. 4, 7
 - B. 7, 4
 - C. 4, 4
 - D. 7, 7

Answer: B

3. The set $ig(A \cup B'ig)' \cup (B \cap C)$ is equal to $A' \cup B \cup C$ b. $A' \cup B$

 $\mathsf{c.}\,A^{\,\prime} \cup C^{\,\prime}\,\mathsf{d.}\,A^{\,\prime} \cap B$

A. A ' \cup B \cup C

B. $A' \cup B$

C. $A' \cup C'$

D. $A'\cap B$

Answer: B

4. Let F_1 be the set of parallelograms F_2 the set of recteangles F_3 be the set of rhombuses F_4 be the set of squares and F_5 be the set of trapezium in a plane .Then F_1 may be equal to

A. $F_2\cap F_3$

B.
$$F_3 \cap F_4$$

C.
$$F_2 \cup F_5$$

D.
$$F_2 \cup F_3 \cup F_4 \cup F_1$$

Answer: D

Watch Video Solution

5. Let S= set of point inside the squre, T= set of points inside the triangles and C= the set of point inside the circle, if the triangle and circle intersect each other are contained in the square, then (a) $S\cap T\cap C=\phi(\mathsf{b})S\cup T\cup C=C(\mathsf{c})$ $S\cup T\cup C=S(\mathsf{c})$

$$(d)S \cup T = S \cap C$$

A.
$$S\cap T\cap C=\phi$$

$$\operatorname{B.} S \cup T \cup C = C$$

$$\mathsf{C.}\, S \cup T \cup C = S$$

 $\operatorname{D.} S \cup T = S \cap C$

Answer: C

Watch Video Solution

6. Let R be set of points inside a rectangle of sides a and b (a,b>1) with two sides along the positive direction of x-axis and y-axis(a) $R=\{(x,y)\colon 0\leq x\leq a,\,0\leq y\leq b\}$ (b)

 $R = \{(x,y) : 0 \le x < a, 0 \le y \le b\}$ (c)

 $R = \{(x,y) \colon 0 \le x \le a, 0 < y < b\}$ (d)

 $R = \{(x, y) : 0 < x < a, 0 < y < b\}$

- A. $R = \{(x,y) : 0 \le x \le a, 0 \le y \le b\}$
- B. $R = \{(x, y) : 0 \le x < a, 0 \le y \le b\}$
- C. $R = \{(x,y) : 0 \le x \le a, 0 < y < b\}$
- D. $R = \{(x, y) : 0 < x < a, 0 < y < b\}$

Answer: D

7. In a town of 840 persons , 450 persons read Hindi, 300 read English and 200 read both. Then, the number of persons who read neither, is

- A. 210
- B. 290
- C. 180
- D. 260

Answer: B

8. If $X = \{8^n - 7n - 1 \mid n \in N\}$ and $Y = \{49n - 49 \mid n \in N\}$.

Then

 $\mathsf{A.}\, X \subset Y$

 $\operatorname{B.} Y \subset X$

 $\mathsf{C}.\,X=Y$

D. $X \cap Y = \phi$

Answer: A

9. A survey shows that $63\,\%$ of the people watch a news channel whereas $76\,\%$ watch another channel. If $x\,\%$ of the people watch both channel then(a) x = 35(b)x=63(c) $39\leq x\leq 63(d)$ x = 39`

A. x = 35

$$\mathrm{B.}\,x=63$$

$$\mathsf{C.}\,39 \leq x \leq 63$$

$$\mathsf{D}.\,x=39$$

Answer: C

Watch Video Solution

10. If set A and B are defined as

 $A = igg\{ (x,y) \mid y = rac{1}{x}, 0
eq x \in R igg\}, B = \{ (x,y) \mid y = -x, x \in R, \}$

. Then (a) A \cap B = A (b)A \cap B = B (c)A \cap B = φ (d)A U B = A

A.
$$A\cap B=A$$

$$\operatorname{C.}A\cap B=\phi$$

 $\mathsf{B.}\,A\cap B=B$

D.
$$A \cup B = A$$

Answer: C

Watch Video Solution

- **11.** If A and B are two sets then prove $A=A\cap (A\cup B)$.
 - A. A
 - B. B
 - $\mathsf{C}.\,\phi$
 - $\mathsf{D}.\,A\cap B$

Answer: A

Watch Video Solution

12. If $A = \{1, 3, 5, 7, 9, 11, 13, 15, 17\}, B = \{2, 4, \dots, 18\}$ and N the set of natural numbers is the universal set, then

$$A^{\,\prime} \cup \{(A \cup B) \cap B^{\,\prime}\}$$
 is (a) $oldsymbol{\varphi}$ (b)N (c) A (d) B

A.
$$\phi$$

B. N

C. A

D.B

Answer: B

Watch Video Solution

 $P = \{x \colon\! x \text{ is a prime number less than } 20 \!\}.$ Then, n(S) + n(P) is equal to (a) 34 (b) 31 (c) 33 (d) 41

13. If $S = \{x : x \text{ is a positive multiple of } 3 \text{ less than } 100\}$ and

- A.34
- B.31

C. 33

D. 41

Answer: D

Watch Video Solution

14. If A and B are two sets, then $A\cap (A\cup B)$ ' is equal to - A (b) B

(c) ϕ (d) $A \cap B$

A. A

 $\mathsf{B}.\,B$

 $\mathsf{C}.\,\phi$

 $\mathsf{D}.\,A\cap B`$

Answer: A

Fillers

1. The set $\{x \in R \colon 1 \leq x < 2\}$ be written as \dots

Watch Video Solution

2. How many elements has P(A), if $A = \varphi$?

Watch Video Solution

3. If A and B are finite sets, such that $A\subset B$, then $n(A\cup B)$ is equal to

- **4.** If A and B are any two sets, then A B is equal to
 - Watch Video Solution

- **5.** Power set of the set $A=\{1,2\}$ is $\ldots\ldots$
 - Watch Video Solution

- **6.** If the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\}.$ Then, the universal set of all the three sets A, B and C can be
 - Watch Video Solution

7. $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 5\}, B = 2, 4, 6, 7\}$

If

and $C=\{2,3,4,8\}$. Then

(i)
$$(B \cup C)$$
 ' is $\dots,$ (ii) $(C-A)$ ' is \dots

- **8.** For all sets A and B, $A-(A\cap B)$ is equal to \ldots
 - Watch Video Solution

9. Match the following sets for all sets A, B and C

_			THE RESIDENCE OF THE PROPERTY
	Column I		Column II
(i)	$((A' \cup B') - A)'$	(a)	A - B
(ii)	$[(B' \cup (B' - A)]'$	(b)	A
(iii)	(A-B)-(B-C)	(c)	В
(iv)	$(A-B) \cap (C-B)$	(d)	$(A \times B) \cap (A \times C)$
(v)	$A \times (B \cap C)$	(e)	$(A \times B) \cup (A \times C)$
(vi)	$A \times (B \cup C)$	(f)	(A ∩ C) – B

True And False

1. IF A any set, then $A \subset A$.

Watch Video Solution

2. If $M = \{1, 2, 3, 4, 5.6, 7, 8, 9\}$ and $B = \{1, 2, 3, 4, 5.6, 7, 8, 9\}$, then $B \nearrow\!\!\!\!\!\!/ M$.

3. The sets $\{1,2,3,4\}$ and $\{3,4,5,6\}$ are equal

4. $Q \cup Z = Q$, where Q is the set of rational numbers and Z is the set of integers.

5. Let sets R and T be defined as

$$R = \{x \in Z \mid x ext{ is divisible by 2} \}$$

 $T = \{x \in Z \mid x ext{ is divisible by 6}\}$. Then, $T \subset R$

6. Given $A = [0, 1], B = [x \in R \mid 0 \le x \le 2]$. Then, A = B.

